Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Production of sgRNA
3.2. Somatic Cell Nuclear Transfer
3.3. Microinjection of Embryos
3.4. Embryo Transfer
3.5. Genotyping of Embryos, Fetuses and Edited Animals
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grubb, B.R.; Boucher, R.C. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol. Rev. 1999, 79, S193–S214. [Google Scholar] [PubMed]
- Wilke, M.; Buijs-Offerman, R.M.; Aarbiou, J.; Colledge, W.H.; Sheppard, D.N.; Touqui, L.; Bot, A.; Jorna, H.; de Jonge, H.R.; Scholte, B.J. Mouse models of cystic fibrosis: Phenotypic analysis and research applications. J. Cyst. Fibros. 2011, 10 (Suppl. S2), S152–S171. [Google Scholar] [CrossRef]
- Whitelaw, C.B.; Sheets, T.P.; Lillico, S.G.; Telugu, B.P. Engineering large animal models of human disease. J. Pathol. 2016, 238, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Oliveira, I.; Scholte, B.J.; Penque, D. What have we learned from mouse models for cystic fibrosis? Expert Rev. Mol. Diagn. 2007, 7, 407–417. [Google Scholar] [CrossRef] [PubMed]
- King, A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Yang, M.; Wang, X.; Zhang, Z.; Wu, Z.; Tian, J.; An, L.; Wang, S. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochem. Biophys. Res. Commun. 2016, 476, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, S.G.; Choi, D.H.; Lee, C.K. A modified swim-up method reduces polyspermy during in vitro fertilization of porcine oocytes. Anim. Reprod. Sci. 2009, 115, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yoon, S.O.; Poulogiannis, G.; Yang, Q.; Ma, X.M.; Villen, J.; Kubica, N.; Hoffman, G.R.; Cantley, L.C.; Gygi, S.P.; et al. Phosphoproteomic analysis identifies grb10 as an mtorc1 substrate that negatively regulates insulin signaling. Science 2011, 332, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.G.; Gustafson, T.A.; Hubbard, S.R. The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Lett. 2001, 493, 106–111. [Google Scholar] [CrossRef]
- Wang, L.; Balas, B.; Christ-Roberts, C.Y.; Kim, R.Y.; Ramos, F.J.; Kikani, C.K.; Li, C.; Deng, C.; Reyna, S.; Musi, N.; et al. Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol. Cell. Biol. 2007, 27, 6497–6505. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, H.; Yousaf, N.; Moussaif, M.; Deng, Y.; Boufelliga, A.; Swamy, O.R.; Leone, M.E.; Riedel, H. Grb10, a positive, stimulatory signaling adapter in platelet-derived growth factor BB-, insulin-like growth factor I-, and insulin-mediated mitogenesis. Mol. Cell. Biol. 1999, 19, 6217–6228. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.J.; Langlais, P.R.; Hu, D.; Dong, L.Q.; Liu, F. Grb10 mediates insulin-stimulated degradation of the insulin receptor: A mechanism of negative regulation. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1262–E1266. [Google Scholar] [CrossRef] [PubMed]
- Shiura, H.; Miyoshi, N.; Konishi, A.; Wakisaka-Saito, N.; Suzuki, R.; Muguruma, K.; Kohda, T.; Wakana, S.; Yokoyama, M.; Ishino, F.; et al. Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem. Biophys. Res. Commun. 2005, 329, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Morrione, A.; Valentinis, B.; Li, S.; Ooi, J.Y.; Margolis, B.; Baserga, R. Grb10: A new substrate of the insulin-like growth factor I receptor. Cancer Res. 1996, 56, 3165–3167. [Google Scholar] [PubMed]
- Charalambous, M.; Smith, F.M.; Bennett, W.R.; Crew, T.E.; Mackenzie, F.; Ward, A. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an IGF2-independent mechanism. Proc. Natl. Acad. Sci. USA 2003, 100, 8292–8297. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Singh, U.; Shi, W.; Konno, T.; Soares, M.J.; Geyer, R.; Fundele, R. Influence of murine maternal diabetes on placental morphology, gene expression, and function. Arch. Physiol. Biochem. 2008, 114, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Holt, L.J.; Turner, N.; Mokbel, N.; Trefely, S.; Kanzleiter, T.; Kaplan, W.; Ormandy, C.J.; Daly, R.J.; Cooney, G.J. Grb10 regulates the development of fiber number in skeletal muscle. FASEB J. 2012, 26, 3658–3669. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.M.; Holt, L.J.; Garfield, A.S.; Charalambous, M.; Koumanov, F.; Perry, M.; Bazzani, R.; Sheardown, S.A.; Hegarty, B.D.; Lyons, R.J.; et al. Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol. Cell. Biol. 2007, 27, 5871–5886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, N.; Liu, M.; Li, X.; Zhou, L.; Huang, W.; Xu, Z.; Liu, J.; Musi, N.; DeFronzo, R.A.; et al. Disruption of growth factor receptor-binding protein 10 in the pancreas enhances β-cell proliferation and protects mice from streptozotocin-induced β-cell apoptosis. Diabetes 2012, 61, 3189–3198. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ishino, F.; Kaneko-Ishino, T.; Shiura, H.; Uchio-Yamada, K.; Matsuda, J.; Suzuki, O.; Sato, K. Type 2 diabetes mellitus in a non-obese mouse model induced by Meg1/Grb10 overexpression. Exp. Anim. 2008, 57, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Uh, K.J.; Mulligan, B.P.; Jeung, E.B.; Hyun, S.H.; Shin, T.; Ka, H.; Lee, C.K. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS ONE 2011, 6, e22216. [Google Scholar] [CrossRef] [PubMed]
- Park, K.E.; Park, C.H.; Powell, A.; Martin, J.; Donovan, D.M.; Telugu, B.P. Targeted gene knockin in porcine somatic cells using CRISPR/Cas ribonucleoproteins. Int. J. Mol. Sci. 2016, 17, 810. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, K.M.; Lee, K.; Benne, J.A.; Beaton, B.P.; Spate, L.D.; Murphy, S.L.; Samuel, M.S.; Mao, J.; O’Gorman, C.; Walters, E.M.; et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 2014, 91, 78. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Koriyama, M.; Watanabe, S.; Ohtsuka, M.; Sakurai, T.; Inada, E.; Saitoh, I.; Nakamura, S.; Miyoshi, K. Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for indel mutations. Int. J. Mol. Sci. 2015, 16, 17838–17856. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Van Thuan, N.; Wakayama, T.; Miyano, T. Chromatin remodeling in somatic cells injected into mature pig oocytes. Reproduction 2006, 131, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.; Frenzel, A.; Lucas-Hahn, A.; Herrmann, D.; Hassel, P.; Klein, S.; Ziegler, M.; Hadeler, K.G.; Niemann, H. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 2016, 23, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Park, C.H.; Jang, G.H.; Jeong, Y.I.; Hwang, I.S.; Jeong, Y.W.; Kim, Y.K.; Shin, T.; Kim, N.H.; Hyun, S.H.; et al. Production of multiple transgenic yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes. PLoS ONE 2013, 8, e63241. [Google Scholar] [CrossRef] [PubMed]
Groups | No. Cultured | No. Cleaved (%) | No. Blastocysts (%) | |
---|---|---|---|---|
SCNT | Control | 60 | 54 (90.0 ± 3.3) | 33 (61.5 ± 11.6) |
SCNT | Injected | 77 | 71 (91.8 ± 3.6) | 25 (34.5 ± 4.5) |
No. Embryos Transferred | No. of Recipients | No. Pregnant (%) | No. of Fetuses and (CE %) * | No. of Bi-Allelic Edited (%) |
---|---|---|---|---|
191 | 2 | 1/2 (50) | 6 (3.1) | 6/6 (100) |
Oligo/Primer | Sequence | Length |
---|---|---|
Guide 1 Forward | TAGGCGCGTCCATGTCGTTCACCA | 24nt |
Guide 1 Reverse | AAACTGGTGAACGACATGGACGCG | 24nt |
Guide 2 Forward | TAGGACGCGTCCATGTCGTTCACC | 24nt |
Guide 2 Reverse | AAACGGTGAACGACATGGACGCGT | 24nt |
GRB10 Forward | GATGTGTGCTGTGGAACCGA | 20nt |
GRB10 Reverse | CCCTTAGCCCACTTACTCCAGAC | 23nt |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheets, T.P.; Park, C.-H.; Park, K.-E.; Powell, A.; Donovan, D.M.; Telugu, B.P. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. Int. J. Mol. Sci. 2016, 17, 2031. https://doi.org/10.3390/ijms17122031
Sheets TP, Park C-H, Park K-E, Powell A, Donovan DM, Telugu BP. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. International Journal of Molecular Sciences. 2016; 17(12):2031. https://doi.org/10.3390/ijms17122031
Chicago/Turabian StyleSheets, Timothy P., Chi-Hun Park, Ki-Eun Park, Anne Powell, David M. Donovan, and Bhanu P. Telugu. 2016. "Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs" International Journal of Molecular Sciences 17, no. 12: 2031. https://doi.org/10.3390/ijms17122031
APA StyleSheets, T. P., Park, C. -H., Park, K. -E., Powell, A., Donovan, D. M., & Telugu, B. P. (2016). Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. International Journal of Molecular Sciences, 17(12), 2031. https://doi.org/10.3390/ijms17122031