Next Article in Journal
Chemical Composition and Immunomodulatory Activity of Essential Oils from Rhododendron albiflorum
Next Article in Special Issue
Phytochemical Analysis of Phenolics, Sterols, and Terpenes in Colored Wheat Grains by Liquid Chromatography with Tandem Mass Spectrometry
Previous Article in Journal
Microwave Synthetic Routes for Shape-Controlled Catalyst Nanoparticles and Nanocomposites
Previous Article in Special Issue
Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr.

1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
2
Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
3
Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
4
Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey
5
Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
*
Author to whom correspondence should be addressed.
Molecules 2021, 26(12), 3650; https://doi.org/10.3390/molecules26123650
Submission received: 17 May 2021 / Revised: 10 June 2021 / Accepted: 14 June 2021 / Published: 15 June 2021
(This article belongs to the Special Issue Biochemical Role of Pigments in the Plant Life)

Abstract

:
This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of V. amurensis grapes. In addition, several metabolites were newly annotated in V. amurensis. The highest diversity of phenolic compounds was identified in the samples of the V. amurensis grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultural grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.

1. Introduction

The appearance of the first representatives of the Vitaceae family (genus Vitis) dates from the Upper Cretaceous period [1]. Several types of fossil grapes of genus Vitis have been found in different parts of North America [2]. In the Eocene, representatives of the genus Vitis were widespread in Eurasia and the Far North [2]. In the Paleogene, one of the best-preserved species of fossil grapes Vitis sachalinensis Krysht. was found and described in the sediments of the Sakhalin Island, the Russian Far East. These data show that the evolution of the vine in the territory of Russia proceeded from ancient times. Moreover, now wild grapes of the genus Vitis grow in many Russian regions [3,4]. At the same time, there is very little information about the culture of East Asian grapes.
Grape berries contain 65–85% water; 10–33% sugar (glucose and fructose); flofaben; gallic acid; quercetin; oenin; the glycosides monodelphinidin and delphinidin; the acids malic, hydrosilicic, ortho-hydroxybenzoic, phosphoric, tartaric, citric, succinic, formic, pectin, and tannins; salts of potassium; magnesium; calcium; manganese; cobalt; iron vitamins B1, B2, B6, B12, A, C, P, and PP; folic acid; and enzymes. The dominant class of biologically active compounds of fruits and especially grape ridges are flavonoids, in particular complexes of oligomeric proanthocyanidins (condensed tannins), which are polymeric forms of flavonoids from the group of catechins, and their monomeric units, namely catechins and leuсoanthocyanidins [5].
Many studies have been devoted to the biological activity of flavonoids and complexes of oligomeric proanthocyanidins [6,7]. Complexes of oligomeric proanthocyanidins act as traps of free radicals and block the process of lipid peroxidation of biological membranes [8,9]. Their antioxidant activity is many times higher than that of vitamins E and C. They can inhibit the activity of many enzymes (hydrolase, oxidoreductase, kinase, transferase, among others) [10]. Due to the wide spectrum of action, the active compounds of the grapes V. amurensis have a pronounced positive effect on various organs and systems of the body, such as antihypertensive and vasostrengthening effects, as well as antidiabetic, anti-inflammatory, antiallergy, anticarcinogenic, antistress, radioprotective, and antirheumatic effects. Moreover, flavonoids have an anti-Alzheimer’s activity [11,12,13].
This work presents a detailed comparative study of the metabolomic composition of wild V. amurensis grape berry extracts taken from six different locations of the Russian Far East and four cultural specimens of V. amurensis obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). High-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry was used to identify target analytes in the extracts. Previously, the authors carried out metabolomic studies of Far Eastern plant species, such as Schizandra chinensis, Rhodiola rosea, Rhododendron adamsii, and Panax ginseng [14,15].

2. Results

The metabolome of ten samples of wild and cultural V. amurensis was analyzed and compared. A combination of both ionization modes (positive and negative) in MS full scan mode was applied for the molecular mass determination of the compounds in ethanolic extracts of V. amurensis. Compound identification was performed by comparing the observed m/z values and the fragmentation patterns with the literature. The list of compounds identified in the ethanolic extract of V. amurensis are represented in Table A1. The 118 compounds shown in Table A1 belong to different phenolic families, namely anthocyanidins, flavones, flavonols, flavan-3-ols, flavanones, hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, and tannins.

2.1. Anthocyanidins and Anthocyanins

A total of 18 anthocyanin compounds have been identified in the analyzed samples of V. amurensis (Table 1). The anthocyanins pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, and petunidin-3-(6-O-coumaroyl) glucoside have already been characterized as a component of Far East V. amurensis [16]. The anthocyanins malvidin-3-O-acetylhexoside, delphinid-3,5-O-diglucoside, malvidin-3-O-rutinoside, malvidin 3-acetyl-5-glucoside, petunidin 3-coumaroylglucoside-5-O-glucoside, and malvidin 3-coumaroylglucoside-5-O-glucoside were only found in the extracts of cultivated V. amurensis (St. Petersburg).

2.2. Other Flavonoid Compounds

A total of 42 flavonoid compounds were identified in analyzed V. amurensis samples (Table 2). The flavonols dihydrokaempferol, kaempferide, mearnsetin, kaempferol-3-O-glucoside, dihydrokaempferol glucoside, isorhamnetin 3-O-rhamnoside, hyperoside, taxifolin-3-O-glucoside, kaempferol 3,7-di-O-glucoside, and quercetin-O-dihexoside have been already characterized as components of Far East V. amurensis.

2.3. Phenolic Acids and Other Compounds

In addition, 22 phenolic acids and 37 other compounds were identified in analyzed V. amurensis samples (Table 3). It should be noted that the coumarins umbelliferone and fraxin; the sterol fucosterol; and the flavanols taxifolin-3-O-glucoside, kaempferol-3,7-di-O-glucoside; hydroxycinnamic acids 3-p-coumaroyl-4-caffeoylquinic acid, and 5-O-(4’-O-p-coumaroyl glucosyl) quinic acid were identified by mass spectrometry only in samples of wild V. amurensis grapes collected from the Pakhtusov Islands and Rikord Island, Peter the Great Bay, Sea of Japan.

3. Discussion

In general, the diversity of phytochemicals identified in wild and cultural grape V. amurensis resulted in the following descending order (number of metabolites in parenthesis): VZK (52) > ART (46) > SPB-2 (39) > SPB-1 (28) > SPB-4 (27) > PAK (25) > RIK (22) > KAL (20) > SPB-3 (19) > ARS (18). The most diverse metabolome was identified in the grapes collected in the vicinity of Vyazemsky, Khabarovsk Territory, which was rich in flavanols and phenolic acids.
The anthocyanins identified in V. amurensis in this study were previously identified and annotated in the vines [17] Solanium nigrum [18], Gaultheria Antarctica [19], and Vitis vinifera [20] and wheat [21]. Our identification of flavonoid compounds agrees with bibliographic data for Echinops [22], Rhodiola rosea [23], Ocimum [24], Alpinia officinarum [25], Brazilian propolis [26], Vitis vinifera [20], Rubus occidentalis [27], C. edulis [28], and Vaccinium macrocarpon [29].
Although wild grapes tend to be more diverse than cultivated varieties [30], this number of anthocyanins in one form is quite rare and more likely to occur in other berries, such as blueberries [31]. We hypothesize that many different anthocyanins are associated with rather low temperatures in summer and monsoon climates. To respond to adverse conditions, various anthocyanins are produced [32]. In addition, V. amurensis have an increased acidity of the fruit, which is also associated with unfavorable growing conditions [33]. As it is known, anthocyanins and many other phenolic compounds participating in the protective processes of plants are more stable in an acidic environment [34].

4. Materials and Methods

4.1. V. amurensis Samples

Ten samples of wild and cultivated grape V. amurensis were selected for the performance of metabolomic study. Six samples of wild V. amurensis were collected from different places in the Primorsky and Khabarovsk territories, Far Eastern Russia (Table 4, Figure 1). Four samples of cultivated V. amurensis, namely SPB-1, SPB-2, SPB-3, and SPB-4, were obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg. The grapes were harvested at the end of August and September 2020. Each sample included 100 g of grape berries.

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was obtained with Siemens Ultra-Clear TWF EDI UV UF TM Water Purification System (Siemens, Munich, Germany). All the other chemicals were of analytical grade.

4.3. Fractional Maceration

Fractional maceration with ethyl alcohol was applied to obtain highly concentrated extracts of V. amurensis. Each sample of V. amurensis was divided into three parts and consistently infused. The infusion time of each part of the extractant was seven days.

4.4. Liquid Chromatography

The separation of multicomponent mixtures was performed by a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV detector and a Shodex ODP-40 4E reverse-phase column (4.6 × 250 mm, particle size 4 µm). The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0.01–2 min, 100% B; 2–50 min, 100–0% B; control washing 50–60 min, 0% B. The entire HPLC analysis was done with an SPD-20A detector at wavelengths of 230 and 330 nm; the temperature corresponded to 40 °C. The injection volume was 10 µL.

4.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (Bruker Daltonics, Bremen, Germany). Four-stage ion separation (MS/MS mode) was implemented. All the chemical profiles of the samples were obtained by the HPLC–ESI–MS/MS method. The working parameters were as follows: ionization source temperature 50 °C, gas flow 4 L/min, nebulizer gas (atomizer) 7.3 psi, capillary voltage 4500 V, endplate bend voltage 1500 V, fragmentary voltage 280 V, and collision energy 60 eV. The ion trap was used in the scan range of 100–1.700 m/z for MS and MS/MS. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. The mass spectra were recorded in negative and positive ion mode. Data collection was controlled by Hystar DataAnalisys 4.1 software (Bruker Daltonics, Bremen, Germany). All the measurements were performed in triplicate.

Author Contributions

Conceptualization, M.R. and A.Z.; methodology, M.R. and I.D. resources, S.E., E.K., I.S., and A.S.; investigation, M.R.; data curation, K.P.; writing—original draft preparation, M.R.; writing—review and editing, A.Z. and K.P.; supervision, K.G. and T.K.; project administration, Y.M.; funding acquisition, K.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. The list of compounds identified in ethanolic extracts of V. amurensis.
Table A1. The list of compounds identified in ethanolic extracts of V. amurensis.
No.Identified CompoundMolecular FormulaCalculated MassPrecursor Ion, m/zFragment Ions, m/zReferences
[M–H][M+H]+
Anthocyanins
1. Cyanidin 3,5-O-diglucosideC27H31O16611.5335 611287; 449; 269; 231; 199; 161; 231; 213; 189; 175; 147[35,36]
2. Cyanidin-3-O-glucosideC21H21O11449.3848 449287; 206; 143[19,20,35,37,38]
3. Delphinidin 3-O-glucosideC21H21O12+465.3905 465303; 257; 229; 201; 165; 239; 213; 173; 145; 117[19,20,21,39]
4. Delphinidin-3,5-O-diglucosideC27H30O17626.5169 627465; 303; 257; 153; 229; 155[18,40]
5. Malvidin 3,5-O-diglucosideC32H31O15655.5795 655493; 331; 315; 179; 313[17,20,21]
6. Malvidin 3-(6-O-acetyl) glucosideC25H27O13535.478 537331; 299; 261; 243; 211; 154; 111[20,39]
7. Malvidin 3-(6-O-coumaroyl) glucosideC32H31O14639.5801 639331; 315; 299; 270; 242; 179; 150; 287; 213[20,39,40]
8. Malvidin 3-coumaroylglucoside-5-O-glucosideC35H45O21801.7192 801639; 493; 331; 315; 287; 270; 242; 300[39]
9. Malvidin 3-O-acetyl hexosideC25H27O14535.479 537331; 305; 261; 207; 185; 255; 229; 211[17]
10. Malvidin 3-O-glucosideC23H25O12493.4374 493331; 315; 179[20,39,40]
11. Pelargonidin-3-O-glucoside (callistephin)C21H21O10433.3854 433414; 271; 172; 226; 116[35,39,41]
12. Peonidin-3,5-О-diglucoside [Peonin; Peonidin 3-glucoside-5-glucoside]C28H33O16625.5520 625301; 463; 286; 258[21,39,40]
13. Peonidin-3-O-glucosideC22H23O11 +463.4114 463301; 286; 268; 258; 230; 202; 174; 121[20,39,41]
14. Petunidin 3-(6-O-coumaroyl) glucosideC31H29O14625.553 625317; 302; 274; 218[20,39,40]
15. Petunidin 3-coumaroylglucoside-5-O-glucosideC34H43O21787.6926 787625; 479; 317; 301; 246; 302; 274; 228[39,40]
16. Petunidin 3-galactosideC22H23O12+479.4108 479317; 302; 273[19,20,21,39]
17. Petunidin 3,5-diglucosideC28H33O17641.5514 641317; 479; 420; 257; 302; 274; 228[39,40]
Flavonols
18. DihydrokaempferolC15H12O6288.2522 289271; 199; 127; 243; 189; 118[22,42]
19. Dihydrokaempferol glucosideC21H22O11450.3928449 287; 227; 269; 225; 149[27]
20. Dihydroquercetin (taxifolin; taxifoliol)C15H12O7304.2516 305259; 149; 199; 241; 159; 171[20,43,44]
21. Herbacetin [3,5,7,8-tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one]C15H10O7302.2357301 179; 273; 121; 151[24,45]
22. Hyperoside (quercetin 3-O-galactoside; hyperin)C21H20O12464.3763463 301; 179; 257; 255; 147[43,46,47,48]
23. Isorhamnetin [isorhamnetol; quercetin 3’-methyl ether; 3-methylquercetin]C16H12O7316.2623 317299; 270; 230; 207;177; 165;147; 123; 147; 123; 119[49,50]
24. Isorhamnetin 3-O-glucosideC22H22O12478.4029 479317; 301; 257; 274; 228; 150[20,47,51]
25. Isorhamnetin 3-O-rhamonosideC22H22O11462.4035461 315; 152; 219[28,49]
26. KaempferideC16H12O6300.2629 301283; 265; 239; 211; 185; 133; 151[20,24,26]
27. KaempferolC15H10O6286.2363 287269; 227; 153[20,24,50]
28. Kaempferol diglycosideC27H30O16610.5175 611449; 287; 229; 165; 213; 111[52,53]
29. Kaempferol glycosideC21H20O11448.3769 449287; 269; 217[20,47]
30. MearnsetinC16H12O8332.2617 333318; 301; 273; 245; 193; 165; 139; 289; 271; 219; 153; 136[49]
31. MyricetinC15H10O8318.2351317 273; 191; 255; 229; 205; 187; 163; 125; 227[20,28,54]
32. Myricetin-3-O-galactosideC21H20O13480.3757479 299; 153; 271; 243; 171[47,48,55]
33. QuercetinC15H10O7302.2357 303285; 163; 267; 159; 239[20,24,37,43]
34. Quercetin 3-O-glucoside [Isoquercitrin; Hirsutrin]C21H20O12464.3763 465303; 285; 257; 229; 201; 150; 155[20,27,47,56]
35. Quercetin-3-O-glucuronideC21H18O13478.3598477 301; 179; 273; 151[39,47,57]
36. Quercetin-O-dihexosideC27H30O17626.5179 627303; 257; 150; 229[51,58]
37. Rutin (quercetin 3-O-rutinoside)C27H30O16610.5175 611303; 229; 257[27,35,37,56]
38. Taxifolin-3-O-glucosideC21H22O12466.3922 467449; 303; 188; 287; 132; 260[20]
Flavones
39. Apigenin [5,7-dixydroxy-2-(40hydroxyphenyl)-4H-chromen-4-one]C15H10O5270.2369 271253; 181; 137[56,59,60]
40. LuteolinC15H10O6286.2363 287271; 225; 175; 158[43,56,59,60]
41. Diosmetin [luteolin 4’-methyl ether; salinigricoflavonol]C16H12O6300.2629 301286; 258; 229; 184; 153; 124[61,62,63]
42. Cirsimaritin [scrophulein; 4’,5-dihydroxy-6,7-dimethoxyflavone; 7-methylcapillarisin]C17H14O6314.2895313 298; 247; 151; 270[24]
43. NevadensinC18H16O7344.3154343 328; 259; 313; 269[24,63]
44. SyringetinC17H14O8346.2883345 330; 315; 246; 151; 287; 271; 203; 183; 163[28]
45. Pentahydroxy trimethoxy flavoneC18H16O10392.3136 393378; 347; 317; 284; 246; 206; 349; 321; 284; 193; 322; 304;282; 196; 154[28]
46. Apigenin diglycosideC21H20O10432.3775 433414; 287; 186; 241; 158[20,56,64,65]
47. Vitexin [apigenin 8-C-glucoside]C21H20O10432.3775431 249; 221; 192[57,66,67]
48. Luteolin diglycosideC21H20O11448.3769 449287; 213; 137; 185[20,55,56,66,68]
49. Isovitexin 6”-O-deoxyhexoside [apigenin 6-C-glucoside 6”-O-deoxyhexoside]C27H30O14578.5187 579415; 297; 177; 397; 344; 362[66]
50. Vitexin glucosideC27H30O15594.5181 595415; 353; 283; 265; 176[66]
51. Apigenin glucosideC29H32O15620.5554 621561; 547; 461; 533; 461; 433[66]
Flavan-3-ols
52. Catechin [D-catechol]C15H14O6290.2681289 245; 205; 203; 188[43,49,55,57]
53. EpicatechinC15H14O6290.2681 291272; 175; 130; 157; 140[20,49,55]
54. Gallocatechin [+(-)gallocatechin]C15H14O7306.2675305 179; 125[20,28,43,44]
55. Catechin gallateC22H18O10442.3723441 289; 169; 245; 205; 203[20,56]
Flavanones
56. Naringenin [Naringetol; Naringenine]C15H12O5272.5228 273227; 155; 209; 139[20,43,49]
57. Hesperitin [Hesperetin]C16H14O6302.2788301 257; 151; 228; 189[20,43,68]
58. Eriodictyol-7-O-glucoside [Pyracanthoside; miscanthoside]C21H22O11450.3928449 269; 207; 251; 165[48,65,68]
59. Hexahydroxyflavanone hexosideC21H22O13482.3916 483437; 359; 263; 231; 298; 255; 225; 155[28]
Hydroxybenzoic acids
60. 4-hydroxybenzoic acidC7H6O3138.1207 139121[20,69,70]
61. Protocatechuic acidC7H6O4154.1201 155127[20,28,55]
62. Gallic acidC7H6O5170.1195 171126[20,54,55]
63. Syringic acid [benzoic acid; cedar acid]C9H10O5198.1727 199154; 140; 111; 140; 123; 125[20,55,71]
64. Ellagic acid [benzoaric acid; elagostasine]C14H6O8302.1926 303172; 158; 144; 127; 116[27,41,44]
65. Salvianolic acid FC17H14O6314.2895 315269; 243; 213;185; 144; 207; 181; 153; 179; 161; 133[69]
66. Dihydroxybenzoyl-hexosideC13H16O9316.2607315 153; 253; 151; 184[66]
67. Salvianolic acid GC18H12O7340.2837 341323; 295; 255; 195; 159; 305[63,72]
68. Salvianolic acid DC20H18O10418.3509417 373; 329; 287; 209[69,73]
Hydroxycinnamic acids
69. p-Coumaric acidC9H8O3164.16 165146; 119[20,46,55,73]
70. Sinapic acid [trans-sinapic acid]C11H12O5224.2100 225179; 153; 115; 133; 115[20,37,55,74]
71. Caffeoylmalic acidC13H12O8296.2296295 133; 179; 148; 119; 115[28]
72. Coutaric acid [trans-p-Coumaroyltartaric acid]C13H12O8296.2296295 163; 119[20]
73. Caftaric acid [cis-caftaric acid; 2-caffeoyl-L-tartaric acid; caffeoyl tartaric acid}C13H12O9312.23311 149; 221; 131[20,38,64,69]
74. Fertaric acid [fertarate]C14H14O9326.2556325 193; 149; 134[20]
75. p-Coumaric acid-O-hexoside [trans-p-coumaric acid 4-glucoside]C15H18O8326.2986325 193; 163; 119[28,57,75]
76. 1-caffeoyl-beta-D-glucose [caffeic acid-glucoside]C15H18O9342.298341 179; 161; 135[20,66]
77. 5-O-(4’-O-p-coumaroyl glucosyl) quinic acidC22H28O13500.4499 501339; 277; 203[56]
78. 3-p-coumaroyl-4-caffeoylquinic acidC25H24O11500.4515 501355; 483; 181; 225; 281; 193; 120; 133[76]
79. Coumaric acid derivativeC30H30O7502.5550 503457; 411; 382; 339; 293; 409; 391; 367; 323; 293; 233; 205[57]
80. Di-O-caffeoylquinic acidC25H24O12516.4509 517355; 339; 202[58,66,76]
81. Caffeic acid-O-(sinapoyl-O-hexoside)C26H30O14566.5080 567405; 520; 249; 234[57,77]
Other compounds
82. Malic acidC4H6O5134.0874133 115[57,69,78]
83. Tartaric acidC4H6O6150.0900149 131[78,79]
84. UmbelliferoneC9H6O3162.1421161 115[20,28,54]
85. Shikimic acidC7H10O5174.1513 175112[28,78]
86. Indole-3-carboxylic acidC10H9NO2175.1840 176130[75]
87. Esculetin [Cichorigenin; Aesculetin]C9H6O4178.1415 179133; 115[20]
88. Citric acidC6H8O7192.1235191 111; 173; 143; 127[57,59,79]
89. Quinic acidC7H12O6192.1666191 111; 173[20,28,57,59]
90. Dihydroferulic acidC10H12O4196.1999195 159; 129; 113; 122[28,80,81]
91. Ethyl gallateC9H10O5198.1727197 169; 125[45]
92. L-Tryptophan [tryptophan; (S)-tryptophan]C11H12N2O2204.2252 205188; 146; 170; 118[41,66]
93. Myristoleic acid [cis-9-tetradecanoic acid]C14H26O2226.3550 227209; 181; 155; 199; 181; 127[28]
94. Resveratrol [trans-resveratrol; stilbentriol]C14H12O3228.2433 229142; 184; 114[28,43]
95. Linolenic acid (alpha-linolenic acid; linolenate)C18H30O2278.4296 279260; 176; 120[62,74]
96. 9-oxo-10E,12Z-octadecanoic acid [9-oxo-ODE]C18H30O3294.4290 295249; 165; 220; 125[62,82]
97. Nonadecadienoic acidC19H34O2294.4721 295278; 250; 211; 172; 204; 181; 176[28]
98. Protocatechuic acid-O-hexosideC13H16O9316.2607315 153; 298; 151[57,69,75]
99. Bilobalide [(-)-Bilobalide]C15H18O8326.2986325 183; 261; 119; 183[46,50,75]
100. 3,7-dimethylquercetinC17H14O7330.2889 331314; 297; 255; 228; 203; 146; 267; 227; 203; 186; 164; 134[75]
101. Galloyl glucose [beta-glucogallin; 1-O-galloyl-beta-D-glucose]C13H16O10332.2601331 313; 195; 166[41]
102. Gallic acid hexosideC13H16O10332.2601331 271; 169; 125[83]
103. Erucic acid (cis-13-docosenoic acid)C22H42O2338.5677 339132; 293[65]
104. Esculin [aesculin; esculoside; polichrome]C15H16O9340.2821339 177; 293; 131[20,28,56]
105. Palmatine [berbericinine; Burasaine]C21H22NO4352.4037 353335; 235; 317; 235; 137[84]
106. Hexose-hexose-N-acetylC14H25NO10367.3490366 186; 142[85]
107. Fraxin (fraxetin-8-O-glucoside)C16H18O10370.3081 371208; 352; 135[20]
108. 1-O-sinapoyl-beta-D-glucoseC17H22O10386.3576 387205; 130[20]
109. Polydatin [piceid; trans-piceid]C20H22O8390.3839389 227; 343; 184; 143[27,43]
110. Fucosterol [fucostein; trans-24-ethylidenecholesterol]C29H48O412.6908 413395; 355; 271; 194; 119; 297; 199; 268; 187[28]
111. Stigmasterol [stigmasterin; beta-stigmasterol]C29H48O412.6908 413301; 259; 189; 171[28,86,87]
112. Phlorizin [phloridzin; phlorizoside; floridzin: phlorrhizin; phloretin 2’-glucoside; phloretin-O-hexoside]C21H24O10436.4093 437397; 217; 377[20,27,46,49,57]
113. Oleanoic acidC30H48O3456.7003 457439; 411; 365; 337; 293; 248; 205; 364; 309; 219; 319; 301; 279; 247; 232[24,76]
114. Ursolic acidC30H48O3456.7003 457411; 393; 365; 337; 279; 247; 292; 247; 219; 205[63,76,86]
115. Anmurcoic acidC30H46O5486.6922 487469; 427; 397; 367; 325; 307; 304; 261; 279[76]
116. Dimethylellagic acid hexoseC22H20O13492.3864 493331; 299; 270; 242; 179; 150; 225[41]
117. Procyanidin A-type dimerC30H24O12576.501 577425; 397; 373; 287; 245; 181; 245; 218; 189; 123[20,55,57]
118. Cyclopassifloic acid glucosideC37H62O12698.8810 699537; 347; 271; 259; 185[66]

References

  1. Manchester, S.R.; Kapgate, D.K.; Wen, J. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. Am. J. Bot. 2013, 100, 1849–1859. [Google Scholar] [CrossRef]
  2. Zecca, G.; Abbott, J.R.; Sun, W.-B.; Spada, A.; Sala, F.; Grassi, F. The timing and the mode of evolution of wild grapes (Vitis). Mol. Phylogenet. Evol. 2012, 62, 736–747. [Google Scholar] [CrossRef] [PubMed]
  3. Venuti, S.; Copetti, D.; Foria, S.; Falginella, L.; Hoffmann, S.; Bellin, D.; Cindrić, P.; Kozma, P.; Scalabrin, S.; Morgante, M. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 2013, 8, e61228. [Google Scholar] [CrossRef] [PubMed]
  4. Gorbunov, I.; Ilnitskaya, E.; Lukyanov, A.; Mikhailovsky, S.; Makarkina, M.; Pankin, M.; Bykhalova, O. Variety of Wild-Growing Grapes of the Utrish Reserve. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Philadelphia, PA, USA, 2020; p. 042050. [Google Scholar]
  5. Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
  6. González-Paramás, A.M.; Ayuda-Durán, B.; Martínez, S.; González-Manzano, S.; Santos-Buelga, C. The mechanisms behind the biological activity of flavonoids. Curr. Med. Chem. 2019, 26, 6976–6990. [Google Scholar] [CrossRef]
  7. Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chem. 2018, 239, 733–741. [Google Scholar] [CrossRef]
  9. Chai, W.-M.; Ou-Yang, C.; Huang, Q.; Lin, M.-Z.; Wang, Y.-X.; Xu, K.-L.; Huang, W.-Y.; Pang, D.-D. Antityrosinase and antioxidant properties of mung bean seed proanthocyanidins: Novel insights into the inhibitory mechanism. Food Chem. 2018, 260, 27–36. [Google Scholar] [CrossRef]
  10. Alzand, K.I.; Mohamed, M.A. Flavonoids: Chemistry, biochemistry and antioxidant activity. J. Pharm. Res 2012, 5, 37. [Google Scholar]
  11. Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 2008, 3, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Spencer, J.P.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol. Asp. Med. 2012, 33, 83–97. [Google Scholar] [CrossRef] [PubMed]
  13. Das, S.; Laskar, M.A.; Sarker, S.D.; Choudhury, M.D.; Choudhury, P.R.; Mitra, A.; Jamil, S.; Lathiff, S.M.A.; Abdullah, S.A.; Basar, N. Prediction of Anti-Alzheimer’s Activity of Flavonoids Targeting Acetylcholinesterase in silico. Phytochem. Anal. 2017, 28, 324–331. [Google Scholar] [CrossRef] [PubMed]
  14. Razgonova, M.; Zakharenko, A.; Ercisli, S.; Grudev, V.; Golokhvast, K. Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Molecules 2020, 25, 3774. [Google Scholar] [CrossRef] [PubMed]
  15. Razgonova, M.; Zakharenko, A.; Shin, T.-S.; Chung, G.; Golokhvast, K. Supercritical СО2 Extraction and Identification of Ginsenosides in Russian and North Korean Ginseng by HPLC with Tandem Mass Spectrometry. Molecules 2020, 25, 1407. [Google Scholar] [CrossRef] [Green Version]
  16. Tomaz, I.; Štambuk, P.; Andabaka, Ž.; Preiner, D.; Stupić, D.; Maletić, E.; Karoglan Kontić, J.; Ašperger, D. The Polyphenolic Profile of Grapes. In Grapes Polyphenolic Composition, Antioxidant Characteristics and Health Benefits; Thomas, S., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 1–70. [Google Scholar]
  17. Pantelić, M.M.; Zagorac, D.Č.D.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
  18. Chhon, S.; Jeon, J.; Kim, J.; Park, S.U. Accumulation of anthocyanins through overexpression of atPAP1 in Solanum nigrum lin. (black nightshade). Biomolecules 2020, 10, 277. [Google Scholar] [CrossRef] [Green Version]
  19. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  20. Goufo, P.; Singh, R.K.; Cortez, I. A Reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
  21. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  22. Jackson Seukep, A.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In vitro antibacterial and antiproliferative potential of Echinops lanceolatus Mattf.(Asteraceae) and identification of potential bioactive compounds. Pharmaceuticals 2020, 13, 59. [Google Scholar] [CrossRef] [Green Version]
  23. Lee, T.-H.; Hsu, C.-C.; Hsiao, G.; Fang, J.-Y.; Liu, W.-M.; Lee, C.-K. Anti-MMP-2 activity and skin-penetrating capability of the chemical constituents from Rhodiola rosea. Planta Med. 2016, 82, 698–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  25. Zhang, W.-X.; Chao, I.-C.; Hu, D.-J.; Shakerian, F.; Ge, L.; Liang, X.; Wang, Y.; Zhao, J.; Li, S.-P. Comparison of antioxidant activity and main active compounds among different parts of Alpinia officinarum Hance using high-performance thin layer chromatography-bioautography. J. AOAC Int. 2019, 102, 726–733. [Google Scholar] [CrossRef]
  26. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef] [PubMed]
  27. Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin secondary metabolites of black raspberry (Rubus occidentalis L.) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. J. Agric. Food Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
  28. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chromatogr. Sci. 2020, bmaa112. [Google Scholar] [CrossRef]
  29. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In vivo consumption of cranberry exerts ex vivo antiadhesive activity against FimH-dominated uropathogenic Escherichia coli: A combined in vivo, ex vivo, and in vitro study of an extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
  30. Narduzzi, L.; Stanstrup, J.; Mattivi, F. Comparing wild American grapes with Vitis vinifera: A metabolomics study of grape composition. J. Agric. Food Chem. 2015, 63, 6823–6834. [Google Scholar] [CrossRef]
  31. Li, D.; Li, B.; Ma, Y.; Sun, X.; Lin, Y.; Meng, X. Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J. Food Compos. Anal. 2017, 62, 84–93. [Google Scholar] [CrossRef]
  32. Gaiotti, F.; Pastore, C.; Filippetti, I.; Lovat, L.; Belfiore, N.; Tomasi, D. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Sci. Rep. 2018, 8, 1–13. [Google Scholar]
  33. Kemp, B.; Pedneault, K.; Pickering, G.; Usher, K.; Willwerth, J. Red Winemaking in Cool Climates. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 341–356. [Google Scholar]
  34. Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chem. 2017, 218, 277–284. [Google Scholar] [CrossRef]
  35. da Silva, L.P.; Pereira, E.; Pires, T.C.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Pradhan, P.C.; Saha, S. Anthocyanin profiling of Berberis lycium Royle berry and its bioactivity evaluation for its nutraceutical potential. J. Food Sci. Technol. 2016, 53, 1205–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant Sci. 2016, 7, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Schoedl, K.; Forneck, A.; Sulyok, M.; Schuhmacher, R. Optimization, in-house validation, and application of a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based method for the quantification of selected polyphenolic compounds in leaves of grapevine (Vitis vinifera L.). J. Agric. Food Chem. 2011, 59, 10787–10794. [Google Scholar] [CrossRef] [PubMed]
  39. Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography− mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
  40. Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC–DAD–ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef]
  41. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef] [Green Version]
  42. Daikonya, A.; Kitanaka, S. Constituents isolated from the roots of Rhodiola sacra SH Fu. Jpn. J. Food Chem. Saf. 2011, 18, 183–190. [Google Scholar]
  43. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [Green Version]
  44. Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
  45. Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Xu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193. [Google Scholar] [CrossRef]
  46. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
  47. De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chem. 2014, 163, 244–251. [Google Scholar] [CrossRef]
  48. Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
  49. Santos, S.A.; Vilela, C.; Freire, C.S.; Neto, C.P.; Silvestre, A.J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74. [Google Scholar] [CrossRef] [PubMed]
  50. Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B 2016, 1028, 33–41. [Google Scholar]
  51. Barros, L.; Dueñas, M.; Carvalho, A.M.; Ferreira, I.C.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1112, 224–231. [Google Scholar] [CrossRef] [PubMed]
  53. Le Gall, G.; DuPont, M.S.; Mellon, F.A.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem. 2003, 51, 2438–2446. [Google Scholar] [CrossRef]
  54. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In vitro antioxidant and anti-propionibacterium acnes activities of cold water, hot water, and methanol extracts, and their respective ethyl acetate fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [Green Version]
  55. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
  56. Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L.(Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
  57. Spínola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
  58. Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Lamuela-Raventós, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380. [Google Scholar] [CrossRef]
  59. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci 2018, 8, 116–122. [Google Scholar]
  60. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef] [PubMed]
  61. Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sferrazza, R.E.; Dinelli, G.; Herrero, M.; Cifuentes, A. Determination of phenolic compounds in ancient and modern durum wheat genotypes. Electrophoresis 2018, 39, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
  62. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC–MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
  63. Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [Green Version]
  64. Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013, 138, 1062–1071. [Google Scholar] [CrossRef]
  65. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef] [PubMed]
  66. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev. Bras. Farmacogn. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  67. Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
  68. Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. Molecules 2020, 25, 69. [Google Scholar] [CrossRef] [Green Version]
  69. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [Green Version]
  70. Sharma, S.; Pandey, A.K.; Singh, K.; Upadhyay, S.K. Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (Triticum aestivum). PLoS ONE 2016, 11, e0153925. [Google Scholar]
  71. Blanco-Zubiaguirre, L.; Olivares, M.; Castro, K.; Carrero, J.A.; García-Benito, C.; García-Serrano, J.Á.; Pérez-Pérez, J.; Pérez-Arantegui, J. Wine markers in archeological potteries: Detection by GC-MS at ultratrace levels. Anal. Bioanal. Chem. 2019, 411, 6711–6722. [Google Scholar] [CrossRef]
  72. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.; Woo, K.-S.; Fung, K.-P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
  73. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The phenolic fraction of Mentha Haplocalyx and its constituent linarin ameliorate inflammatory response through inactivation of NF-κB and MAPKs in lipopolysaccharide-induced RAW264. 7 cells. Molecules 2017, 22, 811. [Google Scholar] [CrossRef] [Green Version]
  74. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
  75. Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [Google Scholar] [CrossRef] [PubMed]
  76. Sun, L.; Tao, S.; Zhang, S. Characterization and quantification of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Spínola, V.A.R. Nutraceuticals and Functional Foods for Diabetes and Obesity Control. Ph.D. Thesis, University of Madeira, Funchal, Portugal, July 2018. [Google Scholar]
  78. Ivanova-Petropulos, V.; Naceva, Z.; Sándor, V.; Makszin, L.; Deutsch-Nagy, L.; Berkics, B.; Stafilov, T.; Kilár, F. Fast determination of lactic, succinic, malic, tartaric, shikimic, and citric acids in red Vranec wines by CZE-ESI-QTOF-MS. Electrophoresis 2018, 39, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
  79. Wang, S.; Fan, C.Q.; Wang, P. Determination of ultra-trace organic acids in Masson pine (Pinus massoniana L.) by accelerated solvent extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2015, 981, 1–8. [Google Scholar] [CrossRef] [PubMed]
  80. Farrell, T.; Poquet, L.; Dionisi, F.; Barron, D.; Williamson, G. Characterization of hydroxycinnamic acid glucuronide and sulfate conjugates by HPLC–DAD–MS2: Enhancing chromatographic quantification and application in Caco-2 cell metabolism. J. Pharm. Biomed. Anal. 2011, 55, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
  81. Lang, R.; Dieminger, N.; Beusch, A.; Lee, Y.-M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal. Bioanal. Chem. 2013, 405, 8487–8503. [Google Scholar] [CrossRef] [PubMed]
  82. Yang, S.; Wu, X.; Rui, W.; Guo, J.; Feng, Y. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
  83. Piccolella, S.; Crescente, G.; Volpe, M.G.; Paolucci, M.; Pacifico, S. UHPLC-HR-MS/MS-Guided recovery of bioactive flavonol compounds from greco di tufo vine leaves. Molecules 2019, 24, 3630. [Google Scholar] [CrossRef] [Green Version]
  84. Cassiano, D.S.A.; Reis, I.M.A.; de Oliveira Estrela, I.; de Freitas, H.F.; da Rocha Pita, S.S.; David, J.M.; Branco, A. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput. Biol. Chem. 2019, 83, 107129. [Google Scholar] [CrossRef]
  85. Levandi, T.; Püssa, T.; Vaher, M.; Ingver, A.; Koppel, R.; Kaljurand, M. Principal component analysis of HPLC-MS/MS patterns of wheat (Triticum aestivum) varieties. Proc. Est. Acad. Sci. 2014, 63, 86–92. [Google Scholar] [CrossRef]
  86. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC–MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512. [Google Scholar] [CrossRef] [PubMed]
  87. Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & CA Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J. Food Biochem. 2020, 44, e13350. [Google Scholar] [PubMed]
Figure 1. Region of wild V. amurensis grape collection.
Figure 1. Region of wild V. amurensis grape collection.
Molecules 26 03650 g001
Table 1. Anthocyanins identified in the ethanolic extracts of V. amurensis.
Table 1. Anthocyanins identified in the ethanolic extracts of V. amurensis.
No.Identified CompoundARSARTKALPAKRIKVZKSPB-1SPB-2SPB-3SPB-4
1. Cyanidin 3,5-O-diglucoside + ++++
2. Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-glucoside] +
3. Delphinidin 3-O-glucoside + +
4. Delphinidin-3,5-O-diglucoside +
5. Malvidin 3-(6-O-acetyl) glucoside++ +
6. Malvidin 3-(6-O-coumaroyl) glucoside + +
7. Malvidin 3-(6’-p-caffeoylglucoside)+++ + ++
8. Malvidin 3,5-diglucoside + +++++++
9. Malvidin 3-coumaroylglucoside-5-O-glucoside +
10. Malvidin 3-O-acetyl hexoside +
11. Malvidin 3-O-glucoside ++ ++++++
12. Pelargonidin-3-O-glucoside (callistephin) +
13. Peonidin-3,5-О-diglucoside [peonin; peonidin 3-glucoside-5-glucoside] + +++++
14. Peonidin-3-O-glucoside +++
15. Petunidin 3-(6-O-coumaroyl) glucoside +
16. Petunidin 3-coumaroylglucoside-5-O-glucoside +
17. Petunidin 3-O-glucoside-5-O-glucoside [Petunidin 3,5-di-O-beta-D-glucoside] ++ + ++
18. Petunidin-3-O-glucoside +
Total number21051387866
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 2. Other flavonoid compounds identified in the ethanolic extracts of V. amurensis.
Table 2. Other flavonoid compounds identified in the ethanolic extracts of V. amurensis.
No.Identified CompoundARSARTKALPAKRIKVZKSPB-1SPB-2SPB-3SPB-4
Flavonols
1. Quercetin-3-O-glucuronide++++++ +++
2. Kaempferol+++ ++ +
3. Quercetin + +++ +
4. Isorhamnetin [Isorhamnetol; Quercetin 3’-Methyl ether] + ++ +
5. Isorhamnetin 3-O-glucoside ++++
6. Myricetin-3-O-galactoside + + ++
7. Quercetin 3-O-glucoside [Isoquercitrin; Hirsutrin] + + + +
8. Myricetin ++ +
9. Dihydrokaempferol + +
10. Dihydroquercetin (Taxifolin; Taxifoliol) + +
11. Hyperoside (Quercetin 3-O-galactoside; Hyperin)+ +
12. Kaempferol diglycoside ++
13. Kaempferol glycoside+ +
14. Dihydrokaempferol glucoside+
15. Herbacetin +
16. Isorhamnetin 3-O-rhamonoside +
17. Kaempferide +
18. Mearnsetin +
19. Quercetin-O-dihexoside +
20. Rutin (Quercetin 3-O-rutinoside) +
21. Taxifolin-3-O-glucoside +
Total number:3921483624
Flavones
22. Apigenin++++ + +
23. Syringetin + +++
24. Luteolin diglycoside +++
25. Nevadensin + +
26. Vitexin 2”-O-glucoside [Apigenin 8-C-glucoside 2”-O-glucoside] + +
27. Luteolin +
28. Diosmetin [Luteolin 4’-Methyl Ether; Salinigricoflavonol] +
29. Pentahydroxy trimethoxy flavone +
30. Apigenin diglycoside +
31. Vitexin [ Apigenin 8-C-Glucoside] +
32. Vitexin glucoside+
33. Apigenin glucoside +
Total number:2322132423
Dimethoxyflavone
34. Cirsimaritin [Scrophulein; 4’,5-dihydroxy-6,7-dimethoxyflavone; 7-methylcapillarisin] +
Flavan-3-ols
35. Catechin [D-Catechol] + +++++++
36. Epicatechin + +
37. Gallocatechin [+(-)Gallocatechin] +
38. Catechin gallate +
Total number:0202121211
Flavanones
39. Naringenin [Naringetol; Naringenine] +++
40. Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] + +
41. Hesperitin [Hesperetin] +
42. Hexahydroxyflavanone hexoside +
Total number:0102120001
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 3. Phenolic acids and other compounds identified in the ethanolic extracts of V. amurensis.
Table 3. Phenolic acids and other compounds identified in the ethanolic extracts of V. amurensis.
No.Identified CompoundARSARTKALPAKRIKVZKSPB-1SPB-2SPB-3SPB-4
Hydroxybenzoic acids
1. Salvianolic acid D + + + + +
2. Salvianolic acid G+ + +
3. Ellagic acid [Benzoaric acid; Elagostasine] + +
4. 4-Hydroxybenzoic acid +
5. Protocatechuic acid +
6. Gallic acid +
7. Syringic acid [Benzoic acid; Cedar acid] +
8. Salvianolic acid F +
9. Dihydroxybenzoyl-hexoside +
Total number:1101062311
Hydroxycinnamic acids
10. Caftaric acid [cis-caftaric acid; 2-caffeoyl-L-tartaric acid; caffeoyl tartaric acid}+ ++++ +++
11. Di-O-caffeoylquinic acid + ++
12. Sinapic acid [trans-Sinapic acid] + +
13. Coutaric acid [Trans-p-Coumaroyltartaric acid] + +
14. Fertaric acid [Fertarate] + +
15. p-Coumaric acid-O-hexoside [Trans-p-Coumaric acid 4-glucoside] + +
16. Caffeic acid-O-(sinapoyl-O-hexoside) ++
17. p-Coumaric acid +
18. Caffeoylmalic acid +
19. 1-Caffeoyl-beta-D-glucose [Caffeic acid-glucoside] +
20. 5-O-(4’-O-p-coumaroyl glucosyl) quinic acid +
21. 3-p-coumaroyl-4-caffeoylquinic acid +
22. Coumaric acid derivative +
Total number:0103221104
Other compounds
23. Ethyl gallate++++ +++++
24. Malic acid++ +++++
25. Hexose-hexose-N-acetyl++ ++++
26. Citric acid ++ +++
27. Quinic acid + ++++
28. Galloyl glucose [Beta-Glucogallin; 1-O-Galloyl-Beta-D-Glucose] ++ + + +
29. L-Tryptophan [Tryptophan; (S)-Tryptophan] ++ ++
30. Cyclopassifloic acid glucoside++ ++
31. Indole-3-carboxylic acid + ++
32. Myristoleic acid [Cis-9-Tetradecanoic acid] + + +
33. Resveratrol [trans-Resveratrol; Stilbentriol]+++
34. Protocatechuic acid-O-hexoside + + +
35. Palmatine [Berbericinine; Burasaine] ++ +
36. Polydatin [Piceid; trans-Piceid] + + +
37. Procyanidin A-type dimer + ++
38. Shikimic acid + +
39. Esculetin [Cichorigenin; Aesculetin] + +
40. 9-oxo-10E,12Z-octadecanoic acid [9-Oxo-ODE] + +
41. Gallic acid hexoside + +
42. Esculin [Aesculin; Esculoside; Polichrome] + +
43. 1-O-Sinapoyl-beta-D-glucose + +
44. Stigmasterol [Stigmasterin; Beta-Stigmasterol]+ +
45. Oleanoic acid + +
46. Tartaric acid +
47. Umbelliferone +
48. Dihydroferulic acid +
49. Linolenic acid (Alpha-Linolenic acid; Linolenate) +
50. Nonadecadienoic acid +
51. Bilobalide [ (-)-Bilobalide] +
52. 3,7 -Dimethylquercetin +
53. Erucic acid (Cis-13-Docosenoic acid) +
54. Fraxin (Fraxetin-8-O-glucoside) +
55. Fucosterol [Fucostein; Trans-24-Ethylidenecholesterol] +
56. Phlorizin [Phloridzin; Phlorizoside; Floridzin: phlorrhizin; Phloretin 2’-Glucoside; Phloretin-O-hexoside]+
57. Ursolic acid +
58. Anmurcoic acid +
59. Dimethylellagic acid hexose +
Total number715711717111155
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 4. Locations of wild V. amurensis grape collection.
Table 4. Locations of wild V. amurensis grape collection.
Code Name of the SampleLocationGeographical ValuesSoil Type
ARSFloodplain of the Arsenyevka River, Primorsky TerritoryN. 44°52′18″, E 133°35′12″brown grey bleached soils
ARTThe vicinity of Artem, Primorsky TerritoryN 43°21′34″, E 132°11′19″yellow-brown soil
KALThe vicinity of Kalinovka, Primorsky TerritoryN 43°07′27″, E 133°12′30″layered floodplains
PAKThe Pakhtusov Islands, Peter the Great Bay, Sea of JapanN 42°53′57″, E 131°38′45″yellow-brown soil
RIKRikord Island, Peter the Great Bay, Sea of JapanN 42°52′54″, E 131°40′06″yellow-brown earth soils
VZKThe vicinity of Vyazemsky, Khabarovsk TerritoryN 47°32′15″, E 134°45′20″podzolic brown forest heavy loamy soils
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. https://doi.org/10.3390/molecules26123650

AMA Style

Razgonova M, Zakharenko A, Pikula K, Manakov Y, Ercisli S, Derbush I, Kislin E, Seryodkin I, Sabitov A, Kalenik T, et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules. 2021; 26(12):3650. https://doi.org/10.3390/molecules26123650

Chicago/Turabian Style

Razgonova, Mayya, Alexander Zakharenko, Konstantin Pikula, Yury Manakov, Sezai Ercisli, Irina Derbush, Evgeniy Kislin, Ivan Seryodkin, Andrey Sabitov, Tatiana Kalenik, and et al. 2021. "LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr." Molecules 26, no. 12: 3650. https://doi.org/10.3390/molecules26123650

Article Metrics

Back to TopTop