Bending of Layer-by-Layer Films Driven by an External Magnetic Field
Abstract
:1. Introduction
2. Results and Discussion
LbL Coating of Flexible Membranes
3. Experimental Section
3.1. Materials
3.2. Layer-by-Layer Assembly
3.3. Characterization of Layer-by-Layer Assembly
4. Conclusions
Acknowledgments
Appendix
Conflict of Interest
References
- Watanabe, M.; Shirai, H.; Hirai, T. Wrinkled polypyrrole electrode for electroactive polymer actuators. J. Appl. Phys 2002, 92, 4631. [Google Scholar]
- Baughman, R.H. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar]
- Mottaghitalab, V.; Xi, B.; Spinks, G.M.; Wallace, G.G. Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. Synth. Met 2006, 156, 796–803. [Google Scholar]
- Mirfakhrai, T.; Madden, J.D.W.; Baughman, R.H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38. [Google Scholar]
- Manna, U.; Bharani, S.; Patil, S. Layer-by-Layer self-assembly of modified hyaluronic acid/chitosan based on hydrogen bonding. Biomacromolecules 2009, 10, 2632–2639. [Google Scholar]
- Liang, X.; Sun, Y.; Duan, Y.; Cheng, Y. Synthesis and characterization of PEG-graft-quaternized chitosan and cationic polymeric liposomes for drug delivery. J. Appl. Polymer Sci 2012, 125, 1302–1309. [Google Scholar]
- Huang, C.; Tang, Z.; Zhou, Y.; Zhou, X.; Jin, Y.; Li, D.; Yang, Y.; Zhou, S. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm 2012, 429, 113–122. [Google Scholar]
- Herculano, R.D.; Alencar de Queiroz, A.A.; Kinoshita, A.; Oliveira, O.N., Jr; Graeff, C.F.O. On the release of metronidazole from natural rubber latex membranes. Mater. Sci. Eng. C 2011, 31, 272–275. [Google Scholar]
- Abarrategi, A.; Lópiz-Morales, Y.; Ramos, V.; Civantos, A.; López-Durán, L.; Marco, F.; López-Lacomba, J.L. Chitosan scaffolds for osteochondral tissue regeneration. J. Biomed. Mater. Res. Part B 2010, 95A, 1132–1141. [Google Scholar]
- Paulo, N.M.; de Brito e Silva, M.S.; Moraes, A.M.; Rodrigues, A.P.; Menezes, L.B.; Miguel, M.P.; Lima, F.G.; Faria, A.M.; Lima, L.M.L. Use of chitosan membrane associated with polypropylene mesh to prevent peritoneal adhesion in rats. J. Biomed. Mater. Res. Part B 2009, 91B, 221–227. [Google Scholar]
- Shi, Z.; Neoh, K.G.; Kang, E.T.; Shuter, B.; Wang, S.-C.; Poh, C.; Wang, W. (Carboxymethyl) chitosan-Modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl. Mater. Interfaces 2009, 1, 328–335. [Google Scholar]
- Bianco, A.; Kostarelos, K.; Prato, M. Making carbon nanotubes biocompatible and biodegradable. Chem. Commun 2011, 47, 10182. [Google Scholar]
- Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater 2006, 18, 3203–3224. [Google Scholar]
- Zucolotto, V.; Pinto, A.P.A.; Tumolo, T.; Moraes, M.L.; Baptista, M.S.; Riul, A.; Araújo, A.P.U.; Oliveira, O.N., Jr. Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase. Biosens. Bioelectron 2006, 21, 1320–1326. [Google Scholar]
- Moraes, M.L.; de Souza, N.C.; Hayasaka, C.O.; Ferreira, M.; Rodrigues Filho, U.P.; Riul, A.; Zucolotto, V.; Oliveira, O.N., Jr. Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements. Mater. Sci. Eng. C 2009, 29, 442–447. [Google Scholar]
- Wohl, B.M.; Engbersen, J.F.J. Responsive layer-by-layer materials for drug delivery. J. Controll. Release 2012, 158, 2–14. [Google Scholar]
- Zucolotto, V.; Daghastanli, K.R.P.; Hayasaka, C.O.; Riul, A.; Ciancaglini, P.; Oliveira, O.N., Jr. Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing. Anal. Chem. 2007, 79, 2163–2167. [Google Scholar]
- Macdonald, M.L.; Samuel, R.E.; Shah, N.J.; Padera, R.F.; Beben, Y.M.; Hammond, P.T. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 2011, 32, 1446–1453. [Google Scholar]
- Yamanlar, S.; Sant, S.; Boudou, T.; Picart, C.; Khademhosseini, A. Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films. Biomaterials 2011, 32, 5590–5599. [Google Scholar]
- Gribova, V.; Auzely-Velty, R.; Picart, C. Polyelectrolyte multilayer assemblies on materials surfaces: From cell adhesion to tissue engineering. Chem. Mater 2012, 24, 854–869. [Google Scholar]
- Gong, M.; Wang, Y.-B.; Li, M.; Hu, B.-H.; Gong, Y.-K. Fabrication and hemocompatibility of cell outer membrane mimetic surfaces on chitosan by layer by layer assembly with polyanion bearing phosphorylcholine groups. Colloids Surf. B 2011, 85, 48–55. [Google Scholar]
- Zhong, X.; Lu, Z.; Valtchev, P.; Wei, H.; Zreiqat, H.; Dehghani, F. Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf. B 2012, 93, 75–84. [Google Scholar]
- Miranda, E.S.; Silva, T.H.; Reis, R.L.; Mano, J.F. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering. Tissue Eng. Part A 2011, 17, 2663–2674. [Google Scholar]
- Pavinatto, F.J.; Caseli, L.; Oliveira, O.N., Jr. Chitosan in nanostructured thin films. Biomacromolecules 2010, 11, 1897–1908. [Google Scholar]
- Ron, A.; Lee, G.H.; Amar, L.; Ghassemi, S.; Hone, J. Adjacent assembly of self-assembled monolayers for the construction of selective bio-platforms. Sens. Actuators B 2011, 159, 75–81. [Google Scholar]
- Plewa, A.; Niemiec, W.; Filipowska, J.; Osyczka, A.M.; Lach, R.; Szczubiałka, K.; Nowakowska, M. Photocrosslinkable diazoresin/pectin films—Synthesis and application as cell culture supports. Eur. Polym. J 2011, 47, 1503–1513. [Google Scholar]
- Jiang, C.; Markutsya, S.; Tsukruk, V. Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly. Adv. Mater 2004, 16, 157–161. [Google Scholar]
- Jiang, S.P.; Liu, Z.; Tian, Z.Q. Layer-by-Layer self-assembly of composite polyelectrolyte—Nafion membranes for direct methanol fuel cells. Adv. Mater 2006, 18, 1068–1072. [Google Scholar]
- Hua, F.; Cui, T.; Lvov, Y.M. Ultrathin cantilevers based on polymer—Ceramic nanocomposite assembled through layer-by-layer adsorption. Nano Lett 2004, 4, 823–825. [Google Scholar]
- Grigoriev, D.; Gorin, D.; Sukhorukov, G.B.; Yashchenok, A.; Maltseva, E.; Möhwald, H. Polyelectrolyte/magnetite Nanoparticle multilayers: Preparation and structure characterization. Langmuir 2007, 23, 12388–12396. [Google Scholar]
- Liu, S.; Montazami, R.; Liu, Y.; Jain, V.; Lin, M.; Zhou, X.; Heflin, J.R.; Zhang, Q.M. Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators. Sens. Actuators A 2010, 157, 267–275. [Google Scholar]
- Zeng, T.; Claus, R.; Zhang, F.; Du, W.; Cooper, K.L. Ultrathin film actuators fabricated by layer-by-layer molecular self-assembly. Smart Mater. Struct 2001, 10, 780. [Google Scholar]
- Ferreira, M.; Mendonça, R.J.; Coutinho-Netto, J.; Mulato, M. Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz. J. Phys 2009, 39, 564–569. [Google Scholar]
- Mendonça, R.J.; Maurício, V.B.; Teixeira Lde, B.; Lachat, J.J.; Coutinho-Netto, J. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytother. Res 2009, 24, 764–768. [Google Scholar]
- Mrue, F.; Netto, J.C.; Ceneviva, R.; Lachat, J.J.; Thomazini, J.A.; Tambelini, H. Evaluation of the biocompatibility of a new biomembrane. Mater. Res 2004, 7, 277–283. [Google Scholar]
- De Pinho, E.C.C.M. Uso experimental da biomembrana de látex na reconstrução conjuntival. Arquivos Brasileiros Oftalmologia 2004, 67, 27–32. [Google Scholar]
- Herculano, R.D.; Silva, C.P.; Ereno, C.; Guimaraes, S.A.C.; Kinoshita, A.; Graeff, C.F.O. Natural rubber latexused as drugdelivery system in guidedboneregeneration (GBR). Mater. Res 2009, 12, 253–256. [Google Scholar]
- Balabanian, C.A.C.A.; Coutinho-Netto, J.; Lamano-Carvalho, T.L.; Lacerda, S.A.; Brentegani, L.G. Biocompatibility of natural latex implanted into dental alveolus of rats. J. Oral Sci 2006, 48, 201–205. [Google Scholar]
- Silva, H.S.R.C.; Santos, K.S.C.R.; Ferreira, E.I. Chitosan: hydrossoluble derivatives, pharmaceutical applications and recent advances. Quim. Nova 2006, 29, 776–785. [Google Scholar]
- Zhou, L.; Wang, Y.; Liu, Z.; Huang, Q. Carboxymethyl Chitosan-Fe3O4 nanoparticles: Preparation and adsorption behavior toward Zn2+ Ions. Acta Phys. Chim. Sin 2006, 22, 1342–1346. [Google Scholar]
- Scarberry, K.E.; Dickerson, E.B.; McDonald, J.F.; Zhang, Z.J. Magnetic nanoparticle—Peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J. Am. Chem. Soc 2008, 130, 10258–10262. [Google Scholar]
- Lee, J.-H.; Huh, Y.-M.; Jun, Y.; Seo, J.; Jang, J.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S.; et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med 2006, 13, 95–99. [Google Scholar]
- Jordan, A.; Scholz, R.; Wust, P.; Fähling, H.; Felix, R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater 1999, 201, 413–419. [Google Scholar]
- Hilger, I.; Hergt, R.; Kaiser, W.A. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc. Biotechnol 2005, 152, 33–39. [Google Scholar]
- Nitin, N.; LaConte, L.E.W.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. JBIC J. Biol. Inorg. Chem 2004, 9, 706–712. [Google Scholar]
- Jain, T.K.; Morales, M.A.; Sahoo, S.K.; Leslie-Pelecky, D.L.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm 2005, 2, 194–205. [Google Scholar]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar]
- Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci 2010, 35, 278–301. [Google Scholar]
- Xu, L.; Zhu, Z.; Sukhishvili, S.A. Polyelectrolyte multilayers of diblock copolymer micelles with temperature-responsive cores. Langmuir 2011, 27, 409–415. [Google Scholar]
- Cho, Y.; Lim, J.; Char, K. Layer-by-layer assembled stimuli-responsive nanoporous membranes. Soft Matter 2012, 8, 10271–10278. [Google Scholar]
- Lavalle, P.; Voegel, J.-C.; Vautier, D.; Senger, B.; Schaaf, P.; Ball, V. Dynamic aspects of films prepared by a sequential deposition of species: Perspectives for smart and responsive materials. Adv. Mater 2011, 23, 1191–1221. [Google Scholar]
- Delcea, M.; Möhwald, H.; Skirtach, A.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev 2011, 63, 730–747. [Google Scholar]
- Lee, D.; Rubner, M.F.; Cohen, R.E. All-Nanoparticle thin-film coatings. Nano Lett 2006, 6, 2305–2312. [Google Scholar]
- Schönhoff, M. Layered polyelectrolyte complexes: Physics of formation and molecular properties. J. Phys. Cond. Mat 2003, 15, R1781–R1808. [Google Scholar]
- Zucolotto, V.; Ferreira, M.; Cordeiro, M.R.; Constantino, C.J.L.; Balogh, D.T.; Zanatta, A.R.; Moreira, W.C.; Oliveira, O.N., Jr. Unusual interactions binding iron tetrasulfonated phthalocyanine and poly(allylamine hydrochloride) in layer-by-layer films. J. Phys. Chem. B 2003, 107, 3733–3737. [Google Scholar]
- Slavov, L.; Abrashev, M.V.; Merodiiska, T.; Gelev, C.; Vandenberghe, R.E.; Markova-Deneva, I.; Nedkov, I. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J. Magn. Magn. Mater 2010, 322, 1904–1911. [Google Scholar]
- Nallasamy, P.; Mohan, S. Vibrational Spectra of cis-1,4-polyisoprene. Arab. J. Sci. Eng 2004, 29, 17–26. [Google Scholar]
- Davi, C.P.; Galdino, L.F.M.; Borelli, P.; Oliveira, O.N., Jr; Ferreira, M. Natural rubber latexLbLfilms: Characterization and growth of fibroblasts. J. Appl. Polym. Sci. 2012, 125, 2137–2147. [Google Scholar]
- Schoeler, B.; Delorme, N.; Doench, I.; Sukhorukov, G.B.; Fery, A.; Glinel, K. Polyelectrolyte films based on polysaccharides of different conformations: Effects on multilayer structure and mechanical properties. Biomacromolecules 2006, 7, 2065–2071. [Google Scholar]
- Podsiadlo, P.; Tang, Z.; Shim, B.S.; Kotov, N.A. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett 2007, 7, 1224–1231. [Google Scholar]
- Jiang, C.; Wang, X.; Gunawidjaja, R.; Lin, Y.-H.; Gupta, M.K.; Kaplan, D.L.; Naik, R.R.; Tsukruk, V. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater 2007, 17, 2229–2237. [Google Scholar]
- Blanc, M.; Touratier, M. Modelling elastic and thermoelastic thick multilayered composites by a new constrained discrete layer approach. Mech. Adv. Mater. Struct 2006, 13, 95–114. [Google Scholar]
- MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamic. J. Comput. Phys 1995, 117, 1–19. [Google Scholar]
- Chaikumpollert, O.; Sae-Heng, K.; Wakisaba, O.; Mase, A.; Yamamoto, Y.; Kawahara, S. Low temperature degradation and characterization of natural rubber. Polym. Degrad. Stab 2011, 96, 1989–1995. [Google Scholar]
- Nawamawat, K.; Sakdapipanich, J.T.; Ho, C.C.; Ma, Y.; Song, J.; Vancso, J.G. Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf. A 2011, 390, 157–166. [Google Scholar]
- Abreu, F.R.; Campana-Filho, S.P. Preparation and characterization of carboxymethylchitosan. Polímeros 2005, 15, 79–83. [Google Scholar]
- Lei, Z.; Pang, X.; Li, N.; Lin, L.; Li, Y. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. J. Mater. Proc. Technol 2009, 209, 3218–3225. [Google Scholar]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931–1936. [Google Scholar]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum 2007, 78, 013705. [Google Scholar]
- Bending LbL Films Containing Magnetic Nanoparticles with an External Field. Available online: http://www.ifi.unicamp.br/~galvao/Toto (on accessed 9 April 2013).
NRL/MNP/CMC | NRL/MNP-CMC2 | |
---|---|---|
RMS roughness (nm) | 8.6 | 8.5 |
Maximum height (nm) | 136.2 | 79.9 |
Average roughness (nm) | 4.1 | 5.8 |
% of the ratio between the occupied area against the total area | 10.7 | 29.2 |
Occupied area (106 nm2) | 2.7 | 7.2 |
Occupied volume (107 nm3) | 4.3 | 8.4 |
Average height (nm) | 16.0 | 11.5 |
Substrate | Mass (g) | Minimum number of deposited bilayers for attraction at 2 mm | Voltage (V) | Current (A) |
---|---|---|---|---|
Cellophane | 0.01004 | 7 | 19.4 | 2.09 |
Transparency | 0.01120 | 7 | 28.4 | 2.93 |
NRL | 0.19775 | 19 | 28.9 | 3.07 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Miyazaki, C.M.; Riul, A., Jr.; Dos Santos, D.S., Jr.; Ferreira, M.; Constantino, C.J.L.; Pereira-da-Silva, M.A.; Paupitz, R.; Galvão, D.S.; Jr., O.N.O. Bending of Layer-by-Layer Films Driven by an External Magnetic Field. Int. J. Mol. Sci. 2013, 14, 12953-12969. https://doi.org/10.3390/ijms140712953
Miyazaki CM, Riul A Jr., Dos Santos DS Jr., Ferreira M, Constantino CJL, Pereira-da-Silva MA, Paupitz R, Galvão DS, Jr. ONO. Bending of Layer-by-Layer Films Driven by an External Magnetic Field. International Journal of Molecular Sciences. 2013; 14(7):12953-12969. https://doi.org/10.3390/ijms140712953
Chicago/Turabian StyleMiyazaki, Celina M., Antonio Riul, Jr., David S. Dos Santos, Jr., Mariselma Ferreira, Carlos J. L. Constantino, Marcelo A. Pereira-da-Silva, Ricardo Paupitz, Douglas S. Galvão, and Osvaldo N. Oliveira Jr. 2013. "Bending of Layer-by-Layer Films Driven by an External Magnetic Field" International Journal of Molecular Sciences 14, no. 7: 12953-12969. https://doi.org/10.3390/ijms140712953
APA StyleMiyazaki, C. M., Riul, A., Jr., Dos Santos, D. S., Jr., Ferreira, M., Constantino, C. J. L., Pereira-da-Silva, M. A., Paupitz, R., Galvão, D. S., & Jr., O. N. O. (2013). Bending of Layer-by-Layer Films Driven by an External Magnetic Field. International Journal of Molecular Sciences, 14(7), 12953-12969. https://doi.org/10.3390/ijms140712953