Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers
Abstract
:1. Introduction
2. ROS and Antioxidant-Oxidant Levels
3. Protection Strategy in Humans and the Search for Biological Radiation Protection
4. Multiple Antioxidants against Stress Induced by Ionizing Radiation
4.1. Polyunsaturated Fatty Acids and Phytosterols
4.2. Organosulfur and Nitrogen Compounds
4.3. Polyphenolic Compounds
5. Case Study: Xanthophylls against Ionizing Radiation and in Protection of Astronauts
6. Conclusions and Perspectives
Conflicts of Interest
References
- Dainiak, N. Recommendations for assessment of consequences and health risks of low-level exposure to ionizing radiation. Health Phys 2011, 100, 311–312. [Google Scholar]
- Chen, J.; Einstein, A.J.; Fazel, R.; Krumholz, H.M.; Wang, Y.; Ross, J.S.; Ting, H.H.; Shah, N.D.; Nasir, K.; Nallamothu, B.K. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: A population-based analysis. J. Am. Coll. Cardiol 2010, 56, 702–711. [Google Scholar]
- Santiso, R.; Tamayo, M.; Gosálvez, J.; Johnston, S.; Mariño, A.; Fernández, C.; Losada, C.; Fernández, J.L. DNA fragmentation dynamics allows the assessment of cryptic sperm damage in human: Evaluation of exposure to ionizing radiation, hyperthermia, acidic pH and nitric oxide. Mutat. Res 2012, 734, 41–49. [Google Scholar]
- Land, C.E. Low-dose extrapolation of radiation health risks: Some implications of uncertainty for radiation protection at low doses. Health Phys 2009, 97, 407–415. [Google Scholar]
- Hayashi, T.; Morishita, Y.; Khattree, R.; Misumi, M.; Sasaki, K.; Hayashi, I.; Yoshida, K.; Kajimura, J.; Kyoizumi, S.; Imai, K.; et al. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J 2012, 26, 4765–4773. [Google Scholar]
- Baker, J.E.; Moulder, J.E.; Hopewell, J.W. Radiation as a risk factor for cardiovascular disease. Antioxid. Redox Signal 2011, 15, 1945–1956. [Google Scholar]
- Yong, L.C.; Petersen, M.R.; Sigurdson, A.J.; Sampson, L.A.; Ward, E.M. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. Am. J. Clin. Nutr 2009, 90, 1402–1410. [Google Scholar]
- Damasso, M.; Dachev, T.; Falzetta, G.; Giardi, M.T.; Rea, G.; Zanini, A. The radiation environment observed by Liulin-Photo and R3D-B3 spectrum-dosimeters inside and outside Foton-M3 spacecraft. Radiat. Meas 2009, 44, 263–272. [Google Scholar]
- Stein, T.P.; Leskiw, M.J. Oxidant damage during and after long duration space flight. FASEB J 2000, 14, E375–E382. [Google Scholar]
- Durante, M.; Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 2008, 8, 465–472. [Google Scholar] [Green Version]
- Schimmerling, W. Accepting space radiation risks. Radiat. Environ. Biophys 2010, 49, 325–329. [Google Scholar]
- Cucinotta, F.A.; Hu, S.; Schwadron, N.; Kozarev, K.; Lawrence, T.W.; Kim, M.H. Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather 2010, 8, 12–16. [Google Scholar]
- Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies, Health Risks from Exposure to Low Levels of Ionizing Radiation; The National Academies Press: Washington, DC, USA, 2006.
- United Nations, Scientific Committee on the Effects of Atomic Radiation. In Sources and Effects of Ionizing Radiation; United Nations: Vienna, Austria.
- Early and late effects of radiation in normal tissues and organs: Threshold doses for tissue reactions and other non-cancer effects of radiation in a radiation protection context. Available online: http://www.icrp.org (accessed on 1 July 2012).
- Valko, M.; Leibfritz, D.; Moncola, J.; Cronin, M.T.D.; Mazura, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol 2007, 39, 44–84. [Google Scholar]
- Baker, J.E.; Fish, B.; Su, J.; Haworth, S.T.; Strande, J.L.; Komorowski, R.A.; Migrino, R.Q.; Doppalapudi, A.; Harmann, L.; Allen Li, X.; et al. 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int. J. Radiat. Biol 2009, 85, 1089–1100. [Google Scholar]
- Ziech, D.; Francor, R.; Pappa, A.; Panayiotidis, M.I. Reactive Oxygen Species (ROS)-Induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res 2011, 711, 167–173. [Google Scholar]
- Muller, H.J.; Mott-Smith, L.M. Evidence that natural radioactivity is inadequate to explain the frequency of “natural” mutations. Proc. Natl. Acad. Sci 1930, 16, 277–285. [Google Scholar]
- Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res 2011, 711, 193–201. [Google Scholar]
- Dickey, J.S.; Baird, B.J.; Redon, C.E.; Sokolov, M.V.; Sedelnikova, O.A.; Bonner, W.M. Intercellular communication of cellular stress monitored by gamma-H2AX induction. Carcinogenesis 2009, 30, 1686–1695. [Google Scholar]
- Morgan, W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res 2003, 159, 581–596. [Google Scholar]
- Lusis, A. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med 2005, 352, 1685–1695. [Google Scholar]
- Cobbold, C.A.; Sherratt, J.A.; Maxwell, S.R. Lipoprotein oxidation and its significance for atherosclerosis: A mathematical approach. Bull. Math. Biol 2002, 64, 65–95. [Google Scholar]
- Little, M.P.; Gola, A.; Tzoulaki, I. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput. Biol 2009, 5, e1000539. [Google Scholar]
- Hayashi, T.; Morishita, Y.; Kubo, Y.; Kusunoki, Y.; Hayashi, I.; Kasagi, F.; Hakoda, M.; Kyoizumi, S.; Nakachi, K. Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors. Am. J. Med 2005, 118, 83–86. [Google Scholar]
- Preston, D.L.; Shimizu, Y.; Pierce, D.A.; Suyama, A.; Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res 2003, 160, 381–407. [Google Scholar]
- Yamada, M.; Wong, F.L.; Fujiwara, S.; Akahoshi, M.; Suzuki, G. Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res 2004, 161, 622–632. [Google Scholar]
- Lucas, J.N.; Poggensee, M.; Straume, T. The persistence of chromosome translocations in a radiation worker accidentally exposed to tritium. Cytogenet. Cell Genet 1992, 60, 255–256. [Google Scholar]
- Howe, G.R.; Zablotska, L.B.; Fix, J.J.; Egel, J.; Buchanan, J. Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat. Res 2004, 162, 517–526. [Google Scholar]
- Hayashi, T.; Kusunoki, Y.; Hakoda, M.; Morishita, Y.; Kubo, Y.; Maki, M.; Kasagi, F.; Kodama, K.; Macphee, D.G.; Kyoizumi, S. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int. J. Radiat. Biol 2003, 79, 129–136. [Google Scholar]
- Vano, E.; Kleiman, N.J.; Duran, A.; Rehani, M.M.; Echeverri, D.; Cabrera, M. Radiation cataract risk in interventional cardiology personnel. Radiat. Res 2010, 174, 490–495. [Google Scholar]
- Hsieh, W.A.; Lin, I.-F.; Chang, W.P.; Chen, W.L.; Hsu, Y.H.; Chen, M.S. Lens opacities in young individuals long after exposure to protracted low-dose-rate gamma radiation in 60Co-contaminated buildings in Taiwan. Radiat. Res 2010, 173, 197–204. [Google Scholar]
- Vano, E.; Kleiman, N.J.; Duran, A.; Romano-Miller, M.; Rehani, M.M. Radiation-associated lens opacities in catheterization personnel: Results of a survey and direct assessments. J. Vasc. Interv. Radiol 2013, 24, 197–204. [Google Scholar]
- Bonisoli-Alquati, A.; Mousseau, T.A.; Møller, A.P.; Capriolia, M.; Sainoa, N. Increased oxidative stress in barn swallows from the Chernobyl region. Comp. Biochem. Physiol. Mol. Integr. Physiol 2010, 155, 205–210. [Google Scholar]
- Beresford, N.A.; Barnett, C.L.; Brown, J.E.; Cheng, J.-J.; Copplestone, D.; Gaschak, S.; Hosseini, A.; Howard, B.J.; Kamboj, S.; Nedveckaite, T.; et al. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: An international comparison of approaches. J. Radiol. Prot 2010, 30, 341–373. [Google Scholar]
- Pungkun, V. Chronic Radiation doses to Aquatic Biota. In Ph.D. Thesis; University of Portsmouth: Portsmouth, UK, 17 July 2012.
- Bonisoli-Alquati, A.; Møller, A.P.; Rudolfsen, G.; Saino, N.; Caprioli, M.; Ostermiller, S.; Mousseau, T.A. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica). Comp. Biochem. Physiol. Mol. Integr. Physiol 2011, 159, 105–112. [Google Scholar]
- Chesser, R.K.; Sugg, D.W.; Lomakin, M.D.; van den Bussche, R.A.; DeWoody, J.A.; Jagoe, C.H.; Dallas, C.E.; Whicker, F.W.; Smith, M.H.; Gaschak, S.P.; et al. Concentrations and dose rate estimates of 134,137cesium and 90strontium in small mammals at Chornobyl, Ukraine. Environ. Toxicol. Chem 2000, 19, 305–312. [Google Scholar]
- Geraskin, S.A.; Fesenko, S.V.; Alexakhin, R.M. Effects of non-human species irradiation after the Chernobyl NPP accident. Environ. Int 2008, 34, 880–897. [Google Scholar]
- Hiyama, A.; Nohara, C.; Kinjo, S.; Taira, W.; Gima, S.; Tanahara, A.; Otaki, J.M. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Nat. Sci. Rep. 2012. [Google Scholar] [CrossRef]
- Baqail, F.P.; Gridleyl, D.S.; Slater, J.M.; Luo-Owen, X.; Stodieck, L.S.; Ferguson, V.; Chapes, S.K.; Pecaut, M.J. Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl. Physiol 2009, 106, 1935–1942. [Google Scholar]
- Fortunati, A.; Tassone, P.; Damasso, M.; Migliaccio, F. Neutron irradiation affects the expression of genes involved in the response to auxin, senescence and oxidative stress in Arabidopsis. Plant Signal. Behav 2010, 5, 959–967. [Google Scholar]
- Le, O.N.; Rodier, F.; Fontaine, F.; Coppe, J.P.; Campisi, J.; de Gregori, J.; Laverdière, C.; Kokta, V.; Haddad, E.; Beauséjour, C.M. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 2010, 9, 398–409. [Google Scholar]
- Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev 2004, 23, 311–322. [Google Scholar]
- Sawant, S.G.; Randers-Pehrson, G.; Geard, C.R.; Brenner, D.J.; Hall, E.J. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat. Res 2001, 155, 397–401. [Google Scholar]
- Mitchell, S.A.; Randers-Pehrson, G.; Brenner, D.J.; Hall, E.J. The bystander response in C3H 10T1/2 cells: The influence of cell-to-cell contact. Radiat. Res 2004, 161, 397–401. [Google Scholar]
- Buonanno, M.; de Toledo, S.M.; Pain, D.; Azzam, E.I. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat. Res 2011, 175, 405–415. [Google Scholar]
- Patel, R.P.; Cornwell, T.; Darley-Usmar, V.M. The Biochemistry of Nitric Oxide and Peroxynitrite: Implications for Mitochondrial Function. In Understanding the Process of Aging: The Roles of Mitochondria, Free Radicals, and Antioxidants; Cadenas, E., Packer, L., Eds.; Marcel Dekker: New York, NY, USA, 1999; pp. 39–56. [Google Scholar]
- Zaka, R.; Vandecasteele, C.M.; Misset, M.T. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae). J. Exp. Bot 2002, 53, 1979–1987. [Google Scholar]
- Esnault, M.A.L.; Chenal, C. Ionizing radiation: Advances in plant response. Environ. Exp. Bot 2010, 68, 231–237. [Google Scholar]
- Vandenhove, H.; Vanhoudt, N.; Cuypers, A.; van Hees, M.; Wannijn, J.; Horemans, N. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiol. Biochem 2010, 48, 778–786. [Google Scholar]
- Smith, J.; Willey, N.; Hancock, J. Low dose ionising radiation produces too few ROS to directly affect antioxidant concentrations in cells. Biol. Lett 2012, 8, 594–597. [Google Scholar]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol 2011, 194, 7–15. [Google Scholar]
- Prasad, K.N.; Cole, W.C.; Kumar, B.; Prasad, K. Pros and cons of antioxidant use during radiation therapy. Cancer Treat. Rev 2002, 28, 79–91. [Google Scholar]
- Capizzi, R.L.; Oster, W. Chemoprotective and radioprotective effects of amifostine: An update of clinical trials. Int. J. Hematol 2000, 72, 425–435. [Google Scholar]
- Sinclair, W.K. Cysteamine: Differential X-ray protective effect on Chinese hamster cells during the cell cycle. Science 1968, 159, 442–444. [Google Scholar]
- Anne, P.R. Phase II trial of subcutaneous amifostine in patients undergoing radiation therapy for head and neck cancer. Semin. Oncol 2002, 29, 80–83. [Google Scholar]
- Sminia, P.; van der Kracht, A.H.; Frederiks, W.M.; Jansen, W. Hyperthermia, radiation carcinogenesis and the protective potential of vitamin A and N-acetylcysteine. J. Cancer Res. Clin. Oncol 1996, 122, 343–350. [Google Scholar]
- Cekan, E.; Tribukait, B.; Vokal-Borek, D.H. Protective effect of selenium against radiation induced malformations in mice. Acta Radiol. Oncol 1985, 24, 267–271. [Google Scholar]
- Kennedy, A.R.; Krinsky, N.I. Effects of retinoids, b-carotene and canthaxanthene on U.V. and X-ray-induced transformation of C3H10T 1/2 cells in vitro. Nutr. Cancer 1994, 22, 219–232. [Google Scholar]
- Konopacka, M.; Widel, M.; Rzeszowska-Wolny, J. Modifying effect of vitamins C, E and beta-carotene against gamma-ray induced DNA damage in mouse cells. Mutat. Res 1998, 417, 85–94. [Google Scholar]
- Wambi, C.O.; Sanzari, J.K.; Sayers, C.M.; Nuth, M.; Zhou, Z.; Davis, J.; Finnberg, N.; Lewis-Wambi, J.S.; Ware, J.H.; El-Deiry, W.S.; et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat. Res 2009, 172, 175–186. [Google Scholar]
- Mutlu-Turkoglu, U.; Erbil, Y.; Oztezcan, S.; Olgac, V.; Toker, G.; Uysal, M. The effect of selenium and/or vitamin E treatments on radiation-induced intestinal injury in rats. Life Sci 2000, 66, 1905–1913. [Google Scholar]
- Ushakova, T.; Melkonyan, H.; Nickonova, L.; Afanasyev, V.; Gaziev, A.; Murdrik, N.; Bradburv, R.; Goqvadze, V. Modification of gene expression by dietary antioxidants in radiation-induced apoptosis of mice splenocytes. Free Radic. Biol. Med 1999, 26, 887–891. [Google Scholar]
- Gaziev, A.; Podlutsky, A.; Panfilov, B.; Bradbury, R. Dietary supplements of antioxidants reduce hprt mutant frequency in splenocytes of aging mice. Mutat. Res 1995, 338, 77–86. [Google Scholar]
- Harapanhalli, R.S.; Yaghmai, V.; Giuliani, D.; Howell, R.W.; Rao, D.V. Antioxidant effects of vitamin C in mice following X-irradiation. Res. Commun. Mol. Pathol. Pharmacol 1996, 94, 271–287. [Google Scholar]
- Narra, V.R.; Harapanhalli, R.S.; Howell, R.W.; Sastry, K.S.; Rao, D.V. Vitamins as radioprotectors in vivo. Protection by vitamin C against internal radionuclides in mouse testes: Implications to the mechanism of damage caused by the Auger effect. Radiat. Res 1994, 137, 394–399. [Google Scholar]
- El-Habit, O.H.; Saada, H.N.; Azab, K.S.; Abdel-Rahman, M.; El-Malah, D.F. The modifying effect of beta-carotene on gamma radiation-induced elevation of oxidative reactions and genotoxicity in male rats. Mutat. Res 2000, 466, 179–186. [Google Scholar]
- Boerma, M.; Roberto, K.A.; Hauer-Jensen, M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int. J. Radiat. Oncol. Biol. Phys 2008, 72, 170–177. [Google Scholar]
- Umegaki, K.; Uramoto, H.; Suzuki, J.; Esashi, T. Feeding mice palm carotene prevents DNA damage in bone marrow and reduction of peripheral leukocyte counts, and enhances survival following X-ray irradiation. Carcinogenesis 1997, 18, 1943–1947. [Google Scholar]
- Kennedy, A.R.; Guan, J.; Ware, J.H. Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys 2007, 46, 201–203. [Google Scholar]
- Stewart, J.; Ko, Y.H.; Kennedy, A.R. Protective effects of L-selenomethionine on space radiation induced changes in gene expression. Radiat. Environ. Biophys 2007, 46, 161–165. [Google Scholar]
- Sieber, F.; Muir, S.A.; Cohen, E.P.; North, P.E.; Fish, B.L.; Irving, A.A.; Mäder, M.; Moulder, J.E. High-dose selenium for the mitigation of radiation injury: A pilot study in a rat model. Radiat. Res 2009, 171, 368–373. [Google Scholar]
- Ben-Amotz, A.; Yatziv, S.; Sela, M.; Greenberg, S.; Rachmilevich, B.; Shwarzman, M. Effect of natural beta-carotene supplementation in children exposed to radiation from the Chernobyl accident. Radiat. Environ. Biophys 1998, 37, 187–193. [Google Scholar]
- Korkina, L.G.; Afanas’ef, I.B.; Diplock, A.T. Antioxidant therapy in children affected by irradiation from the Chernobyl nuclear accident. Biochem. Soc. Trans 1993, 21, 314S. [Google Scholar]
- Mills, E.E. The modifying effect of beta-carotene on radiation and chemotherapy induced oral mucositis. Br. J. Cancer 1988, 57, 416–417. [Google Scholar]
- Singh, V.K.; Brown, D.S.; Kao, T.C. Tocopherol succinate: A promising radiation countermeasure. Int. Immunopharmacol 2009, 9, 1423–1430. [Google Scholar]
- Nakayama, A.; Alladin, K.P.; Igbokwe, O.; White, J. Generating evidence-based guidelines on the concurrent use of dietary antioxidants and chemotherapy or radiotherapy. Cancer Invest 2011, 29, 655–667. [Google Scholar]
- Davis, J.G.; Wan, X.S.; Ware, J.H.; Kennedy, A.R. Dietary supplements reduce the cataractogenic potential of proton and HZE-particle radiation in mice. Radiat. Res 2010, 173, 353–361. [Google Scholar]
- Blumenthal, R.D.; Lew, W.; Reising, A.; Soyne, D.; Osorio, L.; Ying, Z.; Goldenberg, D.M. Anti-oxidant vitamins reduce normal tissue toxicity induced by radio-immunotherapy. Int. J. Cancer 2000, 86, 276–280. [Google Scholar]
- Weiss, J.F.; Landauer, M.R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 2003, 189, 1–20. [Google Scholar]
- Prasad, K.N. Rationale for using multiple antioxidants in protecting humans against low doses of ionizing radiation. Br. J. Radiol 2005, 78, 485–492. [Google Scholar]
- Devi, P.U.; Agrawala, P.K. Normal tissue protectors against radiation injury. Def. Sci. J 2011, 61, 105–112. [Google Scholar]
- Jha, M.N.; Bedford, J.S.; Jha, S.; Prasad, K.N. Caffeine treatment enhances low dose gamma-irradiation-induced chromatid-type aberrations in human leukaemia cells, but not in human normal fibroblast cells in culture. Int. J. Low Radiat 2011, 8, 400–411. [Google Scholar]
- Krzyzanowska, J.; Czubacka, A.; Oleszek, W. Dietary phytochemicals and human. Adv. Exp. Med. Biol 2010, 698, 74–98. [Google Scholar]
- Rea, G.; Antonacci, A.; Lambreva, M.; Pastorelli, S.; Ferrari, S.; Fischer, D.; Johanningmeier, U.; Oleszek, W.; Doroszewska, T.; Rizzo, A.M.; et al. Integrated plant biotechnologies applied to safer and healthier food production: The Nutra-Snack manufacturing chain. Trends Food Sci. Technol 2011, 22, 353–366. [Google Scholar]
- Fan, X.T. Antioxidant capacity of fresh-cut vegetables exposed to ionizing radiation. J. Sci. Food Agric 2005, 85, 995–1000. [Google Scholar]
- Manda, K.; Reiter, R.J. Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog. Neurobiol 2010, 90, 60–68. [Google Scholar]
- Jagetia, G.C. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr 2007, 40, 74–81. [Google Scholar]
- Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R.K. Radioprotection by plant products: Present status and future prospects. Phytother. Res 2005, 19, 1–22. [Google Scholar]
- Misawa, E.; Tanaka, M.; Nomaguchi, K.; Nabeshima, K.; Yamada, M.; Toida, T.; Iwatsuki, K. Oral ingestion of Aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats. J. Agric. Food Chem 2012, 60, 2799–2806. [Google Scholar]
- Chen, Q.; Gruber, H.; Pakenham, C.; Ratnayake, W.M.; Scoggan, K.A. Dietary phytosterols and phytostanols alter the expression of sterol-regulatory genes in SHRSP and WKY inbred rats. Ann. Nutr. Metab 2009, 55, 341–350. [Google Scholar]
- Caprodossi, S.; Amantini, C.; Nabissi, M.; Morelli, M.B.; Farfariello, V.; Santoni, M.; Gismondi, A.; Santoni, G. Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 2011, 32, 686–694. [Google Scholar]
- Kang, J.H.; Kim, C.S.; Han, I.S.; Kawada, T.; Yu, R. Capsaincin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and supresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 2007, 581, 4389–4396. [Google Scholar]
- Das, S.; Srinibas-Tyagi, A.K.; Kaur, H. Cancer modulation by glucosinolates. Curr. Sci 2000, 79, 1665–1671. [Google Scholar]
- Hayes, J.D.; Kelleher, O.; Eggelston, M. The cancer chemoprotective actions of phytochemicals derived from glucosinolates. Eur. J. Nutr 2008, 47, 73–88. [Google Scholar]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomized open-label, blinded endpoint analysis. Lancet 2007, 369, 1090–1098. [Google Scholar]
- Dangour, A.D.; Allen, E.; Elbourne, D.; Fasey, N.; Fletcher, A.E.; Hardy, P.; Holder, G.E.; Knight, R.; Letley, L.; Richards, M.; et al. Effect of 2-y n−3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: A randomized, double-blind, controlled trial. Am. J. Clin. Nutr 2010, 91, 1725–1732. [Google Scholar]
- Gissi, H.F.; Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar]
- Fontani, G.; Corradeschi, F.; Felici, A.; Alfatti, F.; Bugarini, R.; Fiaschi, A.I.; Cerretani, D.; Montorfano, G.; Rizzo, A.M.; Berra, B. Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with Omega-3 polyunsaturated fatty acids. Eur. J. Clin. Invest 2005, 35, 499–507. [Google Scholar]
- McEvoy, C.; Young, I.S.; Woodside, J.V. Fish, n-3 polyunsaturated fatty acids, and cardiovascular disease. Nutr. Health 2012, 10, 221–246. [Google Scholar]
- Lavie, C.J.; Milani, R.V.; Mehra, M.R.; Ventura, H.O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol 2009, 54, 585–594. [Google Scholar]
- Chen, J.; Jiang, Y.; Liang, Y.; Tian, X.; Peng, C.; Ma, K.Y.; Liu, J.; Huang, Y.; Chen, Z.Y. DPA n-3, DPA n-6 and DHA improve lipoprotein profiles and aortic function in hamsters fed a high cholesterol diet. Atherosclerosis 2012, 221, 397–404. [Google Scholar]
- Mazza, M.; Pomponi, M.; Janiri, L.; Bria, P.; Mazza, S. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview. Prog. Neuro-psychopharmacol. Biol. Psychiatry 2007, 31, 12–26. [Google Scholar]
- Chiu, C.-C.; Su, K.-P.; Cheng, T.-C.; Liu, H.C.; Chang, C.J.; Dewey, M.E.; Stewart, R.; Huang, S.Y. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: A preliminary randomized double-blind placebo-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1538–1544. [Google Scholar]
- Beltz, B.S.; Tlusty, M.F.; Benton, J.L.; Sandeman, D.C. Omega-3 fatty acids upregulate adult neurogenesis. Neurosci. Lett 2007, 415, 154–158. [Google Scholar]
- Rogers, P.J.; Appleton, K.M.; Kessler, D.; Peters, T.J.; Gunnell, D.; Hayward, R.C.; Heatherley, S.V.; Christian, L.M.; McNaughton, S.A.; Ness, A.R. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: A randomized controlled trial. Br. J. Nutr 2008, 100, 1349–1351. [Google Scholar]
- Jones, P.J.H.; AbuMweis, S.S. Phytosterols as functional food ingredients: Linkages to cardiovascular disease and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 147–151. [Google Scholar]
- Liang, G.; Qiao, X.; Bi, Y.; Zou, B.; Zheng, Z. Studies on purification of allicin by molecular distillation. J. Sci. Food Agric 2012, 92, 1475–1478. [Google Scholar]
- Liu, C.; Cao, F.; Tang, Q.-Z.; Yan, L.; Dong, Y.G.; Zhu, L.H.; Wang, L.; Bian, Z.Y.; Li, H. Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J. Nutr. Biochem 2010, 21, 1238–1250. [Google Scholar]
- Touloupakis, E.; Ghanotakis, D.F. Nutraceutical use of garlic sulfur-containing compounds. Adv. Exp. Med. Biol 2010, 698, 110–121. [Google Scholar]
- Li, X.H.; Li, C.Y.; Lu, J.M.; Tian, R.B.; Wei, J. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci. Lett 2012, 514, 46–50. [Google Scholar]
- Wu, C.C.; Chung, J.G.; Tsai, S.J.; Yang, J.H.; Sheen, L.Y. Differential effects of allyl sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem. Toxicol 2004, 42, 1937–1947. [Google Scholar]
- Zhang, R.; Humphreys, I.; Sahu, R.P.; Shi, Y.; Srivastava, S.K. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 2008, 13, 1465–1478. [Google Scholar]
- Traka, M.; Mithen, R. Glucosinolates, isothiocyanates and human health. Phytochem. Rev 2009, 8, 269–282. [Google Scholar]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr 2005, 81, 317s–325s. [Google Scholar]
- Violi, F. Violi, F. Polyphenolic Antioxidants and Health. In Chocolate and Health; Springer: Milan, Italy, 2012; pp. 77–85. [Google Scholar]
- Cordova, A.C.; Sumpio, B.E. Polyphenols are medicine: Is it time to prescribe red wine for our patients? Int. J. Angiol 2009, 18, 111–117. [Google Scholar]
- Kuriyama, S. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J. Nutr 2008, 138, 1548–1553. [Google Scholar]
- Lin, J.-K.; Weng, M.-S. Flavonoids as Nutraceuticals. In The Science of Flavonoids; Grotewold, E., Ed.; Springer Science Business Media: New York, NY, USA, 2006; pp. 213–238. [Google Scholar]
- Shen, W.H.; Balajee, A.S.; Wang, J.; Wu, H.; Eng, C.; Pandolfi, P.P.; Yin, Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007, 128, 157–170. [Google Scholar]
- Nguyen, T.; Sherratt, P.J.; Pickett, C.B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol 2003, 43, 233–260. [Google Scholar]
- Cho, J.W.; Park, K.; Kweon, G.R.; Jang, B.C.; Baek, W.K.; Suh, M.H.; Kim, C.W.; Lee, K.S.; Suh, S.I. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp. Mol. Med 2005, 37, 186–192. [Google Scholar]
- Epstein, J.; Docena, G.; MacDonald, T.T.; Sanderson, I.R. Curcumin suppresses p38 mitogenactivated protein kinase activation, reduces IL1β and matrix metalloproteinase and enhances IL10 in the mucosa of children and adults with inflammatory bowel disease. Br. J. Nutr 2010, 103, 824–883. [Google Scholar]
- Scapagnini, G.; Caruso, C.; Calabrese, V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv. Exp. Med. Biol 2010, 698, 27–35. [Google Scholar]
- Srinivasan, M.; Rajendra-Prasad, N.; Menon, V.P. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res 2006, 611, 96–103. [Google Scholar]
- Carsten, R.E.; Bachand, A.M.; Bailey, S.M.; Ullrich, R.L. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat. Res 2008, 169, 633–638. [Google Scholar]
- Berendschot, T.; Plat, J.; de Jong, A.; Mensink, R.P. Longterm plant stanol and sterol ester enriched functional food consumption, serum lutein/zeaxanthin concentration and macular pigment optical density. Br. J. Nutr 2009, 101, 1607–1610. [Google Scholar]
- Graydon, R.; Hogg, R.E.; Chakravarthy, U.; Young, I.S.; Woodside, J.V. The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: Pilot studies in healthy volunteers. Br. J. Nutr 2012, 108, 334–342. [Google Scholar]
- Barker, F.M.; Snodderly, D.M.; Johnson, E.J.; Schalch, W.; Koepcke, W.; Gerss, J.; Neuringer, M. Nutritional manipulation of primate retinas, v: Effects of lutein, zeaxanthin, and n–3 fatty acids on retinal sensitivity to blue-light-induced damage. Invest. Ophthalmol. Vis. Sci 2011, 52, 3934–3942. [Google Scholar]
- Smith, S.M.; Zwart, S.R.; Block, G.; Rice, B.L.; Davis-Street, J.E. The nutritional status of astronauts is altered after long-term spaceflight aboard the International Space Station. J. Nutr 2005, 135, 437–443. [Google Scholar]
- Casolino, M.; Bidoli, V.; Morselli, A.; Narici, L.; de Pascale, M.P.; Picozza, P.; Reali, E.; Sparvoli, R.; Mazzenga, G.; Ricci, M.; et al. Space travel: Dual origins of light flashes seen in space. Nature 2003, 422, 680. [Google Scholar]
- Narici, L.; de Martino, A.; Brunetti, V.; Rinaldi, A.; Sannita, W.G.; Paci, M. Radicals excess in the retina: A model for light flashes in space. Radiat. Meas 2009, 44, 203–205. [Google Scholar]
- Narici, L.; Paci, M.; Brunetti, V.; Rinaldi, A.; Sannita, W.G.; de Martino, A. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Free Radic. Biol. Med 2012, 53, 482–487. [Google Scholar]
- Roberts, R.L.; Green, J.; Lewis, B. Lutein and zeaxanthin in eye and skin health. Clin. Dermatol 2009, 27, 195–201. [Google Scholar]
- Cho, E.; Hankinson, S.E.; Rosner, B.; Willett, W.C.; Colditz, G.A. Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration. Am. J. Clin. Nutr 2008, 87, 1837–1843. [Google Scholar]
- Terman, A.; Brunk, U.T. Lipofuscin: Mechanisms of formation and increase with age. APMIS 1998, 106, 265–276. [Google Scholar]
- Ma, L.; Lin, X.M. Effects of lutein and zeaxanthin on aspects of eye health. J. Sci. Food Agric 2010, 90, 2–12. [Google Scholar]
- Sasaki, M.; Yuki, K.; Kurihara, T.; Miyake, S.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K.; Ozawa, Y. Biological role of lutein in the light-induced retinal degeneration. J. Nutr. Biochem 2012, 23, 423–429. [Google Scholar]
- Kaya, S.; Weigert, G.; Pemp, B.; Sacu, S.; Werkmeister, R.M.; Dragostinoff, N.; Garhöfer, G.; Schmidt-Erfurth, U.; Schmetterer, L. Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects—A study using spectral fundus reflectance. Acta Ophthalmol 2012, 90, 399–403. [Google Scholar]
- Rea, G.; Esposito, D.; Damasso, M.; Serafini, A.; Margonelli, A.; Faraloni, C.; Torzillo, G.; Zanini, A.; Bertalan, I.; Johanningmeier, U.; et al. Ionizing radiation impacts photochemical quantum yield and oxygen evolution activity of Photosystem II. Int. J. Radiat. Biol 2008, 84, 867–877. [Google Scholar]
- Rea, G.; Lambreva, M.; Polticelli, F.; Bertalan, I.; Antonacci, A.; Pastorelli, S.; Damasso, M.; Johanningmeier, U.; Giardi, M.T. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure. PLoS One 2011, 6, e16216. [Google Scholar]
- Kreimer, G. The green algal eyespot apparatus: A primordial visual system and more? Curr. Genet 2009, 55, 19–43. [Google Scholar]
- Giardi, M.T. IC-CNR Area della ricerca di Roma, Monterotondo scalo 00015, Italy; Unpublished work; p. 2012.
- Socha, K.K.; Souza, G.A.; Ebaid, G.M.X.; Seiva, F.R.; Cataneo, A.C.; Novelli, E.L. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol 2009, 47, 1362–1367. [Google Scholar]
- Suh, K.S.; Chon, S.; Oh, S.; Kim, S.W.; Kim, J.-W.; Kim, Y.S.; Woo, J.-T. Prooxidative effects of green tea polyphenol (−)-epigallocatethin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol. Toxicol 2010, 26, 189–199. [Google Scholar]
- Jahangir, M.; Abdel-Farid, I.B.; Kim, H.K.; Choia, Y.H.; Verpoortea, R. Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ. Exp. Bot 2009, 67, 23–33. [Google Scholar]
- Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar]
- Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Long-term use of β-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: Results from the vitamins and lifestyle (VITAL) study. Am. J. Epidemiol 2009, 169, 815–828. [Google Scholar]
- Mikkelsen, C.S.; Mikkelsen, D.B.; Lindegaard, H.M. Carotinaemia in patient with excessive beta-carotene food-intake and dysregulated diabetes mellitus. Ugeskr. Laeger 2009, 171, 315–316. [Google Scholar]
- Weigert, G.; Kaya, S.; Pemp, B.; Sacu, S.; Lasta, M.; Werkmeister, R.M.; Dragostinoff, N.; Simader, C.; Garhöfer, G.; Schmidt-Erfurth, U.; et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci 2011, 52, 8174–8178. [Google Scholar]
- Marangoni, F.; Poli, A. Phytosterols and cardiovascular health. Pharmacol. Res 2010, 61, 193–199. [Google Scholar]
- Lee, J.Y.; Hwang, D.H. Docosahexaenoic acid suppresses the activity of peroxisome proliferator-activated receptors in a colon tumor cell line. Biochem. Biophys. Res. Commun 2002, 298, 667–674. [Google Scholar]
- Kew, S.; Wells, S.; Thies, F.; McNeill, G.P.; Quinlan, P.T.; Clark, G.T.; Dombrowsky, H.; Postle, A.D.; Calder, P.C. The effect of eicosapentaenoic acid on rat lymphocyte proliferation depends upon its position in dietary triacylglycerols. J. Nutr 2003, 133, 4230–4238. [Google Scholar]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr 2005, 45, 287–306. [Google Scholar]
- Nicholson, S.K.; Tucker, G.A.; Brameld, J.M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc. Nutr. Soc 2008, 67, 42–47. [Google Scholar]
- Jakubowski, H. On the health benefits of Allium sp. Nutrition 2003, 19, 167–168. [Google Scholar]
- Corzo-Martinez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol 2007, 18, 609–625. [Google Scholar]
- Bian, Q.; Gao, S.; Zhou, J.; Qin, J.; Taylor, A.; Johnson, E.J.; Tang, G.; Sparrow, J.R.; Gierhart, D.; Shang, F. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic. Biol. Med 2012, 53, 1298–1307. [Google Scholar]
- Prasad, K.N.; Cole, W.C.; Haase, G.M. Radiation protection in humans: Extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br. J. Radiol 2004, 77, 97–99. [Google Scholar]
Active compounds | Main source | Potential health benefit | Effects on gene expression | References |
---|---|---|---|---|
Polyunsaturated fatty acids (arachidonic acid α-Linolenic acid, omega-3) | Fish oil, algae, green vegetables, flaxseed | Decrease of cardiovascular disease risk. Reduction of serum cholesterol and triacylglycerol. Anti-inflammatory, anti-arrhythmic, anti-thrombotic. Induce membrane fluidity. | Affect the expression of several key proteins pertinent to inflammation, lipid metabolism, and energy utilization. | [100,102,150,151] |
Phytosterols | Plants, plant oils | Regulation of cardiovascular disease, anticancer, regulation of serum cholesterol. | Decrease in the expression levels of hepatic genes encoding gluconeogenic enzymes, lipogenic enzymes. Regulation of the expression of gastro-intestinal genes. | [93,94] |
Polyphenols (flavonols, anthocyanidins, catechins, isoflavonoids, curcumin) | Apples, onion, tea, grapefruit and orange juice, broccoli | Antioxidant, free radical scavenging metal chelating ability. Antiproliferative and anticarcinogenic agents. Anti-inflammatory activity. | Increase in the expression of endothelial NO synthase and endothelin-1. Curcumin inhibits COX-1 and COX-2 enzymes and reduces the activation of nuclear transcription factor NF-κB. | [116,121,154,155] |
Organosulfur compounds (Alliin, allicin) | Garlic, onions | Anti-hypertensive, antithrombotic, anticancer, antimutagenic, antidiabetic, antioxidant, antimicrobial. | Block of the activation of nuclear factor-κB. Blocking the activation of ROS-dependent extracellular regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2) and serine/threonine kinase (AKT). | [109,156,157] |
Capsaicinoids (Capsaicin) | Cruciferous vegetables, pepper | Chemopreventive activity, modulation of drug metabolizing enzymes, neuroactivity, apoptotic cell death. | Enhance the transcripts of the proto-oncogenes c-myc and c-Ha-ras and the tumor suppressor gene p53. Induce upregulation of the pro-angiogenetic, pro-invasive and pro-metastatic genes. Modulate adipokine gene expression. | [95,96] |
Glucosinolates | Cruciferous plants | Reduce the risk of carcinomas of the lung, stomach, colon and rectum. | Induction of glucoronosyl transferase, glutathione S-transferase, quinone reductase. Induction of cytoprotective genes. | [97,98] |
Carotenoids (carotenes, xanthophylls) | Tomatoes, spinach, citrus fruits, carrots | Improvement of visual function, protection from photo-induced damage. Reduce heart disease and cancer. | Modulate the expression of inflammation related genes in retinal pigment epithelial cells. | [135,136,161] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Giardi, M.T.; Touloupakis, E.; Bertolotto, D.; Mascetti, G. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers. Int. J. Mol. Sci. 2013, 14, 17168-17192. https://doi.org/10.3390/ijms140817168
Giardi MT, Touloupakis E, Bertolotto D, Mascetti G. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers. International Journal of Molecular Sciences. 2013; 14(8):17168-17192. https://doi.org/10.3390/ijms140817168
Chicago/Turabian StyleGiardi, Maria Teresa, Eleftherios Touloupakis, Delfina Bertolotto, and Gabriele Mascetti. 2013. "Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers" International Journal of Molecular Sciences 14, no. 8: 17168-17192. https://doi.org/10.3390/ijms140817168
APA StyleGiardi, M. T., Touloupakis, E., Bertolotto, D., & Mascetti, G. (2013). Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers. International Journal of Molecular Sciences, 14(8), 17168-17192. https://doi.org/10.3390/ijms140817168