Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication and Characterization of MPDA and DS-TD/MPDA
2.2. Photo Characteristics of DS-TD/MPDA
2.3. Loading Capacity and Release of DS
2.4. Cytotoxicity Detection of DS-TD/MPDA
2.5. Therapeutic Effectiveness of DS-TD/MPDA for TMJOA
2.6. Biocompatibility of DS-TD/MPDA in Vivo
3. Materials and Methods
3.1. Materials
3.2. Synthesis of MPDA
3.3. Synthesis of DS and TD Loaded MPDA (DS-TD/MPDA)
3.4. Characterization
3.5. Photothermal Properties of the DS-TD/MPDA
3.6. Measurement of Drug Loading and Release
3.7. In Vitro Cytotoxicity Assay
3.8. Establishment and Treatment of the Unilateral Anterior Crossbite (UAC) Rat Model
3.9. Histopathological Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.D.; Zhang, J.N.; Gan, Y.H.; Zhou, Y.H. Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis. J. Dent. Res. 2015, 94, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- De Laat, A.; Stappaerts, K.; Papy, S. Counseling and Physical Therapy as Treatment for Myofascial Pain of the Masticatory System. J. Orofac. Pain 2003, 17, 42–49. [Google Scholar] [PubMed]
- Andre, A.; Kang, J.; Dym, H. Pharmacologic Treatment for Temporomandibular and Temporomandibular Joint Disorders. Oral Maxillofac. Surg. Clin. N. Am. 2022, 34, 49–59. [Google Scholar] [CrossRef]
- Triantaffilidou, K.; Venetis, G.; Bika, O. Efficacy of Hyaluronic Acid Injections in Patients With Osteoarthritis of the Temporomandibular Joint. A Comparative Study. J. Craniofacial Surg. 2013, 24, 2006. [Google Scholar] [CrossRef]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Interdisciplinary Approach to the Temporomandibular Joint Osteoarthritis—Review of the Literature. Medicina 2020, 56, 225. [Google Scholar] [CrossRef]
- de Souza, R.F.; Lovato da Silva, C.H.; Nasser, M.; Fedorowicz, Z.; Al-Muharraqi, M.A. Interventions for Managing Temporomandibular Joint Osteoarthritis. Cochrane Database Syst. Rev. 2012, 2012, CD007261. [Google Scholar] [CrossRef]
- Mujakperuo, H.R.; Watson, M.; Morrison, R.; Macfarlane, T.V. Pharmacological Interventions for Pain in Patients with Temporomandibular Disorders. Cochrane Db Syst. Rev. 2010, 10. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kim, H.J.; Ha, Y.-J.; Park, Y.N.; Lee, S.-K.; Park, Y.-B.; Yoo, K.-H. Targeted Chemo-Photothermal Treatments of Rheumatoid Arthritis Using Gold Half-Shell Multifunctional Nanoparticles. ACS Nano 2013, 7, 50–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, C.; Chen, X.; Liu, J.; Yu, Q.; Liu, Y.; Liu, J. Drug Delivery System Based on Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets Controls the High-Efficiency Release of Dexamethasone To Inhibit Inflammation and Treat Osteoarthritis. ACS Appl. Mater. Interfaces 2019, 11, 11587–11601. [Google Scholar] [CrossRef]
- Zhou, Y.; Ni, J.; Wen, C.; Lai, P. Light on Osteoarthritic Joint: From Bench to Bed. Theranostics 2022, 12, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Yue, W.; Cai, S.; Tang, Q.; Lu, W.; Huang, L.; Qi, T.; Liao, J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front. Pharmacol. 2021, 12, 664123. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.; Cancino-Bernardi, J.; Pincela Lins, P.M.; Sampaio, D.; Pavan, T.; Zucolotto, V. Near-Infrared Photoactive Theragnostic Gold Nanoflowers for Photoacoustic Imaging and Hyperthermia. ACS Appl. Bio Mater. 2021, 4, 6780–6790. [Google Scholar] [CrossRef]
- Jakhmola, A.; Krishnan, S.; Onesto, V.; Gentile, F.; Profeta, M.; Manikas, A.; Battista, E.; Vecchione, R.; Netti, P.A. Sustainable Synthesis and Theoretical Studies of Polyhedral Gold Nanoparticles Displaying High SERS Activity, NIR Absorption, and Cellular Uptake. Mater. Today Chem. 2022, 26, 101016. [Google Scholar] [CrossRef]
- Jakhmola, A.; Vecchione, R.; Onesto, V.; Gentile, F.; Profeta, M.; Battista, E.; Manikas, A.C.; Netti, P.A. A Theoretical and Experimental Study on L-Tyrosine and Citrate Mediated Sustainable Production of near Infrared Absorbing Twisted Gold Nanorods. Mater. Sci. Eng. C 2021, 118, 111515. [Google Scholar] [CrossRef]
- Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Synergistic Effect of Chemo-Photothermal Therapy Using PEGylated Graphene Oxide. Biomaterials 2011, 32, 8555–8561. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, Z.; Tian, R.; Yung, B.C.; Yang, Q.; Zhao, S.; Kiesewetter, D.O.; Niu, G.; Sun, H.; Antaris, A.L.; et al. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging. Adv. Mater. 2018, 30, 1802546. [Google Scholar] [CrossRef]
- Cheng, L.; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G.; Liu, Z. PEGylated Prussian Blue Nanocubes as a Theranostic Agent for Simultaneous Cancer Imaging and Photothermal Therapy. Biomaterials 2014, 35, 9844–9852. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and Listening to Light: The Evolution of Whole-Body Photonic Imaging. Nat. Biotechnol. 2005, 23, 313–320. [Google Scholar] [CrossRef]
- Zheng, P.; Ding, B.; Li, G. Polydopamine-Incorporated Nanoformulations for Biomedical Applications. Macromol. Biosci. 2020, 20, 2000228. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Duan, X.; Guan, Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X.; Cao, Z. Mesoporous Polydopamine Carrying Manganese Carbonyl Responds to Tumor Microenvironment for Multimodal Imaging-Guided Cancer Therapy. Adv. Funct. Mater. 2019, 29, 1900095. [Google Scholar] [CrossRef]
- Lin, K.; Gan, Y.; Zhu, P.; Li, S.; Lin, C.; Yu, S.; Zhao, S.; Shi, J.; Li, R.; Yuan, J. Hollow Mesoporous Polydopamine Nanospheres: Synthesis, Biocompatibility and Drug Delivery. Nanotechnology 2021, 32, 285602. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, X.; Sang, W.; Wang, C.; Lu, H.; Xu, Y.; Zhong, Y.; Zhu, L.; He, C.; Ma, J. Cartilage-Targeting Peptide-Modified Dual-Drug Delivery Nanoplatform with NIR Laser Response for Osteoarthritis Therapy. Bioact. Mater. 2021, 6, 2372–2389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge, W.; Ma, Z.; Ji, G.; Wang, M.; Zhou, G.; Wang, X. Use of Mesoporous Polydopamine Nanoparticles as a Stable Drug-Release System Alleviates Inflammation in Knee Osteoarthritis. APL Bioeng. 2022, 6, 026101. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, C.; Zhou, Y.; Zhang, F.; Duan, X.; Liu, Y.; Zhao, X.; Liu, J.; Shuai, X.; Wang, J.; et al. MRI-Visible Mesoporous Polydopamine Nanoparticles with Enhanced Antioxidant Capacity for Osteoarthritis Therapy. Biomaterials 2023, 295, 122030. [Google Scholar] [CrossRef]
- Stocum, D.L.; Roberts, W.E. Part I: Development and Physiology of the Temporomandibular Joint. Curr. Osteoporos. Rep. 2018, 16, 360–368. [Google Scholar] [CrossRef]
- Small, R.E. Diclofenac Sodium. Clin. Pharm. 1989, 8, 545–558. [Google Scholar]
- Ekberg, E.; Kopp, S.; Åkerman, S. Diclofenac Sodium as an Alternative Treatment of Temporomandibular Joint Pain. Acta Odontol. Scand. 1996, 54, 154–159. [Google Scholar] [CrossRef]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Orally Administered NSAIDs—General Characteristics and Usage in the Treatment of Temporomandibular Joint Osteoarthritis—A Narrative Review. Pharmaceuticals 2021, 14, 219. [Google Scholar] [CrossRef]
- Brogden, R.N.; Heel, R.C.; Pakes, G.E.; Speight, T.M.; Avery, G.S. Diclofenac Sodium: A Review of Its Pharmacological Properties and Therapeutic Use in Rheumatic Diseases and Pain of Varying Origin. Drugs 1980, 20, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, S.; Arami, S. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes. BioMed Res. Int. 2013, 2013, 616810. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Gandra, N.; Singamaneni, S. Monitoring Controlled Release of Payload from Gold Nanocages Using Surface Enhanced Raman Scattering. ACS Nano 2013, 7, 4252–4260. [Google Scholar] [CrossRef]
- Liu, J.; Detrembleur, C.; Pauw-Gillet, M.-C.D.; Mornet, S.; Jérôme, C.; Duguet, E. Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small 2015, 11, 2323–2332. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Hou, Y.; Shen, X.; Xu, G.; Dai, L.; Zhou, J.; Liu, Y.; Cai, K. Phase-Change Material Filled Hollow Magnetic Nanoparticles for Cancer Therapy and Dual Modal Bioimaging. Nanoscale 2015, 7, 9004–9012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Q.; Cang, F.; Wu, S.; Jiang, Y.; Zhao, Q.; Zhou, Y.; Qu, X.; Zhang, X.; Jin, Y.; et al. Yolk-Shell Shaped Au-Bi2S3 Heterostructure Nanoparticles for Controlled Drug Release and Combined Tumor Therapy. Nanotechnology 2022, 33, 455103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liang, J.; Liu, Q.; Huang, D.; Xu, J.; Gu, H.; Xue, W. Codelivery of Epigallocatechin-3-Gallate and Diallyl Trisulfide by near-Infrared Light-Responsive Mesoporous Polydopamine Nanoparticles for Enhanced Antitumor Efficacy. Int. J. Pharm. 2021, 592, 120020. [Google Scholar] [CrossRef] [PubMed]
- Park, J.U.; Kang, B.Y.; Lee, H.-J.; Kim, S.; Bae, D.; Park, J.-H.; Kim, Y.R. Tetradecanol Reduces EL-4 T Cell Growth by the down Regulation of NF-ΚB Mediated IL-2 Secretion. Eur. J. Pharmacol. 2017, 799, 135–142. [Google Scholar] [CrossRef]
- Hasturk, H.; Goguet-Surmenian, E.; Blackwood, A.; Andry, C.; Kantarci, A. 1-Tetradecanol Complex: Therapeutic Actions in Experimental Periodontitis. J. Periodontol. 2009, 80, 1103–1113. [Google Scholar] [CrossRef]
- Yang, X.; Lu, P.; Yu, L.; Pan, P.; Elzatahry, A.A.; Alghamdi, A.; Luo, W.; Cheng, X.; Deng, Y. An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. Adv. Funct. Mater. 2020, 30, 2002488. [Google Scholar] [CrossRef]
- Peng, L.; Hung, C.-T.; Wang, S.; Zhang, X.; Zhu, X.; Zhao, Z.; Wang, C.; Tang, Y.; Li, W.; Zhao, D. Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080. [Google Scholar] [CrossRef] [PubMed]
- Sa’adon, S.; Ansari, M.N.M.; Razak, S.I.A.; Anand, J.S.; Nayan, N.H.M.; Ismail, A.E.; Khan, M.U.A.; Haider, A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers 2021, 13, 2459. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Gao, J.; Shang, S.; Zhang, H.; Luo, Q.; Wu, Y.; Liu, Y.; Chen, X.; Sun, Y. 1-Tetradecanol, Diethyl Phthalate and Tween 80 Assist in the Formation of Thermo-Responsive Azoxystrobin Nanoparticles. Molecules 2022, 27, 7959. [Google Scholar] [CrossRef] [PubMed]
- Döğüşcü, D.K. Tetradecyl Oxalate and Octadecyl Oxalate as Novel Phase Change Materials for Thermal Energy Storage. Sol. Energy 2019, 185, 341–349. [Google Scholar] [CrossRef]
- Guan, Y.; Ge, X.; Abdalkarim, S.Y.H.; Yu, H.; Marek, J.; Yao, J. Fabrication of a Novel Temperature Sensitive Phase Change System Based on ZnO@PNIPAM Core-Satellites and 1-Tetradecanol as Gatekeeper. Mater. Sci. Energy Technol. 2020, 3, 482–486. [Google Scholar] [CrossRef]
- Zeng, J.-L.; Gan, J.; Zhu, F.-R.; Yu, S.-B.; Xiao, Z.-L.; Yan, W.-P.; Zhu, L.; Liu, Z.-Q.; Sun, L.-X.; Cao, Z. Tetradecanol/Expanded Graphite Composite Form-Stable Phase Change Material for Thermal Energy Storage. Sol. Energ Mater. Sol. Cells 2014, 127, 122–128. [Google Scholar] [CrossRef]
- Ottria, L.; Candotto, V.; Guzzo, F.; Gargari, M.; Barlattani, A. Temporomandibular Joint and Related Structures: Anatomical and Histological Aspects. J. Biol. Regul. Homeost. Agents 2018, 32, 203–207. [Google Scholar]
- Mountziaris, P.M.; Sing, D.C.; Mikos, A.G.; Kramer, P.R. Intra-Articular Microparticles for Drug Delivery to the TMJ. J. Dent. Res. 2010, 89, 1039–1044. [Google Scholar] [CrossRef]
- Guilherme, V.A.; Ribeiro, L.N.M.; Alcântara, A.C.S.; Castro, S.R.; Rodrigues da Silva, G.H.; da Silva, C.G.; Breitkreitz, M.C.; Clemente-Napimoga, J.; Macedo, C.G.; Abdalla, H.B.; et al. Improved Efficacy of Naproxen-Loaded NLC for Temporomandibular Joint Administration. Sci. Rep. 2019, 9, 11160. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Hasan, S.; Saeed, S.; Khan, A.; Khan, M. Low-Level Laser Therapy in Temporomandibular Joint Disorders: A Systematic Review. J. Med. Life 2021, 14, 148–164. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, J.; Lu, L.; Zhang, J.; Zhang, M.; Wang, Y.; Guo, M.; Wang, X.; Wang, M. Experimentally Created Unilateral Anterior Crossbite Induces a Degenerative Ossification Phenotype in Mandibular Condyle of Growing Sprague-Dawley Rats. J. Oral Rehabil. 2013, 40, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, D.; Pei, P.; Wang, W.; Chen, B.; Chu, Z.; Zha, Z.; Yang, X.; Wang, J.; Qian, H. Rod-Based Urchin-like Hollow Microspheres of Bi2S3: Facile Synthesis, Photo-Controlled Drug Release for Photoacoustic Imaging and Chemo-Photothermal Therapy of Tumor Ablation. Biomaterials 2020, 237, 119835. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Fronk, Z.; Gross, A.; Willmore, D.; Arango, A.; Higham, C.; Nguyen, V.; Lim, H.; Kale, V.; McMillan, G.; et al. Losartan Attenuates Progression of Osteoarthritis in the Synovial Temporomandibular and Knee Joints of a Chondrodysplasia Mouse Model through Inhibition of TGF-Β1 Signaling Pathway. Osteoarthr. Cartil. 2019, 27, 676–686. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Hou, Y.; Cao, P.; Bi, R.; Zhu, S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. Int. J. Mol. Sci. 2023, 24, 9055. https://doi.org/10.3390/ijms24109055
Li Q, Hou Y, Cao P, Bi R, Zhu S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. International Journal of Molecular Sciences. 2023; 24(10):9055. https://doi.org/10.3390/ijms24109055
Chicago/Turabian StyleLi, Qianli, Yi Hou, Pinyin Cao, Ruiye Bi, and Songsong Zhu. 2023. "Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy" International Journal of Molecular Sciences 24, no. 10: 9055. https://doi.org/10.3390/ijms24109055