An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms
Abstract
:1. Introduction
Methods
2. Guidelines to Initiating and Maintaining Lithium
3. Lithium in the Treatment and Prophylaxis of Bipolar Disorder (BD)
4. Therapeutic Mechanisms of Lithium
5. Lithium and Brain Structure
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Shorter, E. The history of lithium therapy. Bipolar Disord. 2009, 11 (Suppl. S2), 4–9. [Google Scholar] [CrossRef] [PubMed]
- Licht, R.W. Lithium: Still a major option in the management of bipolar disorder. CNS Neurosci. Ther. 2012, 18, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Laje, G.; Olfson, M.; Marcus, S.C.; Pincus, H.A. Trends in the treatment of bipolar disorder by outpatient psychiatrists. Am. J. Psychiatry 2002, 159, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J. Lithium: Evidence reconsidered. Br. J. Psychiatry 1997, 171, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Young, A.H.; Hammond, J.M. Lithium in mood disorders: Increasing evidence base, declining use? Br. J. Psychiatry 2007, 191, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Deshauer, D.; Fergusson, D.; Duffy, A.; Albuquerque, J.; Grof, P. Re-evaluation of randomized control trials of lithium monotherapy: A cohort effect. Bipolar Disord. 2005, 7, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, J.W. Old versus new medications: How much should be taught? Acad. Psychiatry 2005, 29, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Curran, G.; Ravindran, A. Lithium for bipolar disorder: A review of the recent literature. Expert Rev. Neurother. 2014, 14, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Geddes, J.R.; Miklowitz, D.J. Treatment of bipolar disorder. Lancet 2013, 381, 1672–1682. [Google Scholar] [CrossRef]
- Baldessarini, R.J.; Tondo, L.; Hennen, J. Lithium treatment and suicide risk in major affective disorders: Update and new findings. J. Clin. Psychiatry 2003, 64 (Suppl. S5), 44–52. [Google Scholar] [PubMed]
- Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 4th ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kempton, M.J.; Salvador, Z.; Munafo, M.R.; Geddes, J.R.; Simmons, A.; Frangou, S.; Williams, S.C. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 2011, 68, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Maletic, V.; Raison, C. Integrated neurobiology of bipolar disorder. Front. Psychiatry 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Ongur, D.; Drevets, W.C.; Price, J.L. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl. Acad. Sci. USA 1998, 95, 13290–13295. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Radaelli, D.; Poletti, S.; Locatelli, C.; Falini, A.; Colombo, C.; Smeraldi, E. Opposite effects of suicidality and lithium on gray matter volumes in bipolar depression. J. Affect. Disord. 2011, 135, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Gitlin, M. Lithium and the kidney: An updated review. Drug Saf. 1999, 20, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Mammen, O.K.; Wilting, I.; Sachs, G.S.; Ferrier, I.N.; Cassidy, F.; Beaulieu, S.; Yatham, L.N.; Berk, M.; International Society for Bipolar Disoeders. The international society for bipolar disorders (ISBD) consensus guidelines for the safety monitoring of bipolar disorder treatments. Bipolar Disord. 2009, 11, 559–595. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Panza, N.; Biondi, B.; Di Lorenzo, L.; Lupoli, G.; Muscettola, G.; Carella, C.; Bellastella, A. Effects of lithium treatment on hypothalamic-pituitary-thyroid axis: A longitudinal study. J. Endocrinol. Investig. 1993, 16, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, E.M.; Aubry, J.M. Lithium: Updated human knowledge using an evidence-based approach: Part III: Clinical safety. CNS Drugs 2009, 23, 397–418. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, J.; Altshuler, L.; Hendrick, V.; Hershman, J.M. Lithium-induced subclinical hypothyroidism: Review of the literature and guidelines for treatment. J. Clin. Psychiatry 1999, 60, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.M.; Eagles, J.M. Lithium-associated clinical hypothyroidism. Prevalence and risk factors. Br. J. Psychiatry 1999, 175, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Bendz, H.; Sjodin, I.; Toss, G.; Berglund, K. Hyperparathyroidism and long-term lithium therapy—A cross-sectional study and the effect of lithium withdrawal. J. Intern. Med. 1996, 240, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Keck, P.E.; McElroy, S.L. Bipolar disorder, obesity, and pharmacotherapy-associated weight gain. J. Clin. Psychiatry 2003, 64, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Vendsborg, P.B.; Bech, P.; Rafaelsen, O.J. Lithium treatment and weight gain. Acta Psychiatr. Scand. 1976, 53, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Mamiya, K.; Sadanaga, T.; Sekita, A.; Nabeyama, Y.; Yao, H.; Yukawa, E. Lithium concentration correlates with QTc in patients with psychosis. J. Electrocardiol. 2005, 38, 148–151. [Google Scholar] [CrossRef] [PubMed]
- McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium toxicity profile: A systematic review and meta-analysis. Lancet 2012, 379, 721–728. [Google Scholar] [CrossRef]
- Malhi, G.S.; Tanious, M.; Gershon, S. The lithiumeter: A measured approach. Bipolar Disord. 2011, 13, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Plenge, P.; Stensgaard, A.; Jensen, H.V.; Thomsen, C.; Mellerup, E.T.; Henriksen, O. 24-hour lithium concentration in human brain studied by Li-7 magnetic resonance spectroscopy. Biol. Psychiatry 1994, 36, 511–516. [Google Scholar] [CrossRef]
- Jensen, H.V.; Plenge, P.; Mellerup, E.T.; Davidsen, K.; Toftegaard, L.; Aggernaes, H.; Bjorum, N. Lithium prophylaxis of manic-depressive disorder: Daily lithium dosing schedule versus every second day. Acta Psychiatr. Scand. 1995, 92, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Tanious, M. Optimal frequency of lithium administration in the treatment of bipolar disorder: Clinical and dosing considerations. CNS Drugs 2011, 25, 289–298. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Practice guideline for the treatment of patients with bipolar disorder (revision). Am. J. Psychiatry 2002, 159 (Suppl. S4), 1–50. [Google Scholar]
- Yatham, L.N.; Kennedy, S.H.; O’Donovan, C.; Parikh, S.; MacQueen, G.; McIntyre, R.; Sharma, V.; Silverstone, P.; Alda, M.; Baruch, P.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: Consensus and controversies. Bipolar Disord. 2005, 7 (Suppl. S3), 5–69. [Google Scholar] [CrossRef] [PubMed]
- Amdisen, A. Serum lithium estimations. Br. Med. J. 1973, 2, 240. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.C.; Grof, P.; Grof, E. Less frequent lithium administration and lower urine volume. Am. J. Psychiatry 1991, 148, 189–192. [Google Scholar] [PubMed]
- National Collaborating Centre for Mental Health (UK). Bipolar Disorder: The Management of Bipolar Disorder in Adults, Children and Adolescents, in Primary and Secondary Care; British Psychological Society: Leicester, UK, 2006. [Google Scholar]
- Kleindienst, N.; Severus, W.E.; Greil, W. Are serum lithium levels related to the polarity of recurrence in bipolar disorders? Evidence from a multicenter trial. Int. Clin. Psychopharmacol. 2007, 22, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Severus, W.E.; Kleindienst, N.; Evoniuk, G.; Bowden, C.; Moller, H.J.; Bohus, M.; Frangou, S.; Greil, W.; Calabrese, J.R. Is the polarity of relapse/recurrence in bipolar-I disorder patients related to serum lithium levels? Results from an empirical study. J. Affect. Disord. 2009, 115, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, M.; Stubbs, B.; De Berardis, D.; Iasevoli, F.; Solmi, M.; Veronese, N.; Carano, A.; Perna, G.; De Bartolomeis, A. Does the “silver bullet” lose its shine over the time? Assessment of loss of lithium response in a preliminary sample of bipolar disorder outpatients. Clin. Pract. Epidemiol. Ment. Health 2016, 12, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Post, R.M. Acquired lithium resistance revisited: Discontinuation-induced refractoriness versus tolerance. J. Affect. Disord. 2012, 140, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Keck, P.E.; Orsulak, P.J.; Cutler, A.J.; Sanchez, R.; Torbeyns, A.; Marcus, R.N.; McQuade, R.D.; Carson, W.H.; Group, C.N.S. Aripiprazole monotherapy in the treatment of acute bipolar I mania: A randomized, double-blind, placebo- and lithium-controlled study. J. Affect. Disord. 2009, 112, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.L.; Grunze, H.; Mullen, J.; Brecher, M.; Paulsson, B.; Jones, M.; Vagero, M.; Svensson, K. A randomized, double-blind, placebo-controlled efficacy and safety study of quetiapine or lithium as monotherapy for mania in bipolar disorder. J. Clin. Psychiatry 2005, 66, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Kushner, S.F.; Khan, A.; Lane, R.; Olson, W.H. Topiramate monotherapy in the management of acute mania: Results of four double-blind placebo-controlled trials. Bipolar Disord. 2006, 8, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Barbui, C.; Salanti, G.; Rendell, J.; Brown, R.; Stockton, S.; Purgato, M.; Spineli, L.M.; Goodwin, G.M.; Geddes, J.R. Comparative efficacy and acceptability of antimanic drugs in acute mania: A multiple-treatments meta-analysis. Lancet 2011, 378, 1306–1315. [Google Scholar] [CrossRef]
- Smith, L.A.; Cornelius, V.; Warnock, A.; Tacchi, M.J.; Taylor, D. Pharmacological interventions for acute bipolar mania: A systematic review of randomized placebo-controlled trials. Bipolar Disord. 2007, 9, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Storosum, J.G.; Wohlfarth, T.; Schene, A.; Elferink, A.; van Zwieten, B.J.; van den Brink, W. Magnitude of effect of lithium in short-term efficacy studies of moderate to severe manic episode. Bipolar Disord. 2007, 9, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.L.; Mosolov, S.; Hranov, L.; Chen, E.; Habil, H.; Kongsakon, R.; Manfredi, R.; Lin, H.N. Efficacy of valproate versus lithium in mania or mixed mania: A randomized, open 12-week trial. Int. Clin. Psychopharmacol. 2010, 25, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.; Gogus, A.; Grunze, H.; Haggstrom, L.; Rybakowski, J.; Vieta, E. A 12-week, open, randomized trial comparing sodium valproate to lithium in patients with bipolar I disorder suffering from a manic episode. Int. Clin. Psychopharmacol. 2008, 23, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Ichim, L.; Brook, S. Olanzapine compared to lithium in mania: A double-blind randomized controlled trial. Int. Clin. Psychopharmacol. 1999, 14, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Segal, J.; Berk, M.; Brook, S. Risperidone compared with both lithium and haloperidol in mania: A double-blind randomized controlled trial. Clin. Neuropharmacol. 1998, 21, 176–180. [Google Scholar] [PubMed]
- Niufan, G.; Tohen, M.; Qiuqing, A.; Fude, Y.; Pope, E.; McElroy, H.; Ming, L.; Gaohua, W.; Xinbao, Z.; Huichun, L.; et al. Olanzapine versus lithium in the acute treatment of bipolar mania: A double-blind, randomized, controlled trial. J. Affect. Disord. 2008, 105, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, C.; Wang, G.; Zhu, X.; Peng, M.; Gu, N. Response and remission rates in Chinese patients with bipolar mania treated for 4 weeks with either quetiapine or lithium: A randomized and double-blind study. Curr. Med. Res. Opin. 2008, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shafti, S.S.; Shahveisi, B. Comparison between lithium and valproate in the treatment of acute mania. J. Clin. Psychopharmacol. 2008, 28, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Shafti, S.S. Olanzapine vs. lithium in management of acute mania. J. Affect. Disord. 2010, 122, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Pal Singh, G. A double-blind comparative study of clinical efficacy of verapamil versus lithium in acute mania. Int. J. Psychiatry Clin. Pract. 2008, 12, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Kontis, D.; Gonda, X.; Siamouli, M.; Yatham, L.N. Treatment of mixed bipolar states. Int. J. Neuropsychopharmacol. 2012, 15, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Tanious, M.; Das, P.; Berk, M. The science and practice of lithium therapy. Aust. N. Z. J. Psychiatry 2012, 46, 192–211. [Google Scholar] [CrossRef] [PubMed]
- Tohen, M.; Jacobs, T.G.; Feldman, P.D. Onset of action of antipsychotics in the treatment of mania. Bipolar Disord. 2000, 2, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.M.; Consensus Group of the British Association for Psychopharmacology. Evidence-based guidelines for treating bipolar disorder: Revised second edition—Recommendations from the British Association for Psychopharmacology. J. Psychopharmacol. 2009, 23, 346–388. [Google Scholar] [CrossRef] [PubMed]
- Young, A.H.; McElroy, S.L.; Bauer, M.; Philips, N.; Chang, W.; Olausson, B.; Paulsson, B.; Brecher, M.; Investigators, E.I. A double-blind, placebo-controlled study of quetiapine and lithium monotherapy in adults in the acute phase of bipolar depression (EMBOLDEN I). J. Clin. Psychiatry 2010, 71, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, Y.J.; Lee, Y.J.; Cho, S.J. Effect of quetiapine XR on depressive symptoms and sleep quality compared with lithium in patients with bipolar depression. J. Affect. Disord. 2014, 157, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, J.D.; Wang, C.H.; Shwarz, M.; Shults, J. Venlafaxine versus lithium monotherapy of rapid and non-rapid cycling patients with bipolar II major depressive episode: A randomized, parallel group, open-label trial. J. Affect. Disord. 2009, 112, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Suppes, T.; Marangell, L.B.; Bernstein, I.H.; Kelly, D.I.; Fischer, E.G.; Zboyan, H.A.; Snow, D.E.; Martinez, M.; Al Jurdi, R.; Shivakumar, G.; et al. A single blind comparison of lithium and lamotrigine for the treatment of bipolar II depression. J. Affect. Disord. 2008, 111, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, J.R.; Bowden, C.L.; Sachs, G.; Yatham, L.N.; Behnke, K.; Mehtonen, O.P.; Montgomery, P.; Ascher, J.; Paska, W.; Earl, N.; et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently depressed patients with bipolar I disorder. J. Clin. Psychiatry 2003, 64, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Hawton, K.; Stockton, S.; Geddes, J.R. Lithium in the prevention of suicide in mood disorders: Updated systematic review and meta-analysis. BMJ 2013, 346, f3646. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, E.M.; Aubry, J.M. Lithium: Updated human knowledge using an evidence-based approach: Part I: Clinical efficacy in bipolar disorder. CNS Drugs 2009, 23, 225–240. [Google Scholar] [CrossRef] [PubMed]
- BALANCE Investigators and Collaborators; Geddes, J.R.; Goodwin, G.M.; Rendell, J.; Azorin, J.M.; Cipriani, A.; Ostacher, M.J.; Morriss, R.; Alder, N.; Juszczak, E. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): A randomised open-label trial. Lancet 2010, 375, 385–395. [Google Scholar] [PubMed]
- Weisler, R.H.; Nolen, W.A.; Neijber, A.; Hellqvist, A.; Paulsson, B.; Trial 144 Study Investigators. Continuation of quetiapine versus switching to placebo or lithium for maintenance treatment of bipolar I disorder (Trial 144: A randomized controlled study). J. Clin. Psychiatry 2011, 72, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, M.; Nardi, A.E.; De Berardis, D.; Carta, M.G. Experimental drugs for bipolar psychosis. Expert Opin. Investig. Drugs 2016, 25, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Prien, R.F.; Caffey, E.M., Jr.; Klett, C.J. Comparison of lithium carbonate and chlorpromazine in the treatment of mania. Report of the Veterans Administration and National Institute of Mental Health Collaborative Study Group. Arch. Gen. Psychiatry 1972, 26, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Swann, A.C.; Bowden, C.L.; Calabrese, J.R.; Dilsaver, S.C.; Morris, D.D. Pattern of response to divalproex, lithium, or placebo in four naturalistic subtypes of mania. Neuropsychopharmacology 2002, 26, 530–536. [Google Scholar] [CrossRef]
- De Sousa, R.T.; Busnello, J.V.; Forlenza, O.V.; Zanetti, M.V.; Soeiro-de-Souza, M.G.; van de Bilt, M.T.; Moreno, R.A.; Zarate, C.A., Jr.; Gattaz, W.F.; Machado-Vieira, R. Early improvement of psychotic symptoms with lithium monotherapy as a predictor of later response in mania. J. Psychiatr. Res. 2012, 46, 1564–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldessarini, R.J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F.K.; Hennen, J. Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disord. 2006, 8, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Baldessarini, R.J.; Tondo, L. Suicidal risks during treatment of bipolar disorder patients with lithium versus anticonvulsants. Pharmacopsychiatry 2009, 42, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.J.; Waternaux, C.; Haas, G.L.; Malone, K.M. Toward a clinical model of suicidal behavior in psychiatric patients. Am. J. Psychiatry 1999, 156, 181–189. [Google Scholar] [PubMed]
- Muller-Oerlinghausen, B.; Lewitzka, U. Lithium reduces pathological aggression and suicidality: A mini-review. Neuropsychobiology 2010, 62, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, E.; Arias, B.; Mitjans, M.; Goikolea, J.M.; Roda, E.; Saiz, P.A.; Garcia-Portilla, M.P.; Buron, P.; Bobes, J.; Oquendo, M.A.; et al. Genetic variability at IMPA2, INPP1 and GSK3β increases the risk of suicidal behavior in bipolar patients. Eur. Neuropsychopharmacol. 2013, 23, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Tanious, M.; Das, P.; Coulston, C.M.; Berk, M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013, 27, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.J. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: Implications for oligodendrocyte viability. Neurochem. Int. 2007, 50, 461–490. [Google Scholar] [CrossRef] [PubMed]
- Martinowich, K.; Schloesser, R.J.; Manji, H.K. Bipolar disorder: From genes to behavior pathways. J. Clin. Investig. 2009, 119, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Benedetti, F.; Mandelli, L.; Calati, R.; Caneva, B.; Lorenzi, C.; Fontana, V.; Colombo, C.; Smeraldi, E. Association between GSK-3β-50T/C polymorphism and personality and psychotic symptoms in mood disorders. Psychiatry Res. 2008, 158, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, Y.K. The impact of glycogen synthase kinase 3β gene on psychotic mania in bipolar disorder patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.T.; Zanetti, M.V.; Talib, L.L.; Serpa, M.H.; Chaim, T.M.; Carvalho, A.F.; Brunoni, A.R.; Busatto, G.F.; Gattaz, W.F.; Machado-Vieira, R. Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes. J. Psychiatr. Res. 2015, 62, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, K.; Nishizawa, D.; Narita, S.; Numajiri, M.; Murayama, O.; Yoshihara, E.; Onozawa, Y.; Nagahori, K.; Fukamauchi, F.; Ikeda, K.; et al. Haplotype analysis of GSK-3β gene polymorphisms in bipolar disorder lithium responders and nonresponders. Clin. Neuropharmacol. 2014, 37, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Lee, S.H.; Lee, B.; Jung, S.; Khalid, A.; Uchida, K.; Tominaga, M.; Jeon, D.; Oh, U. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J. Neurosci. 2015, 35, 11811–11823. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, Y. Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatr. Dis. Treat. 2009, 5, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.B.; Frey, B.N.; Andreazza, A.C.; Goi, J.D.; Rosa, A.R.; Goncalves, C.A.; Santin, A.; Kapczinski, F. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci. Lett. 2006, 398, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Machado-Vieira, R.; Dietrich, M.O.; Leke, R.; Cereser, V.H.; Zanatto, V.; Kapczinski, F.; Souza, D.O.; Portela, L.V.; Gentil, V. Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol. Psychiatry 2007, 61, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Vincze, I.; Perroud, N.; Buresi, C.; Baud, P.; Bellivier, F.; Etain, B.; Fournier, C.; Karege, F.; Matthey, M.L.; Preisig, M.; et al. Association between brain-derived neurotrophic factor gene and a severe form of bipolar disorder, but no interaction with the serotonin transporter gene. Bipolar Disord. 2008, 10, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Post, R.M. Role of BDNF in bipolar and unipolar disorder: Clinical and theoretical implications. J. Psychiatr. Res. 2007, 41, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Emamghoreishi, M.; Keshavarz, M.; Nekooeian, A.A. Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iran. J. Basic Med. Sci. 2015, 18, 240–246. [Google Scholar] [PubMed]
- Neher, E.; Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 2008, 59, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.D.; Young, L.T.; Yatham, L.N.; Andreazza, A.C.; Nery, F.G.; Grinberg, L.T.; Heinsen, H.; Lafer, B. Morphometric post-mortem studies in bipolar disorder: Possible association with oxidative stress and apoptosis. Int. J. Neuropsychopharmacol. 2011, 14, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Konradi, C.; Eaton, M.; MacDonald, M.L.; Walsh, J.; Benes, F.M.; Heckers, S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry 2004, 61, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.M.; Smoller, J.W.; McNamara, K.L.; Maser, R.S.; Zalta, A.K.; Pollack, M.H.; Nierenberg, A.A.; Fava, M.; Wong, K.K. Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biol. Psychiatry 2006, 60, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Macedo, D.S.; de Lucena, D.F.; Queiroz, A.I.; Cordeiro, R.C.; Araujo, M.M.; Sousa, F.C.; Vasconcelos, S.M.; Hyphantis, T.N.; Quevedo, J.; McIntyre, R.S.; et al. Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: Relevance as an animal model of mania. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 43, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Nciri, R.; Desmoulin, F.; Allagui, M.S.; Murat, J.C.; Feki, A.E.; Vincent, C.; Croute, F. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int. J. Neuropsychopharmacol. 2013, 16, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Zhang, T.; Li, Q.; Huang, J.K.; Chen, R.F.; Sun, X.J. Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes. Neurochem. Int. 2013, 63, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Iga, J.; Nishi, A.; Numata, S.; Kinoshita, M.; Kikuchi, K.; Nakataki, M.; Ohmori, T. Microarray analysis of global gene expression in leukocytes following lithium treatment. Hum. Psychopharmacol. 2014, 29, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Myint, A.M.; Kim, Y.K. Network beyond IDO in psychiatric disorders: Revisiting neurodegeneration hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 304–313. [Google Scholar] [PubMed]
- Kim, Y.K.; Jung, H.G.; Myint, A.M.; Kim, H.; Park, S.H. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J. Affect. Disord. 2007, 104, 91–95. [Google Scholar] [PubMed]
- Rizak, J.; Tan, H.; Zhu, H.; Wang, J.F. Chronic treatment with the mood-stabilizing drug lithium up-regulates nuclear factor E2-related factor 2 in rat pheochromocytoma PC12 cells in vitro. Neuroscience 2014, 256, 223–229. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.T.; Zarate, C.A., Jr.; Zanetti, M.V.; Costa, A.C.; Talib, L.L.; Gattaz, W.F.; Machado-Vieira, R. Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. J. Psychiatr. Res. 2014, 50, 36–41. [Google Scholar] [PubMed]
- De Sousa, R.T.; Streck, E.L.; Zanetti, M.V.; Ferreira, G.K.; Diniz, B.S.; Brunoni, A.R.; Busatto, G.F.; Gattaz, W.F.; Machado-Vieira, R. Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology 2015, 232, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Tanno, M.; Kuno, A.; Ishikawa, S.; Miki, T.; Kouzu, H.; Yano, T.; Murase, H.; Tobisawa, T.; Ogasawara, M.; Horio, Y.; et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J. Biol. Chem. 2014, 289, 29285–29296. [Google Scholar] [CrossRef] [PubMed]
- Ngok-Ngam, P.; Watcharasit, P.; Thiantanawat, A.; Satayavivad, J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell. Mol. Biol. Lett. 2013, 18, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Emamghoreishi, M.; Nekooeian, A.A.; Warsh, J.J.; Zare, H.R. Increased bcl-2 protein levels in rat primary astrocyte culture following chronic lithium treatment. Iran. J. Med. Sci. 2013, 38, 255–262. [Google Scholar] [PubMed]
- Rajkowska, G.; Clarke, G.; Mahajan, G.; Licht, C.M.; van de Werd, H.J.; Yuan, P.; Stockmeier, C.A.; Manji, H.K.; Uylings, H.B. Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: A stereological study. Bipolar Disord. 2016, 18, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Meffre, D.; Massaad, C.; Grenier, J. Lithium chloride stimulates PLP and MBP expression in oligodendrocytes via Wnt/β-catenin and Akt/CREB pathways. Neuroscience 2015, 284, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in Bipolar Disorder: Recent advances and current understanding. CNS Drugs 2016, 30, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005, 170, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Tsui, M.M.; Tai, W.C.; Wong, W.Y.; Hsiao, W.L. Selective G2/M arrest in a p53(Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci. 2012, 91, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Zaeri, S.; Farjadian, S.; Emamghoreishi, M. Decreased levels of canonical transient receptor potential channel 3 protein in the rat cerebral cortex after chronic treatment with lithium or valproate. Res. Pharm. Sci. 2015, 10, 397–406. [Google Scholar] [PubMed]
- Heinrich, A.; von der Heyde, A.S.; Boer, U.; Phu do, T.; Tzvetkov, M.; Oetjen, E. Lithium enhances CRTC oligomer formation and the interaction between the CREB coactivators CRTC and CBP—Implications for CREB-dependent gene transcription. Cell Signal. 2013, 25, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, C.; Ongur, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol. Psychiatry 2010, 68, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Chitty, K.M.; Lagopoulos, J.; Lee, R.S.; Hickie, I.B.; Hermens, D.F. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur. Neuropsychopharmacol. 2013, 23, 1348–1363. [Google Scholar] [CrossRef] [PubMed]
- McCullumsmith, R.E.; Kristiansen, L.V.; Beneyto, M.; Scarr, E.; Dean, B.; Meador-Woodruff, J.H. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res. 2007, 1127, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Dodd, S.; Kauer-Sant’anna, M.; Malhi, G.S.; Bourin, M.; Kapczinski, F.; Norman, T. Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. Suppl. 2007, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Daniele, S.; Da Pozzo, E.; Abelli, M.; Panighini, A.; Pini, S.; Gesi, C.; Lari, L.; Cardini, A.; Cassano, G.B.; Martini, C. Platelet uptake of GABA and glutamate in patients with bipolar disorder. Bipolar Disord. 2012, 14, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gos, T.; Steiner, J.; Bielau, H.; Dobrowolny, H.; Gunther, K.; Mawrin, C.; Krzyzanowski, M.; Hauser, R.; Brisch, R.; Bernstein, H.G.; et al. Differences between unipolar and bipolar I depression in the quantitative analysis of glutamic acid decarboxylase-immunoreactive neuropil. Eur. Arch. Psychiatry Clin. Neurosci. 2012, 262, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Brady, R.O., Jr.; McCarthy, J.M.; Prescot, A.P.; Jensen, J.E.; Cooper, A.J.; Cohen, B.M.; Renshaw, P.F.; Ongur, D. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013, 15, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Wakita, M.; Nagami, H.; Takase, Y.; Nakanishi, R.; Kotani, N.; Akaike, N. Modifications of excitatory and inhibitory transmission in rat hippocampal pyramidal neurons by acute lithium treatment. Brain Res. Bull. 2015, 117, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.A.; Allyn-Feuer, A.; Barbour, E.; Athey, B.D. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics 2015, 16, 1547–1563. [Google Scholar] [CrossRef] [PubMed]
- Mavrikaki, M.; Schintu, N.; Kastellakis, A.; Nomikos, G.G.; Svenningsson, P.; Panagis, G. Effects of lithium and aripiprazole on brain stimulation reward and neuroplasticity markers in the limbic forebrain. Eur. Neuropsychopharmacol. 2014, 24, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, B.; Halpain, S. Lithium prevents aberrant NMDA-induced F-actin reorganization in neurons. Neuroreport 2014, 25, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M.V.; Otaduy, M.C.; de Sousa, R.T.; Gattaz, W.F.; Busatto, G.F.; Leite, C.C.; Machado-Vieira, R. Bimodal effect of lithium plasma levels on hippocampal glutamate concentrations in bipolar II depression: A pilot study. Int. J. Neuropsychopharmacol. 2014, 18. [Google Scholar] [CrossRef] [PubMed]
- Ago, Y.; Tanaka, T.; Kita, Y.; Tokumoto, H.; Takuma, K.; Matsuda, T. Lithium attenuates methamphetamine-induced hyperlocomotion and behavioral sensitization via modulation of prefrontal monoamine release. Neuropharmacology 2012, 62, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
- Van Enkhuizen, J.; Milienne-Petiot, M.; Geyer, M.A.; Young, J.W. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: Chronic lithium treats most, but not all features. Psychopharmacology 2015, 232, 3455–3467. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, E.; Nunez, E.; Ibanez, I.; Zafra, F.; Aragon, C.; Gimenez, C. Glycine transporters GlyT1 and GlyT2 are differentially modulated by glycogen synthase kinase 3β. Neuropharmacology 2015, 89, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Rock, P.; Goodwin, G.; Harmer, C.; Wulff, K. Daily rest-activity patterns in the bipolar phenotype: A controlled actigraphy study. Chronobiol. Int. 2014, 31, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Milhiet, V.; Etain, B.; Boudebesse, C.; Bellivier, F. Circadian biomarkers, circadian genes and bipolar disorders. J. Physiol. Paris 2011, 105, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Robillard, R.; Naismith, S.L.; Rogers, N.L.; Scott, E.M.; Ip, T.K.; Hermens, D.F.; Hickie, I.B. Sleep-wake cycle and melatonin rhythms in adolescents and young adults with mood disorders: Comparison of unipolar and bipolar phenotypes. Eur. Psychiatry 2013, 28, 412–416. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.J.; Wei, H.; Marnoy, Z.; Darvish, R.M.; McPhie, D.L.; Cohen, B.M.; Welsh, D.K. Genetic and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl. Psychiatry 2013, 3, e318. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.J.; Nievergelt, C.M.; Kelsoe, J.R.; Welsh, D.K. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS ONE 2012, 7, e32091. [Google Scholar] [CrossRef] [PubMed]
- Schnell, A.; Sandrelli, F.; Ranc, V.; Ripperger, J.A.; Brai, E.; Alberi, L.; Rainer, G.; Albrecht, U. Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment. Chronobiol. Int. 2015, 32, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.; MacQueen, G. Associations between bipolar disorder and metabolic syndrome: A review. J. Clin. Psychiatry 2006, 67, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef]
- Kovzun, E.I.; Lukashenya, O.S.; Pushkarev, V.M.; Mikosha, A.S.; Tron’ko, N.D. Effect of ions of potassium and lithium on NO synthase expression in the human adrenal cortex. Bull. Exp. Biol. Med. 2014, 156, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Na, K.S.; Hwang, J.A.; Yoon, H.K.; Lee, H.J.; Hahn, S.W.; Lee, B.H.; Jung, H.Y. High insulin-like growth factor-1 in patients with bipolar I disorder: A trait marker? J. Affect. Disord. 2013, 151, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Kim, Y.K. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. J. Affect. Disord. 2012, 136, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Strakowski, S.M.; DelBello, M.P.; Zimmerman, M.E.; Getz, G.E.; Mills, N.P.; Ret, J.; Shear, P.; Adler, C.M. Ventricular and periventricular structural volumes in first-versus multiple-episode bipolar disorder. Am. J. Psychiatry 2002, 159, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Harenski, K.; Nicoletti, M.; Mallinger, A.G.; Frank, E.; Kupfer, D.J.; Keshavan, M.S.; Soares, J.C. MRI study of posterior fossa structures and brain ventricles in bipolar patients. J. Psychiatr. Res. 2001, 35, 313–322. [Google Scholar] [CrossRef]
- Lim, C.S.; Baldessarini, R.J.; Vieta, E.; Yucel, M.; Bora, E.; Sim, K. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: Review of the evidence. Neurosci. Biobehav. Rev. 2013, 37, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Lyoo, I.K.; Sung, Y.H.; Dager, S.R.; Friedman, S.D.; Lee, J.Y.; Kim, S.J.; Kim, N.; Dunner, D.L.; Renshaw, P.F. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord. 2006, 8, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.L.; Krishnan, K.R. Volumetric brain imaging findings in mood disorders. Bipolar Disord. 2002, 4, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, H.P.; Fredericks, C.; Wang, F.; Kalmar, J.H.; Spencer, L.; Papademetris, X.; Pittman, B.; Martin, A.; Peterson, B.S.; Fulbright, R.K.; et al. Preliminary evidence for persistent abnormalities in amygdala volumes in adolescents and young adults with bipolar disorder. Bipolar Disord. 2005, 7, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Nortje, G.; Stein, D.J.; Radua, J.; Mataix-Cols, D.; Horn, N. Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J. Affect. Disord. 2013, 150, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Vederine, F.E.; Wessa, M.; Leboyer, M.; Houenou, J. A meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wen, W.; Malhi, G.S.; Ivanovski, B.; Sachdev, P.S. Regional gray matter changes in bipolar disorder: A voxel-based morphometric study. Aust. N. Z. J. Psychiatry 2007, 41, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, C.; Sachdev, S.; Wen, W.; Piguet, O.; Lipnicki, D.M.; Malhi, G.S.; Mitchell, P.B.; Sachdev, P.S. Hippocampal and amygdala volumes in an older bipolar disorder sample. Int. Psychogeriatr. 2013, 25, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Eker, C.; Simsek, F.; Yilmazer, E.E.; Kitis, O.; Cinar, C.; Eker, O.D.; Coburn, K.; Gonul, A.S. Brain regions associated with risk and resistance for bipolar I disorder: A voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord. 2014, 16, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Bearden, C.E.; Thompson, P.M.; Dalwani, M.; Hayashi, K.M.; Lee, A.D.; Nicoletti, M.; Trakhtenbroit, M.; Glahn, D.C.; Brambilla, P.; Sassi, R.B.; et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol. Psychiatry 2007, 62, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Van der Schot, A.C.; Vonk, R.; Brans, R.G.; van Haren, N.E.; Koolschijn, P.C.; Nuboer, V.; Schnack, H.G.; van Baal, G.C.; Boomsma, D.I.; Nolen, W.A.; et al. Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch. Gen. Psychiatry 2009, 66, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Malhi, G.S.; Wood, S.J.; Yucel, M.; Walterfang, M.; Kawasaki, Y.; Suzuki, M.; Pantelis, C. Gray matter reduction of the superior temporal gyrus in patients with established bipolar I disorder. J. Affect. Disord. 2010, 123, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Germana, C.; Kempton, M.J.; Sarnicola, A.; Christodoulou, T.; Haldane, M.; Hadjulis, M.; Girardi, P.; Tatarelli, R.; Frangou, S. The effects of lithium and anticonvulsants on brain structure in bipolar disorder. Acta Psychiatr. Scand. 2010, 122, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Radenbach, K.; Flaig, V.; Schneider-Axmann, T.; Usher, J.; Reith, W.; Falkai, P.; Gruber, O.; Scherk, H. Thalamic volumes in patients with bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2010, 260, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Hajek, T.; Cullis, J.; Novak, T.; Kopecek, M.; Hoschl, C.; Blagdon, R.; O’Donovan, C.; Bauer, M.; Young, L.T.; Macqueen, G.; et al. Hippocampal volumes in bipolar disorders: Opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012, 14, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Hajek, T.; Bauer, M.; Simhandl, C.; Rybakowski, J.; O’Donovan, C.; Pfennig, A.; Konig, B.; Suwalska, A.; Yucel, K.; Uher, R.; et al. Neuroprotective effect of lithium on hippocampal volumes in bipolar disorder independent of long-term treatment response. Psychol. Med. 2014, 44, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Bollettini, I.; Barberi, I.; Radaelli, D.; Poletti, S.; Locatelli, C.; Pirovano, A.; Lorenzi, C.; Falini, A.; Colombo, C.; et al. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013, 38, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Poletti, S.; Radaelli, D.; Locatelli, C.; Pirovano, A.; Lorenzi, C.; Vai, B.; Bollettini, I.; Falini, A.; Smeraldi, E.; et al. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology 2015, 232, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.R.; Herrmann, N.; Scott, C.J.M.; Black, S.E.; Khan, M.M.; Lanctot, K.L. Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J. Affect. Disord. 2018, 225, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Tighe, S.K.; Mahon, P.B.; Potash, J.B. Predictors of lithium response in bipolar disorder. Ther. Adv. Chronic Dis. 2011, 2, 209–226. [Google Scholar] [CrossRef] [PubMed]
Recommended Medical Examination | Time of Examination |
---|---|
Renal function test | Baseline, every 6 months |
Thyroid function test | Baseline, at 6 months, annually |
Calcium | Baseline, at 6 months, annually |
Weight, waist circumference, body mass index | Baseline, at 6 months, annually |
Electrocardiogram recommended for the risk of QTc interval prolongation |
Symptoms | Lithium Intoxication > 1.2 mmol/L |
---|---|
Central nervous system | State of confusion |
Cerebellar signs (tremor, dysarthria, ataxia, nystagmus) | |
Extrapyramidal and neuromuscular signs (fasciculations, fibrillations, myoclonia) | |
Polyneuropathy | |
Gastrointestinal | Nausea, vomiting, diarrhea |
Renal | Polyuria, polydipsia, nephrogenic diabetes insipidus. |
Cardiovascular | Arrhythmia, low blood pressure, shock. |
Adult respiratory distress syndrome, Thermoregulation disturbances |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, E.; Kim, Y.-K. An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int. J. Mol. Sci. 2017, 18, 2679. https://doi.org/10.3390/ijms18122679
Won E, Kim Y-K. An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. International Journal of Molecular Sciences. 2017; 18(12):2679. https://doi.org/10.3390/ijms18122679
Chicago/Turabian StyleWon, Eunsoo, and Yong-Ku Kim. 2017. "An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms" International Journal of Molecular Sciences 18, no. 12: 2679. https://doi.org/10.3390/ijms18122679