Phosphate-Based Ultrahigh Molecular Weight Polyethylene Fibers for Efficient Removal of Uranium from Carbonate Solution Containing Fluoride Ions
Abstract
:1. Introduction
2. Results
2.1. Radiation Grafting Kinetics of GMA
2.2. Characterization of Modified UHMWPE Fibers
2.3. Uranium Adsorption
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of UHMWPE-g-PO4 Fiber Adsorbent
4.3. Characterization
4.4. U(VI) Sorption Tests
4.4.1. Sorption Kinetics
4.4.2. Sorption Isotherm
4.4.3. Influence of Coexisting Anions and Sorbent Dosage on U(VI) Removal Ratio
4.4.4. Recyclability Evaluation
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ladeira, A.C.Q.; Morais, A.C. Effect of ammonium, carbonate and fluoride concentration on the uranium recovery by resins. Radiochim. Acta 2005, 93, 207–209. [Google Scholar] [CrossRef]
- Badawy, S.M.; Sokker, H.H.; Othman, S.H.; Hashem, A. Cloth filter for recovery of uranium from radioactive waste. Radiat. Phys. Chem. 2005, 73, 125–130. [Google Scholar] [CrossRef]
- Shen, Y.L.; Wu, J.R.; Liu, Z.Y.; Wu, W.S. Environmentally friendlier approach to nuclear industry: Recovery of uranium from carbonate solutions using ionic liquids. Ind. Eng. Chem. Res. 2015, 54, 8624–8628. [Google Scholar] [CrossRef]
- Li, B.; Sun, Q.; Zhang, Y.; Abney, C.W.; Aguila, B.; Lin, W.; Ma, S. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces 2017, 9, 12511–12517. [Google Scholar] [CrossRef] [PubMed]
- Kentish, S.E.; Stevens, G.W. Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem. Eng. J. 2001, 84, 149–159. [Google Scholar] [CrossRef]
- Alexandratos, S.D.; Zhu, X. High-affinity ion-complexing polymer-supported reagents: Immobilized phosphate ligands and their affinity for the uranyl ion. React. Funct. Polym. 2007, 67, 375–382. [Google Scholar] [CrossRef]
- James, D.; Venkateswaran, G.; Prasada Rao, T. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Microporous and Mesoporous Mater. 2009, 119, 165–170. [Google Scholar] [CrossRef]
- Tripathi, A.; Melo, J.S.; D’Souza, S.F. Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads. J. Hazard. Mater. 2013, 246, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Hunter, D.B.; Hobbs, D.T.; Fink, S.D.; Dai, Z.; Bradley, J.P. Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate. Environ. Sci. Technol. 2004, 38, 5201–5207. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, C.; Górka, J.; Dai, S.; Jaronie, M. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 2015, 3, 11650–11659. [Google Scholar] [CrossRef]
- Yue, Y.F.; Sun, X.G.; Mayes, R.T.; Kim, J.; Fulvio, P.F.; Qiao, Z.A.; Brown, S.; Tsouris, C.; Oyola, Y.; Dai, S. Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci. China Chem. 2013, 56, 1510–1515. [Google Scholar] [CrossRef]
- Carboni, M.; Abney, C.W.; Liu, S.; Lin, W. Highly porous and stable metal–organic frameworks for uranium extraction. Chem. Sci. 2013, 4, 2396–2402. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Fan, F.; Zhu, L.; Shen, Y. Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids. Sep. Sci. Technol. 2014, 49, 1895–1902. [Google Scholar] [CrossRef]
- Saito, T.; Brown, S.; Chatterjee, S.; Kim, J.; Tsouris, C.; Mayes, R.T.; Kuo, L.-J.; Gill, G.; Oyola, Y.; Jankeb, C.J.; et al. Uranium recovery from seawater: Development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A 2014, 2, 14674–14681. [Google Scholar] [CrossRef]
- Abney, C.W.; Mayes, R.T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013. [Google Scholar] [CrossRef] [PubMed]
- Gill, G.A.; Kuo, L.J.; Janke, C.J.; Park, J.; Jeters, R.T.; Bonheyo, G.T.; Pan, H.B.; Wai, C.; Khangaonkar, T.; Bianucci, L.; et al. The uranium from seawater program at the pacific northwest national laboratory: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind. Eng. Chem. Res. 2016, 55, 4264–4277. [Google Scholar] [CrossRef]
- Dudarko, O.A.; Gunathilake, C.; Wickramaratne, N.P.; Sliesarenko, V.V.; Zub, Y.L.; Górka, J.; Dai, S.; Jaroniec, M. Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids Surf. A 2015, 482, 1–8. [Google Scholar] [CrossRef]
- Vivero-Escoto, J.L.; Carboni, M.; Abney, C.W.; de Krafft, K.E.; Lin, W.B. Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous and Mesoporous Mater. 2013, 180, 22–31. [Google Scholar] [CrossRef]
- Yamabe, K.; Ihara, T.; Jyo, A. Metal ion selectivity of macroreticular chelating cation exchange resins with phosphonic acid groups attached to phenyl groups of a styrene-divinylbenzene copolymer matrix. Sep. Sci. Technol. 2001, 36, 3511–3528. [Google Scholar]
- Chi, F.T.; Wang, X.L.; Xiong, J.; Hu, S. Polyvinyl alcohol fibers with functional phosphonic acid group: Synthesis and adsorption of uranyl (VI) ions in aqueous solutions. J. Radioanal. Nucl. Chem. 2013, 296, 1331–1340. [Google Scholar] [CrossRef]
- Zou, Y.D.; Cao, X.H.; Luo, X.P.; Liu, Y.; Hua, R.; Liu, Y.H.; Zhang, Z.B. Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon. J. Radioanal. Nucl. Chem. 2015, 306, 515–525. [Google Scholar] [CrossRef]
- Das, S.; Pandey, A.K.; Athawale, A.A.; Natarajan, V.; Manchanda, V.K. Uranium preconcentration from seawater using phosphate functionalized poly(propylene) fibrous membrane. Desalin. Water Treat. 2012, 38, 114–120. [Google Scholar] [CrossRef]
- Li, R.; Pang, L.J.; Ma, H.J.; Liu, X.Y.; Zhang, M.X.; Gao, Q.H.; Wang, H.L.; Xing, Z.; Wang, M.H.; Wu, G.Z. Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity. J. Radioanal. Nucl. Chem. 2017, 311, 1771–1779. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Wang, M.H.; Tang, Z.F.; Wu, G.Z. ESR study of free radicals in UHMWPE fiber irradiated by gamma rays. Radiat. Phys. Chem. 2010, 79, 429–433. [Google Scholar] [CrossRef]
- Ladeira, A.C.Q.; Morais, C.A. Uranium recovery from industrial effluent by ion exchange—Column experiments. Miner. Eng. 2005, 18, 1337–1340. [Google Scholar] [CrossRef]
- Wang, H.L.; Xu, L.; Hu, J.T.; Wang, M.H.; Wu, G.Z. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiat. Phys. Chem. 2015, 115, 88–96. [Google Scholar] [CrossRef]
- Sharif, J.; Mohamad, S.F.; Othman, N.A.F.; Bakaruddin, N.A.; Osman, H.N.; Güven, O. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiat. Phys. Chem. 2013, 91, 125–131. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Fu, L.; Zhang, L. Synthesis and evaluation of 8-aminoquinoline-grafted poly(glycidyl methacylate) for the recovery of Pd(II) from highly acidic aqueous solutions. Polymers 2018, 10, 437. [Google Scholar] [CrossRef]
- Rajini, A.; Nookaraju, M.; Reddy, I.A.K.; Venkatathri, N. Synthesis, characterization, antimicrobial and cytotoxicity studies of a novel titanium dodecylamino phosphate. J. Saudi Chem. Soc. 2017, 21, S77–S85. [Google Scholar] [CrossRef]
- Kirishima, A.; Kimura, T.; Tochiyama, O.; Yoshida, Z. Speciation study on complex formation of uranium(VI) with phosphate and fluoride at high temperatures and pressures by time-resolved laser-induced fluorescence spectroscopy. Radiochim. Acta 2004, 92, 889–896. [Google Scholar] [CrossRef]
- Rivas, B.L.; Maturana, H.A.; Villegas, S. Adsorption behavior of metal ions by amidoxime chelating resin. J. Appl. Polym. Sci. 2000, 77, 1994–1999. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Deepa, J.R. Synthesis and characterization of multi-carboxyl-functionalized nanocellulose/nanobentonite composite for the adsorption of uranium (VI) from aqueous solutions: Kinetic and equilibrium profiles. Chem. Eng. J. 2015, 273, 390–400. [Google Scholar] [CrossRef]
- Nasef, M.M.; Güven, O. Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Prog. Polym. Sci. 2012, 37, 1597–1656. [Google Scholar] [CrossRef]
- Nasef, M.M.; Hegazy, E.-S.A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef] [Green Version]
- Oyola, Y.; Dai, S. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater. Dalton Trans. 2016, 45, 8824–8834. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.; Wei, Y.Z.; Shi, W.Q. Density functional theory studies of UO22+ and NpO2+ with carbamoylmethylphosphine oxide ligands complexes. Inorg. Chem. 2013, 52, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Li, Y.; Wang, X.; Hu, S.; Wen, J.; Xiong, J.; Asiri, A.M.; Marwani, H.M. Phosphate-functionalized polyethylene with high adsorption of uranium(VI). ACS Omega 2017, 2, 3267–3275. [Google Scholar] [CrossRef]
- Yuan, L.Y.; Liu, Y.L.; Shi, W.Q.; Lv, Y.L.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans. 2011, 40, 7446–7453. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Yang, S.; Zhang, L.; Hua, D. Phosphonate-functionalized polystyrene microspheres with controlled zeta potential for efficient uranium sorption. RSC Adv. 2016, 6, 74110–74116. [Google Scholar] [CrossRef]
- Sarafraz, H.; Minuchehr, A.; Alahyarizadeh, G.H.; Rahimi, Z. Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci. Rep. 2017, 7, 11675. [Google Scholar] [CrossRef] [PubMed]
- Nho, Y.C.; Kwon, O.H.; Chen, J. Introduction of phosphoric acid group to polypropylene film by radiation grafting and its blood compatibility. Radiat. Phys. Chem. 2002, 64, 67–75. [Google Scholar] [CrossRef]
Sample Availability: Samples of phosphate-based UHMWPE fiber are available from the authors. |
Sorbents | Sorbent Description | Adsorption Capacity | |
---|---|---|---|
DG (%) | DPO (mmol∙g−1) | U(VI) (mg∙g−1) | |
A | 186 | 1.55 | 38.9 ± 1.1 |
B | 294 | 1.81 | 45.3 ± 0.7 |
C | 540 | 1.93 | 56.4 ± 1.3 |
D | 630 | 2.01 | 69.2 ± 2.0 |
Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|
Qe (mg∙g−1) | k1 (h−1) | R2 | Qe (mg∙g−1) | k2 (g∙mg−1∙h−1) | R2 |
63.1 | 3.17 × 10−2 | 0.978 | 95.2 | 1.48 × 10−3 | 0.999 |
Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|
Qmax (mg∙g−1) | KL (L∙mg−1) | R2 | KF (mg∙g−1) | n | R2 |
117.1 | 2.0 | 0.999 | 79.1 | 5.7 | 0.776 |
Sorbents | C0 (mg∙L−1) | pH | CO32− | F− | Qmax (mg∙g−1) | Reference |
---|---|---|---|---|---|---|
phosphonic acid-based mesoporous silica | 8 | 8.3 | with | without | 54.5 | [17] |
vinylphosphonic acid grafted poly(vinyl alcohol) fiber | 98.6 | 8.0 | without | without | 30.0 | [20] |
Phosphate-based mesoporous carbon | 50 | 8.0 | without | without | 70.0 | [21] |
phosphate-based polyethylene fibers | 50 | 8.2 | without | without | 151.0 | [37] |
phosphate-based mesoporous silica | 160 | 6.9 | without | without | 303.0 | [38] |
phosphonate-based polystyrene microsphere | 200 | 8.0 | with | without | 83.4 | [39] |
phosphonic acid-based mesoporous silica | 42.8 | 8.0 | without | without | 207.6 | [40] |
phosphate-based UHMWPE fiber | 20 | 9.6 | with | with | 110.7 | this work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, Y.; Zhang, M.; Xing, Z.; Ma, H.; Wu, G. Phosphate-Based Ultrahigh Molecular Weight Polyethylene Fibers for Efficient Removal of Uranium from Carbonate Solution Containing Fluoride Ions. Molecules 2018, 23, 1245. https://doi.org/10.3390/molecules23061245
Li R, Li Y, Zhang M, Xing Z, Ma H, Wu G. Phosphate-Based Ultrahigh Molecular Weight Polyethylene Fibers for Efficient Removal of Uranium from Carbonate Solution Containing Fluoride Ions. Molecules. 2018; 23(6):1245. https://doi.org/10.3390/molecules23061245
Chicago/Turabian StyleLi, Rong, Yuna Li, Maojiang Zhang, Zhe Xing, Hongjuan Ma, and Guozhong Wu. 2018. "Phosphate-Based Ultrahigh Molecular Weight Polyethylene Fibers for Efficient Removal of Uranium from Carbonate Solution Containing Fluoride Ions" Molecules 23, no. 6: 1245. https://doi.org/10.3390/molecules23061245
APA StyleLi, R., Li, Y., Zhang, M., Xing, Z., Ma, H., & Wu, G. (2018). Phosphate-Based Ultrahigh Molecular Weight Polyethylene Fibers for Efficient Removal of Uranium from Carbonate Solution Containing Fluoride Ions. Molecules, 23(6), 1245. https://doi.org/10.3390/molecules23061245