Significance of MnO2 Type and Solution Parameters in Manganese Removal from Water Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Material and Solution Parameters on Mn Adsorption
2.2. Influence of Mn Adsorption on MnO2 Polymorphs’ Properties
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of MnO2
3.3. Batch Experiment of Mn Removal
3.4. Data Analysis
3.5. Characterisation of MnO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Europe’s Groundwater: A Key Resource under Pressure; Publications Office: Luxembourg, 2022. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- World Health Organization A Global Overview of National Regulations and Standards for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151376-0.
- Australian Drinking Water Guidelines 6 2011: National Water Quality Management Strategy; National Health and Medical Research Council: Canberra, Australia, 2011; ISBN 978-1-86496-511-7.
- Jekel, M.; Gimbel, R.; Ließfeld, R. Wasseraufbereitung–Grundlagen und Verfahren; Oldenbourg Industrieverl: München, Germany, 2004; ISBN 978-3-486-26365-7. [Google Scholar]
- Letterman, R.D.; American Water Works Association (Eds.) Water Quality and Treatment: A Handbook of Community Water Supplies, 5th ed.; McGraw-Hill: New York, NY, USA, 1999; ISBN 978-0-07-001659-0. [Google Scholar]
- Kemmer, F.N.; Nalco Chemical Company (Eds.) The NALCO Water Handbook, 2nd ed.; McGraw-Hill Book Co: New York, NY, USA, 1988; ISBN 978-0-07-045872-7. [Google Scholar]
- Martin, S. Precipitation and Dissolution of Iron and Manganese Oxides. In Environmental Catalysis; Grassian, V., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 61–82. ISBN 978-1-57444-462-9. [Google Scholar]
- Dashtban Kenari, S.L.; Barbeau, B. Size and Zeta Potential of Oxidized Iron and Manganese in Water Treatment: Influence of PH, Ionic Strength, and Hardness. J. Environ. Eng. 2016, 142, 04016010. [Google Scholar] [CrossRef]
- EFSA opinion Safety in Use of the Treatments for the Removal of Manganese, Iron and Arsenic from Natural Mineral Waters by Oxyhydroxide Media–Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J. 2008, 6, 1–19. [CrossRef]
- Grygo-Szymanko, E.; Tobiasz, A.; Walas, S. Speciation Analysis and Fractionation of Manganese: A Review. TrAC Trends Anal. Chem. 2016, 80, 112–124. [Google Scholar] [CrossRef]
- Tobiason, J.E.; Bazilio, A.; Goodwill, J.; Mai, X.; Nguyen, C. Manganese Removal from Drinking Water Sources. Curr. Pollut. Rep. 2016, 2, 168–177. [Google Scholar] [CrossRef]
- Michel, M.M.; Reczek, L.; Papciak, D.; Włodarczyk-Makuła, M.; Siwiec, T.; Trach, Y. Mineral Materials Coated with and Consisting of MnOx—Characteristics and Application of Filter Media for Groundwater Treatment: A Review. Materials 2020, 13, 2232. [Google Scholar] [CrossRef]
- Vries, D.; Bertelkamp, C.; Schoonenberg Kegel, F.; Hofs, B.; Dusseldorp, J.; Bruins, J.H.; de Vet, W.; van den Akker, B. Iron and Manganese Removal: Recent Advances in Modelling Treatment Efficiency by Rapid Sand Filtration. Water Res. 2017, 109, 35–45. [Google Scholar] [CrossRef]
- Dashtban Kenari, S.L.; Barbeau, B. Pyrolucite Fluidized-Bed Reactor (PFBR): A Robust and Compact Process for Removing Manganese from Groundwater. Water Res. 2014, 49, 475–483. [Google Scholar] [CrossRef]
- Outram, J.G.; Couperthwaite, S.J.; Millar, G.J. Comparitve Analysis of the Physical, Chemical and Structural Characteristics and Performance of Manganese Greensands. J. Water Process Eng. 2016, 13, 16–26. [Google Scholar] [CrossRef]
- Jeż-Walkowiak, J.; Dymaczewski, Z.; Szuster-Janiaczyk, A.; Nowicka, A.; Szybowicz, M. Efficiency of Mn Removal of Different Filtration Materials for Groundwater Treatment Linking Chemical and Physical Properties. Water 2017, 9, 498. [Google Scholar] [CrossRef]
- Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D. Biological and Physico-Chemical Formation of Birnessite during the Ripening of Manganese Removal Filters. Water Res. 2015, 69, 154–161. [Google Scholar] [CrossRef]
- Jones, A.; Murayama, M.; Knocke, W.R. Incorporating Aluminum Species in MnO x (s) Coatings on Water Filtration Media. AWWA Water Sci. 2019, 1, e1114. [Google Scholar] [CrossRef]
- Ghosh, S.K. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef]
- Stoerzinger, K.A.; Risch, M.; Han, B.; Shao-Horn, Y. Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catal. 2015, 5, 6021–6031. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Cui, C.; Wang, B.; Liu, W.; Liu, W.; Wang, L. Amorphous Manganese Oxide as Highly Active Catalyst for Soot Oxidation. Environ. Sci. Pollut. Res. 2020, 27, 13488–13500. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, S.; Duan, X.; Wang, Y.; Wu, D.; Pang, J.; Wang, X.; Wang, S. Catalytic Oxidation of Sulfachloropyridazine by MnO2: Effects of Crystalline Phase and Peroxide Oxidants. Chemosphere 2021, 267, 129287. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. MnO2–Based Materials for Environmental Applications. Adv. Mater. 2021, 33, 2004862. [Google Scholar] [CrossRef]
- Leong, Z.Y.; Yang, H.Y. A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 2019, 11, 13176–13184. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Yadav, N.; Singh, S.; Saini, O.; Srivastava, S. Technological Advancement in the Remediation of Heavy Metals Employing Engineered Nanoparticles: A Step towards Cleaner Water Process. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100757. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; Dong, C.; Qiao, Y.; Zhang, J.; Guo, Y. Synthesized Akhtenskites Remove Ammonium and Manganese from Aqueous Solution: Removal Mechanism and the Effect of Structural Cations. RSC Adv. 2021, 11, 33798–33808. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Qiao, H.; Liu, F.; Fu, Z. Synthesis of Manganese Oxides for Adsorptive Removal of Ammonia Nitrogen from Aqueous Solutions. J. Clean. Prod. 2020, 272, 123055. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, H.; Lu, Z.; Zhong, X.; Zhu, Y. The Study of MnO2 with Different Crystalline Structures for U(VI) Elimination from Aqueous Solution. J. Mol. Liq. 2021, 335, 116296. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, A.; Fu, H.; Zhang, L.; Liu, H.; Zheng, S.; Wan, H.; Xu, Z. Efficient Removal of Pb(II) Ions Using Manganese Oxides: The Role of Crystal Structure. RSC Adv. 2017, 7, 41228–41240. [Google Scholar] [CrossRef]
- Kanungo, S.B.; Parida, K.M. Adsorption of Cu2+ on Various Crystalline Modifications of MnO2 at 300 °K. J. Colloid Interface Sci. 1984, 98, 245–251. [Google Scholar] [CrossRef]
- McKenzie, R.M. The Synthesis of Birnessite, Cryptomelane, and Some Other Oxides and Hydroxides of Manganese. Mineral. Mag. 1971, 38, 493–502. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Z. A Facile One-Step Synthesized Epsilon-MnO2 Nanoflowers for Effective Removal of Lead Ions from Wastewater. Chemosphere 2020, 250, 126329. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Zeng, G.; You, S.; Wang, H.; Hu, X.; Guo, Y.; Tan, X.; Guo, F. Effects of Background Electrolytes and Ionic Strength on Enrichment of Cd(II) Ions with Magnetic Graphene Oxide–Supported Sulfanilic Acid. J. Colloid Interface Sci. 2014, 435, 138–144. [Google Scholar] [CrossRef]
- Sorensen, B.; Gaal, S.; Ringdalen, E.; Tangstad, M.; Kononov, R.; Ostrovski, O. Phase Compositions of Manganese Ores and Their Change in the Process of Calcination. Int. J. Miner. Process. 2010, 94, 101–110. [Google Scholar] [CrossRef]
- Thorslund, J.; van Vliet, M.T.H. A Global Dataset of Surface Water and Groundwater Salinity Measurements from 1980–2019. Sci. Data 2020, 7, 231. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The Need to Report Effect Size Estimates Revisited. An Overview of Some Recommended Measures of Effect Size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Zhang, T.; Liu, L.; Tan, W.; Suib, S.L.; Qiu, G.; Liu, F. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environ. Sci. Technol. 2018, 52, 6864–6871. [Google Scholar] [CrossRef]
- Guimarães, R.N.; Moreira, V.R.; Amaral, M.C.S. Membrane Technology as an Emergency Response against Drinking Water Shortage in Scenarios of Dam Failure. Chemosphere 2022, 309, 136618. [Google Scholar] [CrossRef]
- Tang, X.; Qiao, J.; Wang, J.; Huang, K.; Guo, Y.; Xu, D.; Li, G.; Liang, H. Bio-Cake Layer Based Ultrafiltration in Treating Iron-and Manganese-Containing Groundwater: Fast Ripening and Shock Loading. Chemosphere 2021, 268, 128842. [Google Scholar] [CrossRef]
- Song, H.; Xu, L.; Chen, M.; Cui, Y.; Wu, C.; Qiu, J.; Xu, L.; Cheng, G.; Hu, X. Recent Progresses in the Synthesis of MnO 2 Nanowire and Its Application in Environmental Catalysis. RSC Adv. 2021, 11, 35494–35513. [Google Scholar] [CrossRef]
- Said, M.I. Akhtenskite-Nsutite Phases: Polymorphic Transformation, Thermal Behavior and Magnetic Properties. J. Alloy. Compd. 2020, 819, 152976. [Google Scholar] [CrossRef]
- Händel, M.; Rennert, T.; Totsche, K.U. Synthesis of Cryptomelane- and Birnessite-Type Manganese Oxides at Ambient Pressure and Temperature. J. Colloid Interface Sci. 2013, 405, 44–50. [Google Scholar] [CrossRef]
- Arias, N.P.; Becerra, M.E.; Giraldo, O. Structural and Electrical Studies for Birnessite-Type Materials Synthesized by Solid-State Reactions. Nanomaterials 2019, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Dinh, V.-P.; Luu, A.T.; Krzysztof, S.; Kozlenko, D.; Khiem, L.; Dang, N.T.; Nguyen, V.T.; Nguyen, L.-P.; Tran, D.T.; Phan, T.P.; et al. Crystallization Pathways, Morphologies and Structural Defects of α-MnO2 Nanomaterial Synthesized under Annealed Temperatures. 2020; in review. [Google Scholar]
- Yang, P.; Post, J.E.; Wang, Q.; Xu, W.; Geiss, R.; McCurdy, P.R.; Zhu, M. Metal Adsorption Controls Stability of Layered Manganese Oxides. Environ. Sci. Technol. 2019, 53, 7453–7462. [Google Scholar] [CrossRef] [PubMed]
- Absus, S.; Zulfa, R.; Awaluddin, A.; Anita, S.; Siregar, S.S.; Prasetya. A Facile Synthesis of Octahedral Layered Birnessite-Type Manganese Oxide (OL-1) Nanostructures with Tremendous Catalytic Activity for Methylene Blue Degradation; AIP Conference Proceedings: Surabaya, Indonesia, 2018; p. 020009. [Google Scholar]
- European Standard EN 13752 Products Used for Treatment of Water Intended for Human Consumption—Manganese Dioxide. Eur. Comm. Stand. Bruss. Belg. 2012, 2012, 22.
- Sawyer, S.F. Analysis of Variance: The Fundamental Concepts. J. Man. Manip. Ther. 2009, 17, 27E–38E. [Google Scholar] [CrossRef]
Parameters | AKH | AKH + Mn | BIR | BIR + Mn | CRY | CRY + Mn | PYR | PYR + Mn |
---|---|---|---|---|---|---|---|---|
XRD results | ||||||||
identified phases | akhtenskite | akhtenskite | birnessite | birnessite | cryptomelane | cryptomelane | pyrolusite | pyrolusite |
percentage of crystalline phase (%) | 65.1 | 65.5 | 60.4 | 64.6 | 88.6 | 87.6 | 85.7 | 85.3 |
percentage of amorphous phase (%) | 34.9 | 34.5 | 39.6 | 35.5 | 11.4 | 12.4 | 14.3 | 14.7 |
average crystallite size (nm) | 5.7 | 7.3 | 8.1 | 7.2 | 31 | 35 | 72 | 68 |
Porosimetry results | ||||||||
specific surface area (m2/g) | 334.9 | 240.6 | 34.12 | 79.99 | 23.40 | 22.48 | 0.1726 | 0.0976 |
specific surface area of micropores (m2/g) | 117.3 | 27.98 | - | - | - | - | - | - |
total volume of pores (cm3/g) | 0.3555 | 0.2649 | 0.1463 | 0.1962 | 0.1117 | 0.1123 | 0.0008 | 0.0005 |
volume of micropores (cm3/g) | 0.0522 | 0.0122 | - | - | - | - | - | - |
average diameter of pores (nm) | 3.8 | 5.5 | 17 | 8.6 | 19 | 20 | 20 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, M.M.; Azizi, M.; Mirosław-Świątek, D.; Reczek, L.; Cieniek, B.; Sočo, E. Significance of MnO2 Type and Solution Parameters in Manganese Removal from Water Solution. Int. J. Mol. Sci. 2023, 24, 4448. https://doi.org/10.3390/ijms24054448
Michel MM, Azizi M, Mirosław-Świątek D, Reczek L, Cieniek B, Sočo E. Significance of MnO2 Type and Solution Parameters in Manganese Removal from Water Solution. International Journal of Molecular Sciences. 2023; 24(5):4448. https://doi.org/10.3390/ijms24054448
Chicago/Turabian StyleMichel, Magdalena M., Mostafa Azizi, Dorota Mirosław-Świątek, Lidia Reczek, Bogumił Cieniek, and Eleonora Sočo. 2023. "Significance of MnO2 Type and Solution Parameters in Manganese Removal from Water Solution" International Journal of Molecular Sciences 24, no. 5: 4448. https://doi.org/10.3390/ijms24054448