Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drying and Extraction Yields of Ginseng Berry Extracts
2.2. Antioxidant Properties of Ginseng Berry Extracts
2.3. Elastase Inhibitory Activity of Ginseng Berry Extracts
2.4. Contents of Ginsenosides in Ginseng Berry Extracts
2.5. Effects of Harvest Time on Chemical Constituents and Biological Activities of Ginseng Berry Extracts
3. Materials and Methods
3.1. Plant Materials
3.2. DPPH Free Radical Assay
3.3. Reducing Power
3.4. Determination of Total Phenolic Content
3.5. Determination of Elastase Inhibitory Activity
3.6. Determination of Ginsenoside Contents
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yun, T.K. Panax ginseng—A non-organ-specific cancer preventive? Lancet Oncol. 2001, 2, 49–55. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.Y.; Kim, S.H.; Kim, S.; Park, C.-W.; Cho, D.; Seo, D.B.; Shin, S.S. Ginseng berry and its biological effects as a natural phytochemical. Nat. Prod. Chem. Res. 2016, 4, 209. [Google Scholar] [CrossRef]
- Nam, Y.; Bae, J.; Jeong, J.H.; Ko, S.K.; Sohn, U.D. Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats. J. Ginseng Res. 2018, 42, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yi, Y.S.; Kim, J.; Han, S.Y.; Kim, S.H.; Seo, D.B.; Cho, J.Y.; Shin, S.S. Effect of polysaccharides from a Korean ginseng berry on the immunosenescence of aged mice. J. Ginseng Res. 2018, 42, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Dey, L.; Xie, J.T.; Wang, A.; Wu, J.; Maleckar, S.A.; Yuan, C.S. Anti-hyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicine 2003, 10, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Yoo, D.S.; Xu, H.; Park, N.I.; Kim, H.H.; Choi, J.E.; Park, S.U. Ginsenoside content of berries and roots of three typical Korean ginseng (Panax ginseng) cultivars. Nat. Prod. Commun. 2009, 4, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Fang, X.L. Difference in oral absorption of ginsenoside Rg1 between in vitro and in vivo models. Acta Pharmacol. Sin. 2006, 27, 499–505. [Google Scholar] [CrossRef]
- Han, M.; Sha, X.; Wu, Y.; Fang, X. Oral absorption of ginsenoside Rb1 using in vitro and in vivo models. Planta Med. 2006, 72, 398–404. [Google Scholar] [CrossRef]
- Joo, K.M.; Lee, J.H.; Jeon, H.Y.; Park, C.W.; Hong, D.K.; Jeong, H.J.; Lee, S.J.; Lee, S.Y.; Lim, K.M. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J. Pharm. Biomed. Anal. 2010, 51, 278–283. [Google Scholar] [CrossRef]
- Attele, A.S.; Zhou, Y.P.; Xie, J.T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002, 51, 1851–1858. [Google Scholar] [CrossRef]
- Xie, J.T.; Wu, J.A.; Mehendale, S.; Aung, H.H.; Yuan, C.S. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 2004, 11, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, S.K.; Seung, T.W.; Jin, D.E.; Guo, T.; Heo, H.J. Effect of ginseng (Panax ginseng) berry EtOAc fraction on cognitive impairment in C57BL/6 mice under high-fat diet inducement. Evid. Based Complement. Alternat. Med. 2015, 2015, 316527. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Park, C.W.; Kim, C.K.; Jeon, H.Y.; Kim, W.G.; Lee, S.J.; Kim, Y.M.; Lee, J.Y.; Choi, Y.D. Effects of Korean ginseng berry extract (GB0710) on penile erection: Evidence from in vitro and in vivo studies. Asian J. Androl. 2013, 15, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, S.Y.; Kim, S.H.; Cho, D.; Kim, S.; Park, C.W.; Shimizu, T.; Cho, J.Y.; Seo, D.B.; Shin, S.S. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J. Ginseng Res. 2017, 41, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.T.; Wang, C.Z.; Zhang, B.; Mehendale, S.R.; Li, X.L.; Sun, S.; Han, A.H.; Du, W.; He, T.C.; Yuan, C.S. In vitro and in vivo anticancer effects of American ginseng berry: Exploring representative compounds. Biol. Pharm. Bull. 2009, 32, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Lee, J.; Jung, S.; Kim, J.W.; Shin, J.H.; Lee, H.J. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet. J. Ginseng Res. 2017, 41, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Kim, S.; Kim, M.J.; Kim, M.S.; Kim, J.; Park, C.W.; Seo, D.; Shin, S.S.; Oh, S.W. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 2018, 42, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Seo, H.S.; Singh, D.; Lee, S.J.; Lee, C.H. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J. Ginseng Res. 2019. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yang, T.J.; Kim, S.-U.; Park, S.U. Biochemical and molecular analysis of ginsenoside biosynthesis in Panax ginseng during flower and berry development. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 27–34. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Song, S.H.; Ki, S.H.; Park, D.H.; Moon, H.S.; Lee, C.D.; Yoon, I.S.; Cho, S.S. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit Extracts. Molecules 2017, 22, 1489. [Google Scholar] [CrossRef] [PubMed]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F.J.I.C. Products Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Ext. Solvent | Constituent | Activity | Region | Effective Dose (mg/kg) (route/animal/day) | Estimated Human Dose (mg/60 kg/day) | Ref. |
---|---|---|---|---|---|---|
Ethanol Water | Rb1, Rb2, Rd,Re,Rf, Rg1, Rg2, 20SRg3, Rg6, Rh1, Rh4,Rk1,Rk3, F1,F4 | Hepatoprotective | South Korea | 100–500 (PO/rat) | 972.4–4862 | [3] |
Ethanol | Polysaccharide K | Anti-immunosenescent | 30 (PO/mouse) | 146 | [4] | |
Butanol | Re | Antidiabetic | China | 150 as ext.5–20 as Re(PO/mouse) | 729 as ext.24.3–97.3 as Re | [10] |
ND | Polysaccharides | Antidiabetic | USA | 150 (IP/mouse) | [11] | |
Ethylacetate | Re | Antidiabetic | South Korea | 20–50 (PO/mouse) | 97.3–243.3 | [12] |
70% ethanol | Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2 | Penile erection | South Korea | 20–150 (PO/rat) | 194.5–1458.7 | [13] |
70% ethanol | Antipigmentation | In vitro | [14] | |||
Butanol | Rg1, Re, Rh1, Rg2, Rb1, Rc, Rb2, Rb3, Rd, Rg3, 20R-Rg3, Rh2 | Anticancer | USA | 50 (PO/mouse) | 243.3 | [15] |
Water | Rb1, Rb2, Rc, Rd, Re, Rf | Blood circulation | 50–150 (PO/rat) | 486.2–1458.7 | [16] |
Sample | Drying (%, w/w) | Extraction (%, w/w) |
---|---|---|
3Y1W | 29.7 | 11.2 |
3Y2W | 31.2 | 11.0 |
3Y3W | 34.8 | 8.8 |
3Y4W | 32.2 | 11.9 |
3Y5W | 31.3 | 11.4 |
4Y1W | 32.0 | 10.4 |
4Y2W | 33.1 | 10.8 |
4Y3W | 32.8 | 11.2 |
4Y4W | 30.7 | 9.2 |
4Y5W | 29.9 | 12.6 |
Compound | Q1 mass | Q3 mass | Collision Energy (V) |
---|---|---|---|
Rb3 | 969.7 | 789.7 | 46 |
Rc | 1101.7 | 335.0 | 65 |
Rd | 969.8 | 789.4 | 60 |
Re | 1101.7 | 335.0 | 65 |
Rg1 | 823.5 | 643.5 | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.-Y.; Park, D.-H.; Seo, S.-W.; Park, K.-M.; Bae, C.-S.; Son, H.-S.; Kim, H.-G.; Lee, J.-H.; Yoon, G.; Shim, J.-H.; et al. Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts. Molecules 2019, 24, 3343. https://doi.org/10.3390/molecules24183343
Song S-Y, Park D-H, Seo S-W, Park K-M, Bae C-S, Son H-S, Kim H-G, Lee J-H, Yoon G, Shim J-H, et al. Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts. Molecules. 2019; 24(18):3343. https://doi.org/10.3390/molecules24183343
Chicago/Turabian StyleSong, Seung-Yeap, Dae-Hun Park, Seong-Wook Seo, Kyung-Mok Park, Chun-Sik Bae, Hong-Seok Son, Hyung-Gyun Kim, Jung-Hee Lee, Goo Yoon, Jung-Hyun Shim, and et al. 2019. "Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts" Molecules 24, no. 18: 3343. https://doi.org/10.3390/molecules24183343
APA StyleSong, S.-Y., Park, D.-H., Seo, S.-W., Park, K.-M., Bae, C.-S., Son, H.-S., Kim, H.-G., Lee, J.-H., Yoon, G., Shim, J.-H., Im, E., Rhee, S. H., Yoon, I.-S., & Cho, S.-S. (2019). Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts. Molecules, 24(18), 3343. https://doi.org/10.3390/molecules24183343