Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2-Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide
Abstract
:1. Introduction
2. Results
3. Material and Methods
General Information
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Zhy, Y.; Loso, M.R.; Watson, G.B.; Sparks, T.C.; Rogers, R.B.; Huang, J.X.; Gerwick, B.C.; Babcock, J.M.; Kelley, D.; Hegde, V.B.; et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem. 2010, 59, 2950–2957. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.B.; Loso, M.R.; Babcock, J.M.; Hasler, J.M.; Letherer, T.J.; Young, C.D.; Zhu, Y.; Casida, J.E.; Sparks, T.C. Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. Insect Biochem. Mol. Biol. 2011, 41, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Loso, M.R.; Nugent, B.M.; Huang, J.X.; Rogers, R.B. Multi-substituted Pyridyl Sulfoximines and Their Use as Insecticides. WO/2008/057129 A1, 15 May 2018. [Google Scholar]
- Sparks, T.C.; DeBoer, G.J.; Wang, N.X.; Hasler, J.M.; Loso, M.R.; Watson, G.B. Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1. Pestic. Biochem. Physiol. 2012, 103, 159–165. [Google Scholar]
- Longhurst, C.; Babcock, J.M.; Denholm, I.; Gorman, K.; Thomas, J.D.; Sparks, T.C. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Manag. Sci. 2013, 69, 809–813. [Google Scholar]
- Sparks, T.C.; Watson, G.B.; Loso, M.R.; Geng, C.; Babcock, J.M.; Thomas, J.D. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 2013, 107, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, B.M.; Buysse, A.M.; Loso, M.R.; Babcock, J.M.; Johnson, T.C.; Oliver, M.R.; Martin, T.P.; Ober, M.S.; Breaux, N.; Robinson, A.; et al. Expanding the structure–activity relationship of sulfoxaflor: the synthesis and biological activity of N-heterocyclic sulfoximines. Pest Manag. Sci. 2015, 71, 928–936. [Google Scholar]
- Arndt, K.E.; Bland, D.C.; Irvine, N.M.; Powers, S.L.; Martin, T.P.; McConnell, J.R.; Podhorez, D.E.; Renga, J.M.; Ross, R.; Roth, G.A.; et al. Development of a Scalable Process for the Crop Protection Agent Isoclast. Org. Process. Res. Dev. 2015, 19, 454–462. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, Z.; Xiong, L.; Yan, T.; Yang, N.; Wu, G.; Song, H.; Li, Z. Chiral Dicarboxamide Scaffolds Containing a Sulfiliminyl Moiety as Potential Ryanodine Receptor Activators. J. Agric. Food Chem. 2014, 62, 6269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Gu, Y.; Liu, M.; Wu, C.; Zhou, S.; Zhao, Y.; Jia, Z.; Wang, B.; Xiong, L.; Yang, N.; et al. Insecticidal Activities of Chiral N-Trifluoroacetyl Sulfilimines as Potential Ryanodine Receptor Modulators. J. Agric. Food Chem. 2014, 62, 11054. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, T.; Li, Y.; Jia, Z.; Wang, B.; Zhao, Y.; Qiao, Y.; Xiong, L.; Li, Y.; Li, Z. Novel phthalamides containing sulfiliminyl moieties and derivatives as potential ryanodine receptor modulators. Org. Biomol. Chem. 2014, 12, 6643. [Google Scholar] [CrossRef]
- Hua, X.; Mao, W.; Fan, Z.; Ji, X.; Li, F.; Zong, G.; Song, H.; Li, J.; Zhou, L.; Zhou, L.; et al. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation. Aust. J. Chem. 2014, 67, 1491. [Google Scholar] [CrossRef]
- Koerber, K.; Wach, J.; Kaiser, F.; Pohlman, M.; Deshmukh, P.; Culbertson, D.L.; Rogers, W.D.; Gunjima, K.; David, M.; Braun, F.J.; et al. Method of Controlling Ryanodine-Modulator Insecticide Resistant Insects. WO/2014/053406 A1, 10 April 2014. [Google Scholar]
- Gnamm, C.; Jeanguenat, A.; Dutton, A.C.; Grimm, C.; Kloer, D.P. Novel diamide insecticides: Sulfoximines, sulfonimidamides and other new sulfonimidoyl derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3800–3806. [Google Scholar] [CrossRef] [PubMed]
- Muehlebach, M.; Jeanguenat, A.; Hall, R.G. Novel Insecticides. WO/2007/080131 A2, 19 July 2007. [Google Scholar]
- Meanwell, N.A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, N.; Garden, H.; Evertsson, E.; Bratt, E.; Lepistö, M.; Johannesson, P.; Svensson, P.H. Synthesis and Functionalization of Cyclic Sulfonimidamides: A Novel Chiral Heterocyclic Carboxylic Acid Bioisostere. ACS Med. Chem. Lett. 2012, 3, 574. [Google Scholar] [CrossRef] [PubMed]
- Ballatore, C.; Huryn, D.M.; Smith, A.B., III. Carboxylic Acid (Bio)Isosteres in Drug Design. Chem. Med. Chem. 2013, 8, 385–395. [Google Scholar] [Green Version]
- Nishimura, N.; Norman, M.H.; Liu, L.; Yang, K.C.; Ashton, K.S.; Bartberger, M.D.; Chmait, S.; Chen, J.; Cupples, R.; Fotsch, C. Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 3. Structure–Activity Relationships within the Aryl Carbinol Region of the N-Arylsulfonamido-N′-arylpiperazine Series. J. Med. Chem. 2014, 57, 3094–3116. [Google Scholar] [CrossRef] [PubMed]
- Borhade, S.R.; Svensson, R.; Brandt, P.; Artursson, P.; Arvidsson, P.I.; Sandstroem, A. Preclinical Characterization of Acyl Sulfonimidamides: Potential Carboxylic Acid Bioisosteres with Tunable Properties. Chem. Med. Chem. 2015, 10, 455–460. [Google Scholar] [CrossRef]
- Luecking, U. For review focusing on medicinal chemistry of sulfoximines. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. Angew. Chem. Int. Ed. 2013, 52, 9399. [Google Scholar] [CrossRef]
- Seong, J.P. Sulfilimine- and Sulfoximine-Based Bioactives: Syntheses, COX Inhibition, and Anticancer Activity. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2013. [Google Scholar]
- Reggelin, M.; Zur, C. Sulfoximines: Structures, Properties and Synthetic Applications. Synthesis 2000, 2000, 1–64. [Google Scholar] [CrossRef]
- Okamura, H.; Bolm, C. Sulfoximines: Synthesis and Catalytic Applications. Chem. Lett. 2004, 33, 482. [Google Scholar] [CrossRef]
- Bolm, C. Asymmetric Synthesis with Chemical and Bilolgical Methods; Enders, D., Jaeger, K.-E., Eds.; Wiley/VCH: Weinheim, Germany, 2007; p. 149. [Google Scholar]
- Worch, C.; Mayer, A.C.; Bolm, C. Organosulfur Chemsitry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.; Wiley/VCH: Weinheim, Germany, 2008; p. 209. [Google Scholar]
- Bizet, V.; Hendriks, C.M.M.; Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 2015, 44, 3378. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Bolm, C. Rhodium-Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of N-Unsubstituted Sulfoximines and Sulfilimines. Org. Lett. 2004, 6, 1305. [Google Scholar] [CrossRef] [PubMed]
- Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Cordova, D.; Flexner, L.; Bellin, C.A.; Dubas, C.M.; Smith, B.K.; Hughes, K.A.; et al. Rynaxypyr™: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg. Med. Chem. Lett. 2007, 17, 6274–6279. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A.; Cordova, D.; Annan, I.B.; Barry, J.D.; Benner, E.A.; Currie, M.J.; Pahutski, T.F. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett. 2013, 23, 6341. [Google Scholar]
- Chang, S.Y.; Heo, J.N.; Lee, H.; Lim, H.J.; Kim, B.T.; Kim, J.K.; Kim, J. Diaminoaryl Derivatives Substituted by Carbamate and Pesticidal Composition Containing Same. WO2013/168967 A1, 14 November 2013. [Google Scholar]
- Zhang, J.; Xu, J.; Wang, B.; Li, Y.; Xiong, L.; Li, Y.; Ma, Y.; Li, Z. Synthesis and Insecticidal Activities of Novel Anthranilic Diamides Containing Acylthiourea and Acylurea. J. Agric. Food Chem. 2012, 60, 7565. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, A.; Basdevant, B.; Wanie, V.; Legault, C.Y. Catalytic Enantioselective α-Tosyloxylation of Ketones Using Iodoaryloxazoline Catalysts: Insights on the Stereoinduction Process. J. Org. Chem. 2012, 77, 11283. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Ontoria, O.J.M.; Scarpelli, R.; Schultz-Fademrecht, C. Amide Substituted Indazoles as Poly(ADP-ribose)Polymerase(PARP) Inhibitors. WO2008/084261 A1, 17 July 2008. [Google Scholar]
- According to the literature 3a, 3b, and 3d methods, the insecticidal assays were performed by Kyung Nong Co. Ltd., Korea (http://www.knco.co.kr/company/en_aboutus/). In detail, please see the Supplementary materials.
- Akamatsu, M. Importance of Physicochemical Properties for the Design of New Pesticides. J. Agric. Food Chem. 2011, 59, 2909. [Google Scholar] [CrossRef] [PubMed]
- The physicochemical measurements for determinations of equilibrium solubility, log P, and PAMPA permeability were performed by Drug Discovery Platform Technology Team, KRICT, Korea (https://english.krict.re.kr/eng/main).
- Avdeef, A.; Berger, C.M.; Brownell, C. pH-Metric Solubility. 2. Correlation between the acid-base titration and the saturation shake-flask solubility-pH methods. Pharm. Res. 2000, 17, 85–89. [Google Scholar] [CrossRef] [PubMed]
- For LogP, Using ACD/Labs T3 method (pH—metric), for graphs; please see the Supplementary materials.
- Avdeef, A.; Artursson, P.; Neuhoff, S.; Lazarova, L.; Gråsjö, J.; Tavelin, S. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKaflux Method. Eur. J. Pharm. Sci. 2005, 24, 333–349. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts, Structure Design and Methods; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
Sample Availability: Not available. |
Entry | Reaction Conditions a | Substrates | Products | Yield (%) b | ||
---|---|---|---|---|---|---|
Compd | Compd | X | Y | |||
1 | Imination | 14 | 15a | N-COCF3 | •• | 29 |
15b | O | •• | 22 | |||
2 | Imination | 15b | 16a | N-COCF3 | O | 43 |
3 | Oxidation | 14 | 16b | O | O | 93 |
Entry | Diamides | Against the Third Instar Larvae of S. litura a | |||
---|---|---|---|---|---|
Compd | Functionality | Larvicidal Activity (%) at Time (h) | Eating Area (%) | ||
72 h | 96 h | 96 h | |||
1 | 14 | sulfide | 46.7 | 73.3 | 5–10 |
2 | 15a | N-trifluoroacetyl sulfilimine | 46.7 | 53.3 | 5–10 |
3 | 15b | sulfoxide | 0 | 0 | >30 |
4 | 16a | N-trifluoroacetyl sulfoximine | 0 | 0 | >30 |
5 | 16b | sulfone | 0 | 0 | >30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.J.; Lee, W.H.; Park, S.J. Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2-Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide. Molecules 2019, 24, 3451. https://doi.org/10.3390/molecules24193451
Lim HJ, Lee WH, Park SJ. Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2-Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide. Molecules. 2019; 24(19):3451. https://doi.org/10.3390/molecules24193451
Chicago/Turabian StyleLim, Hwan Jung, Won Hyung Lee, and Seong Jun Park. 2019. "Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2-Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide" Molecules 24, no. 19: 3451. https://doi.org/10.3390/molecules24193451
APA StyleLim, H. J., Lee, W. H., & Park, S. J. (2019). Synthesis, Physicochemical Properties, and Biological Activities of 4-(S-Methyl-N-(2,2,2-Trifluoroacetyl)Sulfilimidoyl) Anthranilic Diamide. Molecules, 24(19), 3451. https://doi.org/10.3390/molecules24193451