Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Anthropometric and Blood Measurements at the Baseline (First) Checkup and Second Checkup (Conducted as Annual Specific Health Checkup)
4.3. Six-Month Exercise-Centered Lifestyle Intervention (Conducted as Specific Health Guidance)
4.4. Genotyping of Gene Variants
4.5. Statistical Analyses
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 2004, 10, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, P.; Inoue, H.; Nakamura, N.; Yoshikawa, T.; Tanahashi, T.; Itakura, M. Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK α2-subunit (PRKAA2) and risk of type 2 diabetes. Mol. Genet. Metab. 2008, 93, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Muoio, D.M.; MacLean, P.S.; Lang, D.B.; Li, S.; Houmard, J.A.; Way, J.M.; Winegar, D.A.; Corton, J.C.; Dohm, G.L.; Kraus, W.E. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPAR δ. J. Biol. Chem. 2002, 277, 26089–26097. [Google Scholar] [CrossRef] [PubMed]
- Barish, G.D.; Narkar, V.A.; Evans, R.M. PPAR δ: A dagger in the heart of the metabolic syndrome. J. Clin. Investig. 2006, 116, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Kjobsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.N.; Pehmoller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Viollet, B.; Andreelli, F.; Jorgensen, S.B.; Perrin, C.; Flamez, D.; Mu, J.; Wojtaszewski, J.F.; Schuit, F.C.; Birnbaum, M.; Richter, E.; et al. Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochem. Soc. Trans. 2003, 31, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Thamer, C.; Staiger, H.; Machicao, F.; Machann, J.; Schick, F.; Venter, C.; Niess, A.; Laakso, M.; Fritsche, A.; et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrinol. Metab. 2007, 92, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Thamer, C.; Machann, J.; Stefan, N.; Schafer, S.A.; Machicao, F.; Staiger, H.; Laakso, M.; Bottcher, M.; Claussen, C.; Schick, F.; et al. Variations in PPARD determine the change in body composition during lifestyle intervention: A whole-body magnetic resonance study. J. Clin. Endocrinol. Metab. 2008, 93, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.J.; Beamer, B.A.; Negri, C.; Silver, K.; Brown, K.A.; Yarnall, D.P.; Burns, D.K.; Roth, J.; Shuldiner, A.R. Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPAR γ) gene in diabetic Caucasians: Identification of a Pro12Ala PPAR γ 2 missense mutation. Biochem. Biophys. Res. Commun. 1997, 241, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, J.; Despres, J.P.; Perusse, L.; Vohl, M.C. The PPAR-γ P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: Results from the Quebec Family Study. Clin. Genet. 2003, 63, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Tellechea, M.L.; Aranguren, F.; Perez, M.S.; Cerrone, G.E.; Frechtel, G.D.; Taverna, M.J. Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor-γ gene is associated with metabolic syndrome and surrogate measurements of insulin resistance in healthy men: Interaction with smoking status. Circ. J. 2009, 73, 2118–2124. [Google Scholar] [CrossRef] [PubMed]
- Galbete, C.; Toledo, E.; Martinez-Gonzalez, M.A.; Martinez, J.A.; Guillen-Grima, F.; Marti, A. Pro12Ala variant of the PPARG2 gene increases body mass index: An updated meta-analysis encompassing 49,092 subjects. Obesity 2013, 21, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Ouyang, Y.; Fang, M.; Gao, H.; Liu, L. The association between the Pro12Ala variant in the PPAR γ 2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS ONE 2013, 8, e71985. [Google Scholar] [CrossRef]
- Spencer-Jones, N.J.; Ge, D.; Snieder, H.; Perks, U.; Swaminathan, R.; Spector, T.D.; Carter, N.D.; O’Dell, S.D. AMP-kinase α2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J. Med. Genet. 2006, 43, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, M.; Hara, K.; Ohashi, J.; Miyake, K.; Tokunaga, K.; Ito, C.; Kasuga, M.; Nagai, R.; Kadowaki, T. A polymorphism in the AMPKα2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population. Diabetes 2006, 55, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Higuchi, K.; Sakurai, A.; Tabara, Y.; Miki, T.; Nose, H. Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J. Physiol. 2009, 587, 5577–5584. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Lee, C.H.; Tiep, S.; Yu, R.T.; Ham, J.; Kang, H.; Evans, R.M. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003, 113, 159–170. [Google Scholar] [CrossRef]
- Lucia, A.; Gomez-Gallego, F.; Barroso, I.; Rabadan, M.; Bandres, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Iyadomi, M.; Higaki, Y.; Tanaka, H.; Kondo, Y.; Otsubo, H.; Horita, M.; Hara, M.; Tanaka, K. Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern. Med. 2015, 54, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Ordelheide, A.M.; Heni, M.; Gommer, N.; Gasse, L.; Haas, C.; Guirguis, A.; Machicao, F.; Haring, H.U.; Staiger, H. The myocyte expression of adiponectin receptors and PPAR δ is highly coordinated and reflects lipid metabolism of the human donors. Exp. Diabetes Res. 2011, 2011, 692536. [Google Scholar] [CrossRef] [PubMed]
- Luquet, S.; Lopez-Soriano, J.; Holst, D.; Fredenrich, A.; Melki, J.; Rassoulzadegan, M.; Grimaldi, P.A. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 2003, 17, 2299–2301. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, A.; Kasuga, M.; Araki, E.; Oka, Y.; Hanafusa, T.; Ito, H.; Tominaga, M.; Oikawa, S.; Noda, M.; Kawamura, T.; et al. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J. Diabetes Investig. 2012, 3, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Investig. 2000, 106, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Westerbacka, J.; Corner, A.; Tiikkainen, M.; Tamminen, M.; Vehkavaara, S.; Hakkinen, A.M.; Fredriksson, J.; Yki-Jarvinen, H. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: Implications for sex differences in markers of cardiovascular risk. Diabetologia 2004, 47, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Metabolic Calculations Handbook; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 52–65. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guideline for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; pp. 114–141. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Chida, M.; Ichioka, M.; Suda, Y. Blood lactate parameters related to aerobic capacity and endurance performance. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tokmakidis, S.P.; Leger, L.A.; Pilianidis, T.C. Failure to obtain a unique threshold on the blood lactate concentration curve during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 333–342. [Google Scholar] [CrossRef] [PubMed]
Variables | All Subjects (n = 109) | PPAR-δ rs2267668 | PPAR-γ rs1801282 | PRKAA2 rs1418442 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A/A (n = 66) | A/G + G/G (n = 43) | p Value * | C/C (n = 99) | C/G + G/G (n = 10) | p Value * | A/A (n = 64) | A/G + G/G (n = 45) | p Value * | ||||||||||||||||
Age (years) | 47.0 | ± | 0.4 | 46.8 | ± | 0.5 | 47.3 | ± | 0.6 | 0.61 | 47.1 | ± | 0.4 | 46.1 | ± | 1.3 | 0.49 | 47.1 | ± | 0.5 | 46.9 | ± | 0.7 | 0.78 |
Weight (kg) | 75.3 | ± | 0.8 | 76.1 | ± | 1.0 | 74.2 | ± | 1.2 | 0.24 | 75.0 | ± | 0.8 | 79.1 | ± | 2.9 | 0.20 | 75.6 | ± | 1.0 | 74.9 | ± | 1.2 | 0.67 |
BMI (kg/m2) | 25.7 | ± | 0.2 | 25.8 | ± | 0.3 | 25.5 | ± | 0.4 | 0.64 | 25.5 | ± | 0.2 | 27.2 | ± | 0.6 | 0.02 | 25.8 | ± | 0.3 | 25.6 | ± | 0.3 | 0.67 |
Waist circumference (cm) | 90.0 | ± | 0.5 | 90.3 | ± | 0.7 | 89.5 | ± | 0.8 | 0.47 | 89.7 | ± | 0.5 | 93.3 | ± | 2.2 | 0.15 | 90.5 | ± | 0.7 | 89.4 | ± | 0.7 | 0.29 |
SBP (mmHg) | 125 | ± | 1 | 126 | ± | 1 | 122 | ± | 2 | 0.08 | 125 | ± | 1 | 125 | ± | 2 | 0.85 | 125 | ± | 1 | 124 | ± | 2 | 0.46 |
DBP (mmHg) | 82 | ± | 1 | 82 | ± | 1 | 82 | ± | 1 | 0.95 | 82 | ± | 1 | 82 | ± | 2 | 0.85 | 82 | ± | 1 | 82 | ± | 1 | 0.84 |
Glucose (mg/dL) | 99.9 | ± | 1.0 | 100.0 | ± | 1.3 | 99.8 | ± | 1.5 | 0.92 | 99.8 | ± | 1.1 | 100.9 | ± | 3.1 | 0.75 | 100.3 | ± | 1.4 | 99.4 | ± | 1.4 | 0.64 |
HbA1c (%) | 5.48 | ± | 0.04 | 5.48 | ± | 0.06 | 5.47 | ± | 0.05 | 0.85 | 5.49 | ± | 0.04 | 5.37 | ± | 0.13 | 0.40 | 5.53 | ± | 0.06 | 5.40 | ± | 0.04 | 0.07 |
TG (mg/dL) | 127 | (93–171) | 122 | (92–169) | 136 | (102–179) | 0.52 | 123 | (92–171) | 143 | (121–166) | 0.38 | 131 | (94–166) | 123 | (92–189) | 0.91 | |||||||
AST (IU/L) | 23.0 | (20.0–28.0) | 22.0 | (20.0–28.0) | 24.0 | (20.0–30.0) | 0.35 | 22.0 | (20.0–28.5) | 25.5 | (23.3–27.8) | 0.49 | 23.5 | (20.0–28.3) | 23.0 | (20.0–28.0) | 1.00 | |||||||
ALT (IU/L) | 28.0 | (21.0–42.0) | 27.0 | (20.0–41.0) | 30.0 | (22.5–45.5) | 0.32 | 28.0 | (20.5–41.5) | 29.0 | (25.5–43.0) | 0.53 | 28.0 | (20.0–43.8) | 27.0 | (22.0–39.0) | 0.87 | |||||||
γ-GTP (IU/L) | 42.5 | (31.8–58.9) | 40.8 | (30.1–55.1) | 48.6 | (34.4–77.6) | 0.11 | 42.5 | (32.3–59.2) | 45.4 | (26.7–53.8) | 0.73 | 41.5 | (32.5–57.7) | 46.1 | (29.6–61.5) | 0.75 | |||||||
HDL-C (mg/dL) | 50 | ± | 1 | 49 | ± | 1 | 52 | ± | 2 | 0.18 | 50 | ± | 1 | 47 | ± | 4 | 0.52 | 50 | ± | 1 | 50 | ± | 2 | 0.86 |
LDL-C (mg/dL) | 133 | ± | 3 | 133 | ± | 3 | 134 | ± | 5 | 0.80 | 132 | ± | 3 | 144 | ± | 8 | 0.16 | 131 | ± | 3 | 137 | ± | 4 | 0.24 |
Total-C (mg/dL) | 213 | ± | 3 | 210 | ± | 4 | 218 | ± | 4 | 0.18 | 212 | ± | 3 | 219 | ± | 8 | 0.47 | 211 | ± | 4 | 215 | ± | 4 | 0.48 |
Lactate threshold (mL/kg/min) | 16.6 | ± | 0.2 | 16.7 | ± | 0.3 | 16.5 | ± | 0.3 | 0.68 | 16.6 | ± | 0.2 | 16.5 | ± | 0.8 | 0.94 | 16.5 | ± | 0.3 | 16.7 | ± | 0.3 | 0.56 |
Lactate threshold (METs) | 4.74 | ± | 0.05 | 4.76 | ± | 0.07 | 4.72 | ± | 0.08 | 0.68 | 4.74 | ± | 0.05 | 4.73 | ± | 0.22 | 0.94 | 4.72 | ± | 0.08 | 4.78 | ± | 0.07 | 0.56 |
Variables | All Subjects (n = 109) | PPAR-δ rs2267668 | PPAR-γ rs1801282 | PRKAA2 rs1418442 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A/A (n = 66) | A/G + G/G (n = 43) | p Value # | C/C (n = 99) | C/G + G/G (n = 10) | p Value # | A/A (n = 64) | A/G + G/G (n = 45) | p Value # | ||||||||||||||||
Weight (kg) | −1.1 | ± | 0.3 * | −0.1 | ± | 0.3 | −2.5 | ± | 0.5 * | 0.00 | −1.2 | ± | 0.3 * | 0.8 | ± | 1.2 | 0.13 | −1.2 | ± | 0.4 * | −0.9 | ± | 0.5 | 0.58 |
BMI (kg/m2) | −0.36 | ± | 0.10 * | −0.04 | ± | 0.10 | −0.84 | ± | 0.18 * | 0.00 | −0.42 | ± | 0.10 * | 0.24 | ± | 0.40 | 0.14 | −0.40 | ± | 0.14 * | −0.30 | ± | 0.15 | 0.62 |
Waist circumference (cm) | −1.3 | ± | 0.3 * | −0.6 | ± | 0.3 | −2.2 | ± | 0.6 * | 0.02 | −1.4 | ± | 0.3 * | −0.1 | ± | 1.2 | 0.33 | −1.4 | ± | 0.4 * | −1.0 | ± | 0.4 * | 0.56 |
Glucose (mg/dL) | −0.4 | ± | 0.8 | 0.2 | ± | 1.0 | −1.4 | ± | 1.3 | 0.30 | −0.1 | ± | 0.8 | −3.6 | ± | 2.3 | 0.18 | 0.3 | ± | 1.0 | −1.5 | ± | 1.3 | 0.27 |
HbA1c (%) | −0.03 | ± | 0.02 | −0.002 | ± | 0.03 | −0.08 | ± | 0.02 * | 0.04 | −0.03 | ± | 0.02 | 0.00 | ± | 0.05 | 0.51 | −0.04 | ± | 0.03 | −0.02 | ± | 0.03 | 0.79 |
TG (mg/dL) | −12.0 | (−46.0–18.0) * | −2.5 | (−33.5–21.8) | −33.0 | (−59.0–−5.5) * | 0.00 | −12.0 | (−48.5‒16.0) * | −21.5 | (−26.5–29.0) | 0.63 | −20.0 | (−42.8–10.8) | −8.0 | (−58.0–22.0) | 0.54 | |||||||
AST (IU/L) | −1.0 | (−5.0–3.0) * | 0 | (−5.8–3.8) | −3.0 | (−5.0–2.0) * | 0.15 | −1.0 | (−5.0–2.5) * | −1.0 | (−4.3–3.8) | 0.61 | −1.0 | (−5.0–2.3) | −1.0 | (−5.0–3.0) | 0.78 | |||||||
ALT (IU/L) | −3.0 | (−12.0–4.0) * | −0.5 | (−8.8–4.0) | −7.0 | (−12.5–1.5) * | 0.02 | −3.0 | (−12.0–3.5) * | −3.5 | (−8.5–3.3) | 0.82 | −2.0 | (−11.3‒4.0) * | −5.0 | (−12.0–3.0) | 0.90 | |||||||
γ-GTP (IU/L) | −4.4 | (−12.4–2.5) | −1.2 | (−7.6–4.8) | −10.7 | (−19.3–−2.5) * | 0.00 | −4.4 | (−12.5–2.4) | −3.4 | (−5.3–6.2) | 0.52 | −4.5 | (−8.8–2.4) | −3.9 | (−14.9–2.5) | 0.35 | |||||||
HDL-C (mg/dL) | 1.8 | ± | 0.7 * | 1.2 | ± | 0.8 | 2.8 | ± | 1.1 * | 0.26 | 2.0 | ± | 0.7 * | 0.1 | ± | 2.8 | 0.52 | 1.5 | ± | 0.8 | 2.3 | ± | 1.1 * | 0.57 |
LDL-C (mg/dL) | −4.1 | ± | 2.3 | −4.5 | ± | 2.3 | −3.5 | ± | 4.6 | 0.86 | −4.3 | ± | 2.4 | −1.8 | ± | 8.2 | 0.77 | −5.5 | ± | 3.3 | -2.1 | ± | 2.9 | 0.44 |
Total-C (mg/dL) | −6.7 | ± | 2.2 * | −4.0 | ± | 2.4 | −10.8 | ± | 4.2 * | 0.16 | −7.3 | ± | 2.4 * | −0.6 | ± | 6.0 | 0.32 | −9.5 | ± | 3.1* | -2.7 | ± | 3.1 | 0.12 |
Outcome Variables | β | SE | p Value |
---|---|---|---|
Change in HbA1c | −0.045 | 0.039 | 0.26 |
Change in log-transformed TG | −0.211 | 0.089 | 0.02 |
Change in ALT | −3.5 | 3.4 | 0.31 |
Change in γ-GTP | −9.5 | 4.6 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishida, Y.; Iyadomi, M.; Tominaga, H.; Taniguchi, H.; Higaki, Y.; Tanaka, H.; Horita, M.; Shimanoe, C.; Hara, M.; Tanaka, K. Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men. Int. J. Mol. Sci. 2018, 19, 703. https://doi.org/10.3390/ijms19030703
Nishida Y, Iyadomi M, Tominaga H, Taniguchi H, Higaki Y, Tanaka H, Horita M, Shimanoe C, Hara M, Tanaka K. Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men. International Journal of Molecular Sciences. 2018; 19(3):703. https://doi.org/10.3390/ijms19030703
Chicago/Turabian StyleNishida, Yuichiro, Minako Iyadomi, Hirotaka Tominaga, Hiroaki Taniguchi, Yasuki Higaki, Hiroaki Tanaka, Mikako Horita, Chisato Shimanoe, Megumi Hara, and Keitaro Tanaka. 2018. "Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men" International Journal of Molecular Sciences 19, no. 3: 703. https://doi.org/10.3390/ijms19030703
APA StyleNishida, Y., Iyadomi, M., Tominaga, H., Taniguchi, H., Higaki, Y., Tanaka, H., Horita, M., Shimanoe, C., Hara, M., & Tanaka, K. (2018). Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men. International Journal of Molecular Sciences, 19(3), 703. https://doi.org/10.3390/ijms19030703