Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle
Abstract
:1. Introduction
2. Functional Implications of Diversity
3. Warming Effects on Diversity
Biome | Site | Coordinates | MAT | MAP | References |
---|---|---|---|---|---|
Tall-grass prairie | Kessler Farm Field Laboratory, Washington OK | 34.98°N, 97.52°W | 16.3 °C | 967mm | [42,43,44] |
Old field grassland | National Ecological Research Park, Oak Ridge TN | 35.90°N, 84.33°W | 14.9 °C | 1360 mm | [45,46] |
Mixed hardwood forest | Harvard Forest LTER, Petersham MA | 42.5°N, 72.18°W | 7.6°C | 1100mm | [6] |
Temperate mountain forest | North Tyrolean Limestone Alps, Austria | 47.58°N, 11.64°E | 5.7 °C | 1480mm | [47] |
Taiga boreal forest | Delta Junction, AK | 63.92°N, 145.73°W | −2.6 °C | 1290mm | [48,49,50] |
Sub-Arctic blanket bog | Abisko, Sweden | 68.21°N, 18.49°E | −0.6 °C | 352mm | [51,52] |
Sub-Arctic heath | Abisko, Sweden | 68.19°N, 18.51°E | −0.6 °C | 352mm | [53] |
Sub-Antarctic | Signy Island | 60.72°S, 45.38°W | −2 °C | 400mm | [54,55,56] |
Sub-Antarctic | Falkland Islands | 51°S, 59.05°W | 7.9 °C, | 575mm | [54,55,56] |
Antarctic | Anchorage Island | 67.57°S, 68.13°W | −2 °C | 500mm | [54,55,56] |
Biome | Location | Heatingb | Duration | Key Findingsc | Ref. |
---|---|---|---|---|---|
Tall-grass prairie | Kessler Farm Field Lab, Washington OK | +1.8–2.7 °C (2 °C), IR, continuous | 2−3 years | MC: Strong overall shift in absence of clipping MB: No overall change in biomass; increased fungi d MA: No change in C mineralization | [42] |
4−6 years | MC: Increased diversity but no shift under drought; strong overall shift if above-normal precipitation MB: Decreased population size in drought years; increased if above-normal precipitation. MA: n.d. | [43] | |||
8 years | MC: Strong overall shift MB: Increased microbial PLFA’s; non-significant increase in bacterial and fungal biomass, no change in F:B ratio MA: Increased C mineralization; increased labile C-degrading genes, unchanged recalcitrant C-degrading genes | [44] | |||
Old field grassland | National Ecological Research Park, Oak Ridge TN | +3 °C, OTC, continuous | 2−3 years | MC: Strong overall shift MB: Increased Firmicutes, decreased Gram-negative bacteria, arbuscular mycorrhizal fungi and saprophytic fungi MA: n.d. | [45] |
4 years | MC: Strong overall shift MB: Increased fungal abundance; decreased bacteria (QPCR) MA: n.d. | [46] | |||
Mixed hardwood forest | Harvard Forest LTER, Petersham MA | +5 °C, HC, continuous | 12 years | MC: Strong overall shift MB: Decreased microbial biomass, decreased fungi, increased Gram-positives and Actinomycetes MA: Decreased biomass-specific respiration | [6] |
Temperate mountain forest | North Tyrolean Limestone Alps, Austria | +4 °C, HC, snow-free seasons only | 4−6 years | MC: No overall changes MB: No overall change in biomass; decreased Actinomycetes and Gram-negatives. MA: Increased biomass-specific respiration, stress biomarkers | [47] |
Taiga boreal forest | Delta Junction, AK | +0.5 °C, CTC, continuous | 0–3 years | MC: Change in active (BrdU) fungi MB: >50% decrease in fungi and bacteria MA: Lower chitinase, lower respiration rate in late growing season. | [48] |
Taiga boreal forest | Delta Junction, AK | +1.2 °C, CTC growing season only | 0-3 years | MC: No overall changes in fungal community MB: n.d.M.A.:Increased β-glucosidase and N-acetyl-glucosaminidase activity; no change in respiration | [49] |
Sub-Arctic | Blanket bog, Abisko, Sweden | +0.3−2.8 °C (1°C), OTC, seasonal | 9 years | MC: No overall changes MB: Decreased microbial biomass under summer warming MA: No change in soil peptidase activity; increased N-flux | [52] |
Sub-Arctic | Sub-Arctic heath, Abisco, Sweden | +1.2−2 °C, OTC, snow-free seasons only | 15 years | MC: No overall changes MB: decreased microbial biomass C; increased fungal:bacterial ratio e; no change in G+:G- MA: n.d. | [53] |
Antarctic and sub-Antarctic | Falkland, Signy,& Anchorage Islands | +0.5–2 °C, OTC, continuous | 3 years | MC: No overall changes MB: Increased fungi, bacteria, and ratio of Alphaproteobacteria to Acidobacteria MA: Increased N-cycling | [56] |
4. Mechanisms and Consequences of Warming Effects on Microbial Diversity
5. Future Directions
Acknowledgments
Conflict of Interest
References
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef]
- Canadell, J.G.; Quéré, C.L.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef]
- Frey, S.D.; Drijber, R.; Smith, H.; Melillo, J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 2008, 40, 2904–2907. [Google Scholar] [CrossRef]
- Bradford, M.A.; Davies, C.A.; Frey, S.D.; Maddox, T.R.; Melillo, J.M.; Mohan, J.E.; Reynolds, J.F.; Treseder, K.K.; Wallenstein, M.D. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 2008, 11, 1316–1327. [Google Scholar] [CrossRef]
- Frey, S.D.; Lee, J.; Melillo, J.M.; Six, J. Soil carbon cycling: the temperature response of microbial efficiency and its feedback to climate. Nat. Clim. Change 2013, 3, 395–398. [Google Scholar]
- Treseder, K.K.; Balser, T.C.; Bradford, M.A.; Brodie, E.L.; Dubinsky, E.; Eviner, V.; Hofmockel, K.; Lennon, J.; Levine, U.; MacGregor, B.; et al. Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 2012, 109, 7–18. [Google Scholar] [CrossRef]
- Reid, A. Incorporating Microbial Processes into Climate Change Models. Available online: http://academy.asm.org/images/stories/documents/Incorporating_Microbial_Processes_Into_Climate_Models.pdf (accessed on 15 April 2013).
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.M.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.H.; Ahrens, T.; Morrisseau, S. Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef]
- Melillo, J.M.; Butler, S.; Johnson, J.; Mohan, J.; Steudler, P.; Lux, H.; Burrows, E.; Bowles, F.; Smith, R.; Scott, L.; et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc. Natl. Acad. Sci. USA 2011, 108, 9508–9512. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef]
- Ptacnik, R.; Solimini, A.G.; Andersen, T.; Tamminen, T.; Brettum, P.; Lepistö, L.; Willén, E.; Rekolainen, S. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5134–5138. [Google Scholar] [CrossRef]
- Shade, A.; Peter, H.; Allison, S.D.; Baho, D.L.; Berga, M.; Bürgmann, H.; Huber, D.H.; Lennon, J.T.; Martiny, J.B.H.; Matulich, K.L.; et al. Fundamentals of microbial community resistance and resilience. Front. Aquat. Microbiol. 2012, 3, 417. [Google Scholar]
- Gilbert, J.A.; Field, D.; Swift, P.; Thomas, S.; Cummings, D.; Temperton, B.; Weynberg, K.; Huse, S.; Hughes, M.; Joint, I.; et al. The Taxonomic and Functional Diversity of Microbes at a Temperate Coastal Site: A “Multi-Omic” Study of Seasonal and Diel Temporal Variation. PloS. One 2010, 5, e15545. [Google Scholar] [CrossRef]
- Martiny, A.C.; Treseder, K.; Pusch, G. Phylogenetic conservatism of functional traits in microorganisms. Isme. J. 2013, 7, 830–838. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and Productivity in a Long-Term Grassland Experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Van Elsas, J.D.; Chiurazzi, M.; Mallon, C.A.; Elhottovā, D.; Krištůfek, V.; Salles, J.F. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA. 2012, 109, 1159–1164. [Google Scholar]
- Hutchinson, G.E. Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Fierer, N.; Lennon, J.T. The generation and maintenance of diversity in microbial communities. Am. J. Bot. 2011, 98, 439–448. [Google Scholar] [CrossRef]
- Lennon, J.T.; Aanderud, Z.T.; Lehmkuhl, B.K.; Schoolmaster, D.R., Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 2012, 93, 1867–1879. [Google Scholar] [CrossRef]
- Crowther, T.W.; Bradford, M.A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 2013, 16, 469–477. [Google Scholar] [CrossRef]
- Rosenfeld, J.S. Functional redundancy in ecology and conservation. OIkos 2002, 98, 156–162. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-responses physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B. Artificial Climate Warming Positively Affects Arbuscular Mycorrhizae but Decreases Soil Aggregate Water Stability in an Annual Grassland. Oikos 2002, 97, 52–58. [Google Scholar] [CrossRef]
- Girvan, M.S.; Campbell, C.D.; Killham, K.; Prosser, J.I.; Glover, L.A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 2005, 7, 301–313. [Google Scholar] [CrossRef]
- Hol, W.H.G.; de Boer, W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H. M.; van Dam, N.M.; van Veen, J.A.; van der Putten, W.H. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol. Lett. 2010, 13, 292–301. [Google Scholar] [CrossRef]
- Wertz, S.; Degrange, V.; Prosser, J.I.; Poly, F.; Commeaux, C.; Guillaumaud, N.; le Roux, X. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ. Microbiol. 2007, 9, 2211–2219. [Google Scholar] [CrossRef]
- Nielsen, U.; Ayres, E.; Wall, D.; Bardgett, R. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 2011. [Google Scholar]
- Tyson, G.W.; Chapman, J.; Hugenholtz, P.; Allen, E.E.; Ram, R.J.; Richardson, P.M.; Solovyev, V.V.; Rubin, E.M.; Rokhsar, D.S.; Banfield, J.F. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428, 37–43. [Google Scholar] [CrossRef]
- Kato, S.; Haruta, S.; Cui, Z.J.; Ishii, M.; Igarashi, Y. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. Fems. Microbiol. Ecol. 2004, 51, 133–142. [Google Scholar]
- Pester, M.; Bittner, N.; Deevong, P.; Wagner, M.; Loy, A. A “rare biosphere”microorganism contributes to sulfate reduction in a peatland. Isme. J. 2010, 4, 1591–1602. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The Diversity and Biogeography of Soil Bacterial Communities. Proc. Natl. Acad. Sci. USA. 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci.USA 2007, 104, 11436. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Philippot, L.; Andersson, S.G.E.; Battin, T.J.; Prosser, J.I.; Schimel, J.P.; Whitman, W.B.; Hallin, S. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 2010, 8, 523–529. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Isme. J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef]
- Hanson, C.A.; Allison, S.D.; Bradford, M.A.; Wallenstein, M.D.; Treseder, K.K. Fungal Taxa Target Different Carbon Sources in Forest Soil. Ecosystems 2008, 11, 1157–1167. [Google Scholar] [CrossRef]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Zhang, W.; Parker, K.M.; Luo, Y.; Wan, S.; Wallace, L.L.; Hu, S. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biol. 2005, 11, 266–277. [Google Scholar] [CrossRef]
- Sheik, C.S.; Beasley, W.H.; Elshahed, M.S.; Zhou, X.; Luo, Y.; Krumholz, L.R. Effect of warming and drought on grassland microbial communities. Isme. J. 2011, 5, 1692–1700. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, K.; Xie, J.; Deng, Y.; Wu, L.; Cheng, X.; Fei, S.; Deng, S.; He, Z.; Nostrand, J.D.V.; et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2012, 2, 106–110. [Google Scholar]
- Gray, S.B.; Classen, A.T.; Kardol, P.; Yermakov, Z.; Mille, M.R. Multiple Climate Change Factors Interact to Alter Soil Microbial Community Structure in an Old-Field Ecosystem. Soil Sci. Soc. Am. J. 2011, 75, 2217. [Google Scholar] [CrossRef]
- Castro, H.F.; Classen, A.T.; Austin, E.E.; Norby, R.J.; Schadt, C.W. Soil Microbial Community Responses to Multiple Experimental Climate Change Drivers. Appl. Environ. Microbiol. 2010, 76, 999–1007. [Google Scholar]
- Schindlbacher, A.; Rodler, A.; Kuffner, M.; Kitzler, B.; Sessitsch, A.; Zechmeister-Boltenstern, S. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol. Biochem. 2011, 43, 1417–1425. [Google Scholar] [CrossRef]
- Allison, S.D.; Treseder, K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biol. 2008, 14, 2898–2909. [Google Scholar] [CrossRef]
- Allison, S.D.; McGuire, K.L.; Treseder, K.K. Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biol. Biochem. 2010, 42, 1872–1878. [Google Scholar] [CrossRef]
- NOAA Climate Data Online (CDO)-COOP: 502339. Available online: http://www.ncdc.noaa.gov/cdo-web/confirmation/ (accessed on 15 April 2013).
- Dorrepaal, E.; Toet, S.; van Logtestijn, R.S.P.; Swart, E.; van de Weg, M.J.; Callaghan, T.V.; Aerts, R. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 2009, 460, 616–619. [Google Scholar] [CrossRef]
- Weedon, J.T.; Kowalchuk, G.A.; Aerts, R.; van Hal, J.; van Logtestijn, R.; Taş, N.; Röling, W.; van Bodegom, P.M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biol. 2012, 18, 138–150. [Google Scholar] [CrossRef]
- Rinnan, R.; Michelsen, A.; Bååth, E.; Jonasson, S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biol. 2007, 13, 28–39. [Google Scholar] [CrossRef]
- Bokhorst, S.; Huiskes, A.; Convey, P.; Aerts, R. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. Bmc. Ecol. 2007, 7, 15. [Google Scholar] [CrossRef]
- Bokhorst, S.; Huiskes, A.; Convey, P.; Aerts, R. External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biol. 2007, 30, 1315–1321. [Google Scholar] [CrossRef]
- Yergeau, E.; Bokhorst, S.; Kang, S.; Zhou, J.; Greer, C.W.; Aerts, R.; Kowalchuk, G.A. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. Isme. J. 2012, 6, 692–702. [Google Scholar] [CrossRef]
- Rustad, L.E.; Campbell, J.L.; Marion, G.M.; Norby, R.J.; Mitchell, M.J.; Hartley, A.E.; Cornelissen, J.H.C.; Gurevitch, J. Gcte-News A Meta-Analysis of the Response of Soil Respiration, Net Nitrogen Mineralization, and Aboveground Plant Growth to Experimental Ecosystem Warming. Oecologia 2001, 126, 543–562. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Zogg, G.P.; Zak, D.R.; Ringelberg, D.B.; White, D.C.; MacDonald, N.W.; Pregitzer, K.S. Compositional and Functional Shifts in Microbial Communities Due to Soil Warming. Soil Sci. Soc. Am. J. 1997, 61, 475–481. [Google Scholar] [CrossRef]
- Blankinship, J.; Niklaus, P.; Hungate, B. A meta-analysis of responses of soil biota to global change. Oecologia 2011, 165, 553–565. [Google Scholar] [CrossRef]
- Andrews, J.A.; Matamala, R.; Westover, K.M.; Schlesinger, W.H. Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biol. Biochem. 2000, 32, 699–706. [Google Scholar] [CrossRef]
- Pettersson, M.; Bååth, E. Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. Fems. Microbiol. Ecol. 2003, 45, 13–21. [Google Scholar] [CrossRef]
- The Core Writing Team, Climate Change 2007: Synthesis Report Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Sweden, 2007; p. 104.
- Jonasson, S.; Michelsen, A.; Schmidt, I.K.; Nielsen, E.V. Responses in microbes and platns to changed temperature, nutrient, and light regimes in the Arctic. Ecology 1999, 80, 1828–1843. [Google Scholar] [CrossRef]
- Foster, D.R.; Colburn, E.; Crone, E.; Ellison, A.; Hart, C.; Lambert, K.; Orwig, D.; Pallant, J.; Snow, P.; Stinson, K.; et al. New Science, Synthesis, Scholarship, and Strategic Vision for Society-HF LTER V 2012–2018. 2012. Available online: http://harvardforest.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/publications/pdfs/LTERV-2012-proposal.pdf (accessed on 15 April 2013).
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; van der Putten, W.H.; Wall, D.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Schurig, C.; Smittenberg, R.H.; Berger, J.; Kraft, F.; Woche, S.; Goebel, M.-O.; Heipieper, H.J.; Miltner, A.; Kaestner, M. Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 2013, 113, 595–612. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biol 2013, 19, 988–995. [Google Scholar]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Jandl, R. Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biol 2009, 15, 901–913. [Google Scholar]
- Manzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Ågren, G.I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012, 196, 79–91. [Google Scholar] [CrossRef]
- Suseela, V.; Conant, R.T.; Wallenstein, M.D.; Dukes, J.S. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biol. 2012, 18, 336–348. [Google Scholar] [CrossRef]
- Gutknecht, J.L.M.; Field, C.B.; Balser, T.C. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biol. 2012, 18, 2256–2269. [Google Scholar] [CrossRef]
- Nielsen, P.; Petersen, S.O. Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biol. Biochem. 2000, 32, 1241–1249. [Google Scholar] [CrossRef]
- Papadopoulou, E.S.; Karpouzas, D.G.; Menkissoglu-Spiroudi, U. Extraction Parameters Significantly Influence the Quantity and the Profile of PLFAs Extracted from Soils. Microb. Ecol. 2011, 62, 704–714. [Google Scholar] [CrossRef]
- Chowdhury, T.R.; Dick, R.P. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. J. Microbiol. Methods 2012, 88, 285–291. [Google Scholar] [CrossRef]
- Haney, R.I.; Franzluebbers, A.; Hons, F.; Zuberer, D.A. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass? Can. J. Soil Sci. 1999, 79, 529–533. [Google Scholar]
- Bates, S.T.; Clemente, J.C.; Flores, G.E.; Walters, W.A.; Parfrey, L.W.; Knight, R.; Fierer, N. Global biogeography of highly diverse protistan communities in soil. Isme. J. 2013, 7, 652–659. [Google Scholar] [CrossRef]
- Deslippe, J.R.; Egger, K.N.; Henry, G.H.R. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. Fems. Microbiol. Ecol. 2005, 53, 41–50. [Google Scholar] [CrossRef]
- Harte, J.; Saleska, S.; Shih, T. Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought. Environ. Res. Lett. 2006, 1, 014001. [Google Scholar] [CrossRef]
- Walker, M.D.; Wahren, C.H.; Hollister, R.D.; Henry, G.H.R.; Ahlquist, L.E.; Alatalo, J.M.; Bret-Harte, M.S.; Calef, M.P.; Callaghan, T.V.; Carroll, A.B.; et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 2006, 103, 1342–1346. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Matthews, S.; Peters, M. A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States. Available online: http://www.nrs.fs.fed.us/atlas/tree/ (accessed on 15 April 2013).
- Hoeppner, S.S.; Dukes, J.S. Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biol. 2012, 18, 1754–1768. [Google Scholar] [CrossRef]
- Tharayil, N.; Suseela, V.; Triebwasser, D.J.; Preston, C.M.; Gerard, P.D.; Dukes, J.S. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytol. 2011, 191, 132–145. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, J.; Melillo, J.M.; Butler, S.; Mohan, J.E. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol. 2011, 31, 707–717. [Google Scholar] [CrossRef]
- Bradford, M.A.; Watts, B.W.; Davies, C.A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Global Change Biol. 2010, 16, 1576–1588. [Google Scholar] [CrossRef]
- Belay-Tedla, A.; Zhou, X.; Su, B.; Wan, S.; Luo, Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem. 2009, 41, 110–116. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pold, G.; DeAngelis, K.M. Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle. Diversity 2013, 5, 409-425. https://doi.org/10.3390/d5020409
Pold G, DeAngelis KM. Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle. Diversity. 2013; 5(2):409-425. https://doi.org/10.3390/d5020409
Chicago/Turabian StylePold, Grace, and Kristen M. DeAngelis. 2013. "Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle" Diversity 5, no. 2: 409-425. https://doi.org/10.3390/d5020409
APA StylePold, G., & DeAngelis, K. M. (2013). Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle. Diversity, 5(2), 409-425. https://doi.org/10.3390/d5020409