Previous Issue
Volume 24, May-2
 
 
sensors-logo

Journal Browser

Journal Browser

Sensors, Volume 24, Issue 11 (June-1 2024) – 338 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 43902 KiB  
Article
OD-YOLO: Robust Small Object Detection Model in Remote Sensing Image with a Novel Multi-Scale Feature Fusion
by Yangcheng Bu, Hairong Ye, Zhixin Tie, Yanbing Chen and Dingming Zhang
Sensors 2024, 24(11), 3596; https://doi.org/10.3390/s24113596 (registering DOI) - 3 Jun 2024
Abstract
As remote sensing technology has advanced, the use of satellites and similar technologies has become increasingly prevalent in daily life. Now, it plays a crucial role in hydrology, agriculture, and geography. Nevertheless, because of the distinct qualities of remote sensing, including expansive scenes [...] Read more.
As remote sensing technology has advanced, the use of satellites and similar technologies has become increasingly prevalent in daily life. Now, it plays a crucial role in hydrology, agriculture, and geography. Nevertheless, because of the distinct qualities of remote sensing, including expansive scenes and small, densely packed targets, there are many challenges in detecting remote sensing objects. Those challenges lead to insufficient accuracy in remote sensing object detection. Consequently, developing a new model is essential to enhance the identification capabilities for objects in remote sensing imagery. To solve these constraints, we have designed the OD-YOLO approach that uses multi-scale feature fusion to improve the performance of the YOLOv8n model in small target detection. Firstly, traditional convolutions have poor recognition capabilities for certain geometric shapes. Therefore, in this paper, we introduce the Detection Refinement Module (DRmodule) into the backbone architecture. This module utilizes Deformable Convolutional Networks and the Hybrid Attention Transformer to strengthen the model’s capability for feature extraction from geometric shapes and blurred objects effectively. Meanwhile, based on the Feature Pyramid Network of YOLO, at the head of the model framework, this paper enhances the detection capability by introducing a Dynamic Head to strengthen the fusion of different scales features in the feature pyramid. Additionally, to address the issue of detecting small objects in remote sensing images, this paper specifically designs the OIoU loss function to finely describe the difference between the detection box and the true box, further enhancing model performance. Experiments on the VisDrone dataset show that OD-YOLO surpasses the compared models by at least 5.2% in mAP50 and 4.4% in mAP75, and experiments on the Foggy Cityscapes dataset demonstrated that OD-YOLO improved mAP by 6.5%, demonstrating outstanding results in tasks related to remote sensing images and adverse weather object detection. This work not only advances the research in remote sensing image analysis, but also provides effective technical support for the practical deployment of future remote sensing applications. Full article
Show Figures

Figure 1

12 pages, 473 KiB  
Perspective
Feasibility of Observing Cerebrovascular Disease Phenotypes with Smartphone Monitoring: Study Design Considerations for Real-World Studies
by Stephanie J. Zawada, Ali Ganjizadeh, Clint E. Hagen, Bart M. Demaerschalk and Bradley J. Erickson
Sensors 2024, 24(11), 3595; https://doi.org/10.3390/s24113595 (registering DOI) - 2 Jun 2024
Abstract
Accelerated by the adoption of remote monitoring during the COVID-19 pandemic, interest in using digitally captured behavioral data to predict patient outcomes has grown; however, it is unclear how feasible digital phenotyping studies may be in patients with recent ischemic stroke or transient [...] Read more.
Accelerated by the adoption of remote monitoring during the COVID-19 pandemic, interest in using digitally captured behavioral data to predict patient outcomes has grown; however, it is unclear how feasible digital phenotyping studies may be in patients with recent ischemic stroke or transient ischemic attack. In this perspective, we present participant feedback and relevant smartphone data metrics suggesting that digital phenotyping of post-stroke depression is feasible. Additionally, we proffer thoughtful considerations for designing feasible real-world study protocols tracking cerebrovascular dysfunction with smartphone sensors. Full article
(This article belongs to the Special Issue Advanced Sensing Technologies in E-health: Trends and Challenges)
Show Figures

Figure 1

15 pages, 1554 KiB  
Article
The Reliability and Validity of the OneStep Smartphone Application for Gait Analysis among Patients Undergoing Rehabilitation for Unilateral Lower Limb Disability
by Pnina Marom, Michael Brik, Nirit Agay, Rachel Dankner, Zoya Katzir, Naama Keshet and Dana Doron
Sensors 2024, 24(11), 3594; https://doi.org/10.3390/s24113594 (registering DOI) - 2 Jun 2024
Abstract
An easy-to-use and reliable tool is essential for gait assessment of people with gait pathologies. This study aimed to assess the reliability and validity of the OneStep smartphone application compared to the C-Mill-VR+ treadmill (Motek, Nederlands), among patients undergoing rehabilitation for unilateral lower [...] Read more.
An easy-to-use and reliable tool is essential for gait assessment of people with gait pathologies. This study aimed to assess the reliability and validity of the OneStep smartphone application compared to the C-Mill-VR+ treadmill (Motek, Nederlands), among patients undergoing rehabilitation for unilateral lower extremity disability. Spatiotemporal gait parameters were extracted from the treadmill and from two smartphones, one on each leg. Inter-device reliability was evaluated using Pearson correlation, intra-cluster correlation coefficient (ICC), and Cohen’s d, comparing the application’s readings from the two phones. Validity was assessed by comparing readings from each phone to the treadmill. Twenty-eight patients completed the study; the median age was 45.5 years, and 61% were males. The ICC between the phones showed a high correlation (r = 0.89–1) and good-to-excellent reliability (ICC range, 0.77–1) for all the gait parameters examined. The correlations between the phones and the treadmill were mostly above 0.8. The ICC between each phone and the treadmill demonstrated moderate-to-excellent validity for all the gait parameters (range, 0.58–1). Only ‘step length of the impaired leg’ showed poor-to-good validity (range, 0.37–0.84). Cohen’s d effect size was small (d < 0.5) for all the parameters. The studied application demonstrated good reliability and validity for spatiotemporal gait assessment in patients with unilateral lower limb disability. Full article
(This article belongs to the Special Issue Advanced Sensors in Biomechanics and Rehabilitation)
Show Figures

Figure 1

20 pages, 16964 KiB  
Article
A Wearable Visually Impaired Assistive System Based on Semantic Vision SLAM for Grasping Operation
by Fei Fei, Sifan Xian, Ruonan Yang, Changcheng Wu and Xiong Lu
Sensors 2024, 24(11), 3593; https://doi.org/10.3390/s24113593 (registering DOI) - 2 Jun 2024
Abstract
Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop [...] Read more.
Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop environment. The system employs a visual perception module that incorporates a semantic visual SLAM algorithm, achieved through the fusion of ORB-SLAM2 and YOLO V5s, enabling the construction of a semantic map of the environment. In the human–machine cooperation module, a depth camera is integrated into a wearable device worn on the hand, while a vibration array feedback device conveys directional information of the target to visually impaired individuals for tactile interaction. To enhance the system’s versatility, a Dobot Magician manipulator is also employed to aid visually impaired individuals in grasping tasks. The performance of the semantic visual SLAM algorithm in terms of localization and semantic mapping was thoroughly tested. Additionally, several experiments were conducted to simulate visually impaired individuals’ interactions in grasping target objects, effectively verifying the feasibility and effectiveness of the proposed system. Overall, this system demonstrates its capability to assist and guide visually impaired individuals in perceiving and acquiring target objects. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

18 pages, 4126 KiB  
Article
Under-Actuated Motion Control of Haidou-1 ARV Using Data-Driven, Model-Free Adaptive Sliding Mode Control Method
by Jixu Li, Yuangui Tang, Hongyin Zhao, Jian Wang, Yang Lu and Rui Dou
Sensors 2024, 24(11), 3592; https://doi.org/10.3390/s24113592 (registering DOI) - 2 Jun 2024
Abstract
We propose a data-driven, model-free adaptive sliding mode control (MFASMC) approach to address the Haidou-1 ARV under-actuated motion control problem with uncertainties, including external disturbances and parameter perturbations. Firstly, we analyzed the two main difficulties in the motion control of Haidou-1 ARV. Secondly, [...] Read more.
We propose a data-driven, model-free adaptive sliding mode control (MFASMC) approach to address the Haidou-1 ARV under-actuated motion control problem with uncertainties, including external disturbances and parameter perturbations. Firstly, we analyzed the two main difficulties in the motion control of Haidou-1 ARV. Secondly, in order to address these problems, a MFASMC control method was introduced. It is combined by a model-free adaptive control (MFAC) method and a sliding mode control (SMC) method. The main advantage of the MFAC method is that it relies only on the real-time measurement data of an ARV instead of any mathematical modeling information, and the SMC method guarantees the MFAC method’s fast convergence and low overshooting. The proposed MFASMC control method can maneuver Haidou-1 ARV cruising at the desired forward speed, heading, and depth, even when the dynamic parameters of the ARV vary widely and external disturbances exist. It also addresses the problem of under-actuated motion control for the Haidou-1 ARV. Finally, the simulation results, including comparisons with a PID method and the MFAC method, demonstrate the effectiveness of our proposed method. Full article
(This article belongs to the Special Issue Sensors, Modeling and Control for Intelligent Marine Robots)
Show Figures

Figure 1

15 pages, 9501 KiB  
Article
Using Spectroradiometry to Measure Organic Carbon in Carbonate-Containing Soils
by Piotr Bartmiński, Anna Siedliska and Marcin Siłuch
Sensors 2024, 24(11), 3591; https://doi.org/10.3390/s24113591 (registering DOI) - 2 Jun 2024
Abstract
This study explores the feasibility of analyzing soil organic carbon (SOC) in carbonate-rich soils using visible near-infrared spectroscopy (VIS-NIR). Employing a combination of datasets, feature groups, variable selection methods, and regression models, 22 modeling pipelines were developed. Spectral data and spectral data combined [...] Read more.
This study explores the feasibility of analyzing soil organic carbon (SOC) in carbonate-rich soils using visible near-infrared spectroscopy (VIS-NIR). Employing a combination of datasets, feature groups, variable selection methods, and regression models, 22 modeling pipelines were developed. Spectral data and spectral data combined with carbonate contents were used as datasets, while raw reflectance, first-derivative (FD) reflectance, and second-derivative (SD) reflectance constituted the feature groups. The variable selection methods included Spearman correlation, Variable Importance in Projection (VIP), and Random Frog (Rfrog), while Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), and Support Vector Regression (SVR) were the regression models. The obtained results indicated that the FD preprocessing method combined with RF, results in the model that is sufficiently robust and stable to be applied to soils rich in calcium carbonate. Full article
Show Figures

Figure 1

17 pages, 872 KiB  
Article
Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method
by Kristína Machová, Marián Mach and Viliam Balara
Sensors 2024, 24(11), 3590; https://doi.org/10.3390/s24113590 (registering DOI) - 2 Jun 2024
Abstract
This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more [...] Read more.
This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more secure by training models on decentralized data at decentralized places, for example, at different IoT edges. The data are not transformed between decentralized places, which means that personally identifiable data are not shared. This could increase the security of data from sensors in intelligent houses and medical devices or data from various resources in online spaces. Each station edge could train a model separately on data obtained from its sensors and on data extracted from different sources. Consequently, the models trained on local data on local clients are aggregated at the central ending point. We have designed three different architectures for deep learning as a basis for use within federated learning. The detection models were based on embeddings, CNNs (convolutional neural networks), and LSTM (long short-term memory). The best results were achieved using more LSTM layers (F1 = 0.92). On the other hand, all three architectures achieved similar results. We also analyzed results obtained using federated learning and without it. As a result of the analysis, it was found that the use of federated learning, in which data were decomposed and divided into smaller local datasets, does not significantly reduce the accuracy of the models. Full article
(This article belongs to the Collection Artificial Intelligence in Sensors Technology)
Show Figures

Figure 1

14 pages, 2908 KiB  
Article
Depth-Guided Bilateral Grid Feature Fusion Network for Dehazing
by Xinyu Li, Zhi Qiao, Gang Wan, Sisi Zhu, Zhongxin Zhao, Xinnan Fan, Pengfei Shi and Jin Wan
Sensors 2024, 24(11), 3589; https://doi.org/10.3390/s24113589 (registering DOI) - 2 Jun 2024
Abstract
In adverse foggy weather conditions, images captured are adversely affected by natural environmental factors, resulting in reduced image contrast and diminished visibility. Traditional image dehazing methods typically rely on prior knowledge, but their efficacy diminishes in practical, complex environments. Deep learning methods have [...] Read more.
In adverse foggy weather conditions, images captured are adversely affected by natural environmental factors, resulting in reduced image contrast and diminished visibility. Traditional image dehazing methods typically rely on prior knowledge, but their efficacy diminishes in practical, complex environments. Deep learning methods have shown promise in single-image dehazing tasks, but often struggle to fully leverage depth and edge information, leading to blurred edges and incomplete dehazing effects. To address these challenges, this paper proposes a deep-guided bilateral grid feature fusion dehazing network. This network extracts depth information through a dedicated module, derives bilateral grid features via Unet, employs depth information to guide the sampling of bilateral grid features, reconstructs features using a dedicated module, and finally estimates dehazed images through two layers of convolutional layers and residual connections with the original images. The experimental results demonstrate the effectiveness of the proposed method on public datasets, successfully removing fog while preserving image details. Full article
(This article belongs to the Special Issue AI-Driven Sensing for Image Processing and Recognition)
Show Figures

Figure 1

17 pages, 57390 KiB  
Article
Fine-YOLO: A Simplified X-ray Prohibited Object Detection Network Based on Feature Aggregation and Normalized Wasserstein Distance
by Yu-Tong Zhou, Kai-Yang Cao, De Li and Jin-Chun Piao
Sensors 2024, 24(11), 3588; https://doi.org/10.3390/s24113588 (registering DOI) - 2 Jun 2024
Abstract
X-ray images typically contain complex background information and abundant small objects, posing significant challenges for object detection in security tasks. Most existing object detection methods rely on complex networks and high computational costs, which poses a challenge to implement lightweight models. This article [...] Read more.
X-ray images typically contain complex background information and abundant small objects, posing significant challenges for object detection in security tasks. Most existing object detection methods rely on complex networks and high computational costs, which poses a challenge to implement lightweight models. This article proposes Fine-YOLO to achieve rapid and accurate detection in the security domain. First, a low-parameter feature aggregation (LPFA) structure is designed for the backbone feature network of YOLOv7 to enhance its ability to learn more information with a lighter structure. Second, a high-density feature aggregation (HDFA) structure is proposed to solve the problem of loss of local details and deep location information caused by the necked feature fusion network in YOLOv7-Tiny-SiLU, connecting cross-level features through max-pooling. Third, the Normalized Wasserstein Distance (NWD) method is employed to alleviate the convergence complexity resulting from the extreme sensitivity of bounding box regression to small objects. The proposed Fine-YOLO model is evaluated on the EDS dataset, achieving a detection accuracy of 58.3% with only 16.1 M parameters. In addition, an auxiliary validation is performed on the NEU-DET dataset, the detection accuracy reaches 73.1%. Experimental results show that Fine-YOLO is not only suitable for security, but can also be extended to other inspection areas. Full article
(This article belongs to the Section Sensor Networks)
17 pages, 5509 KiB  
Article
Early Warning for Continuous Rigid Frame Bridges Based on Nonlinear Modeling for Temperature-Induced Deflection
by Liangwei Jiang, Hongyin Yang, Weijun Liu, Zhongtao Ye, Junwen Pei, Zhangjun Liu and Jianfeng Fan
Sensors 2024, 24(11), 3587; https://doi.org/10.3390/s24113587 (registering DOI) - 2 Jun 2024
Abstract
Bridge early warning based on structural health monitoring (SHM) system is of significant importance for ensuring bridge safe operation. The temperature-induced deflection (TID) is a sensitive indicator for performance degradation of continuous rigid frame bridges, but the time-lag effect makes it challenging to [...] Read more.
Bridge early warning based on structural health monitoring (SHM) system is of significant importance for ensuring bridge safe operation. The temperature-induced deflection (TID) is a sensitive indicator for performance degradation of continuous rigid frame bridges, but the time-lag effect makes it challenging to predict the TID accurately. A bridge early warning method based on nonlinear modeling for the TID is proposed in this article. Firstly, the SHM data of temperature and deflection of a continuous rigid frame bridge are analyzed to examine the temperature gradient variation patterns. Kernel principal component analysis (KPCA) is used to extract principal temperature components. Then, the TID is extracted through wavelet transform, and a nonlinear modeling method for the TID considering the temperature gradient is proposed using the support vector machine (SVM). Finally, the prediction errors of the KPCA-SVM algorithm are analyzed, and the early warning thresholds are determined based on the statistical patterns of the errors. The results show that the KPCA-SVM algorithm achieves high-precision nonlinear modeling for the TID while significantly reducing the computational load. The prediction results have coefficients of determination above 0.98 and fluctuate within a small range with clear statistical patterns. Setting the early warning thresholds based on the statistical patterns of errors enables dynamic and multi-level warnings for bridge structures. Full article
Show Figures

Figure 1

17 pages, 3289 KiB  
Article
Evaluation of a Voltametric E-Tongue Combined with Data Preprocessing for Fast and Effective Machine Learning-Based Classification of Tomato Purées by Cultivar
by Giulia Magnani, Chiara Giliberti, Davide Errico, Mattia Stighezza, Simone Fortunati, Monica Mattarozzi, Andrea Boni, Valentina Bianchi, Marco Giannetto, Ilaria De Munari, Stefano Cagnoni and Maria Careri
Sensors 2024, 24(11), 3586; https://doi.org/10.3390/s24113586 (registering DOI) - 2 Jun 2024
Abstract
The potential of a voltametric E-tongue coupled with a custom data pre-processing stage to improve the performance of machine learning techniques for rapid discrimination of tomato purées between cultivars of different economic value has been investigated. To this aim, a sensor array with [...] Read more.
The potential of a voltametric E-tongue coupled with a custom data pre-processing stage to improve the performance of machine learning techniques for rapid discrimination of tomato purées between cultivars of different economic value has been investigated. To this aim, a sensor array with screen-printed carbon electrodes modified with gold nanoparticles (GNP), copper nanoparticles (CNP) and bulk gold subsequently modified with poly(3,4-ethylenedioxythiophene) (PEDOT), was developed to acquire data to be transformed by a custom pre-processing pipeline and then processed by a set of commonly used classifiers. The GNP and CNP-modified electrodes, selected based on their sensitivity to soluble monosaccharides, demonstrated good ability in discriminating samples of different cultivars. Among the different data analysis methods tested, Linear Discriminant Analysis (LDA) proved to be particularly suitable, obtaining an average F1 score of 99.26%. The pre-processing stage was beneficial in reducing the number of input features, decreasing the computational cost, i.e., the number of computing operations to be performed, of the entire method and aiding future cost-efficient hardware implementation. These findings proved that coupling the multi-sensing platform featuring properly modified sensors with the custom pre-processing method developed and LDA provided an optimal tradeoff between analytical problem solving and reliable chemical information, as well as accuracy and computational complexity. These results can be preliminary to the design of hardware solutions that could be embedded into low-cost portable devices. Full article
Show Figures

Figure 1

20 pages, 11871 KiB  
Article
Smart Wireless Transducer Dedicated for Use in Aviation Laboratories
by Tomasz Kabala and Jerzy Weremczuk
Sensors 2024, 24(11), 3585; https://doi.org/10.3390/s24113585 (registering DOI) - 2 Jun 2024
Abstract
Reliable testing of aviation components depends on the quality and configuration flexibility of measurement systems. In a typical approach to test instrumentation, there are tens or hundreds of sensors on the test head and test facility, which are connected by wires to measurement [...] Read more.
Reliable testing of aviation components depends on the quality and configuration flexibility of measurement systems. In a typical approach to test instrumentation, there are tens or hundreds of sensors on the test head and test facility, which are connected by wires to measurement cards in control cabinets. The preparation of wiring and the setup of measurement systems are laborious tasks requiring diligence. The use of smart wireless transducers allows for a new approach to test preparation by reducing the number of wires. Moreover, additional functionalities like data processing, alarm-level monitoring, compensation, or self-diagnosis could improve the functionality and accuracy of measurement systems. A combination of low power consumption, wireless communication, and wireless power transfer could speed up the test-rig instrumentation process and bring new test possibilities, e.g., long-term testing of moving or rotating components. This paper presents the design of a wireless smart transducer dedicated for use with sensors typical of aviation laboratories such as thermocouples, RTDs (Resistance Temperature Detectors), strain gauges, and voltage output integrated sensors. The following sections present various design requirements, proposed technical solutions, a study of battery and wireless power supply possibilities, assembly, and test results. All presented tests were carried out in the Components Test Laboratory located at the Łukasiewicz Research Network–Institute of Aviation. Full article
(This article belongs to the Special Issue Feature Papers in Intelligent Sensors 2024)
23 pages, 1131 KiB  
Article
Adversarial Attacks against Deep-Learning-Based Automatic Dependent Surveillance-Broadcast Unsupervised Anomaly Detection Models in the Context of Air Traffic Management
by Peng Luo, Buhong Wang, Jiwei Tian, Chao Liu and Yong Yang
Sensors 2024, 24(11), 3584; https://doi.org/10.3390/s24113584 (registering DOI) - 2 Jun 2024
Abstract
Deep learning has shown significant advantages in Automatic Dependent Surveillance-Broadcast (ADS-B) anomaly detection, but it is known for its susceptibility to adversarial examples which make anomaly detection models non-robust. In this study, we propose Time Neighborhood Accumulation Iteration F [...] Read more.
Deep learning has shown significant advantages in Automatic Dependent Surveillance-Broadcast (ADS-B) anomaly detection, but it is known for its susceptibility to adversarial examples which make anomaly detection models non-robust. In this study, we propose Time Neighborhood Accumulation Iteration Fast Gradient Sign Method (TNAI-FGSM) adversarial attacks which fully take into account the temporal correlation of an ADS-B time series, stabilize the update directions of adversarial samples, and escape from poor local optimum during the process of iterating. The experimental results show that TNAI-FGSM adversarial attacks can successfully attack ADS-B anomaly detection models and improve the transferability of ADS-B adversarial examples. Moreover, the TNAI-FGSM is superior to two well-known adversarial attacks called the Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM). To the best of our understanding, we demonstrate, for the first time, the vulnerability of deep-learning-based ADS-B time series unsupervised anomaly detection models to adversarial examples, which is a crucial step in safety-critical and cost-critical Air Traffic Management (ATM). Full article
(This article belongs to the Special Issue Cybersecurity Attack and Defense in Wireless Sensors Networks)
22 pages, 7124 KiB  
Article
ADM-SLAM: Accurate and Fast Dynamic Visual SLAM with Adaptive Feature Point Extraction, Deeplabv3pro, and Multi-View Geometry
by Xiaotao Huang, Xingbin Chen, Ning Zhang, Hongjie He and Sang Feng
Sensors 2024, 24(11), 3578; https://doi.org/10.3390/s24113578 (registering DOI) - 2 Jun 2024
Abstract
Visual Simultaneous Localization and Mapping (V-SLAM) plays a crucial role in the development of intelligent robotics and autonomous navigation systems. However, it still faces significant challenges in handling highly dynamic environments. The prevalent method currently used for dynamic object recognition in the environment [...] Read more.
Visual Simultaneous Localization and Mapping (V-SLAM) plays a crucial role in the development of intelligent robotics and autonomous navigation systems. However, it still faces significant challenges in handling highly dynamic environments. The prevalent method currently used for dynamic object recognition in the environment is deep learning. However, models such as Yolov5 and Mask R-CNN require significant computational resources, which limits their potential in real-time applications due to hardware and time constraints. To overcome this limitation, this paper proposes ADM-SLAM, a visual SLAM system designed for dynamic environments that builds upon the ORB-SLAM2. This system integrates efficient adaptive feature point homogenization extraction, lightweight deep learning semantic segmentation based on an improved DeepLabv3, and multi-view geometric segmentation. It optimizes keyframe extraction, segments potential dynamic objects using contextual information with the semantic segmentation network, and detects the motion states of dynamic objects using multi-view geometric methods, thereby eliminating dynamic interference points. The results indicate that ADM-SLAM outperforms ORB-SLAM2 in dynamic environments, especially in high-dynamic scenes, where it achieves up to a 97% reduction in Absolute Trajectory Error (ATE). In various highly dynamic test sequences, ADM-SLAM outperforms DS-SLAM and DynaSLAM in terms of real-time performance and accuracy, proving its excellent adaptability. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 2424 KiB  
Article
Efficiency–Accuracy Trade-Off in Light Field Estimation with Cost Volume Construction and Aggregation
by Bo Xiao, Stuart Perry, Xiujing Gao and Hongwu Huang
Sensors 2024, 24(11), 3583; https://doi.org/10.3390/s24113583 (registering DOI) - 1 Jun 2024
Abstract
The Rich spatial and angular information in light field images enables accurate depth estimation, which is a crucial aspect of environmental perception. However, the abundance of light field information also leads to high computational costs and memory pressure. Typically, selectively pruning some light [...] Read more.
The Rich spatial and angular information in light field images enables accurate depth estimation, which is a crucial aspect of environmental perception. However, the abundance of light field information also leads to high computational costs and memory pressure. Typically, selectively pruning some light field information can significantly improve computational efficiency but at the expense of reduced depth estimation accuracy in the pruned model, especially in low-texture regions and occluded areas where angular diversity is reduced. In this study, we propose a lightweight disparity estimation model that balances speed and accuracy and enhances depth estimation accuracy in textureless regions. We combined cost matching methods based on absolute difference and correlation to construct cost volumes, improving both accuracy and robustness. Additionally, we developed a multi-scale disparity cost fusion architecture, employing 3D convolutions and a UNet-like structure to handle matching costs at different depth scales. This method effectively integrates information across scales, utilizing the UNet structure for efficient fusion and completion of cost volumes, thus yielding more precise depth maps. Extensive testing shows that our method achieves computational efficiency on par with the most efficient existing methods, yet with double the accuracy. Moreover, our approach achieves comparable accuracy to the current highest-accuracy methods but with an order of magnitude improvement in computational performance. Full article
34 pages, 6069 KiB  
Article
Development of a Predictive Model for Evaluation of the Influence of Various Parameters on the Performance of an Oscillating Water Column Device
by Felice Sfravara, Emmanuele Barberi, Giacomo Bongiovanni, Massimiliano Chillemi and Sebastian Brusca
Sensors 2024, 24(11), 3582; https://doi.org/10.3390/s24113582 (registering DOI) - 1 Jun 2024
Abstract
Oscillating Water Column (OWC) systems harness wave energy using a partially submerged chamber with an underwater opening. The Savonius turbine, a vertical-axis wind turbine, is well-suited for this purpose due to its efficiency at low speeds and self-starting capability, making it an ideal [...] Read more.
Oscillating Water Column (OWC) systems harness wave energy using a partially submerged chamber with an underwater opening. The Savonius turbine, a vertical-axis wind turbine, is well-suited for this purpose due to its efficiency at low speeds and self-starting capability, making it an ideal power take-off (PTO) mechanism in OWC systems. This study tested an OWC device with a Savonius turbine in an air duct to evaluate its performance under varying flow directions and loads. An innovative aspect was assessing the influence of power augmenters (PAs) positioned upstream and downstream of the turbine. The experimental setup included load cells, Pitot tubes, differential pressure sensors and rotational speed sensors. Data obtained were used to calculate pressure differentials across the turbine and torque. The primary goal of using PA is to increase the CP–λ curve area without modifying the turbine geometry, potentially enabling interventions on existing turbines without rotor dismantling. Additionally, another novelty is the implementation of a regression Machine-Learning algorithm based on decision trees to analyze the influence of various features on predicting pressure differences, thereby broadening the scope for further testing beyond physical experimentation. Full article
(This article belongs to the Special Issue Real-Time Monitoring Technology for Built Infrastructure Systems)
Show Figures

Figure 1

17 pages, 2124 KiB  
Article
Time-Varying Channel Estimation Based on Distributed Compressed Sensing for OFDM Systems
by Yong Ding, Honggao Deng, Yuelei Xie, Haitao Wang and Shaoshuai Sun
Sensors 2024, 24(11), 3581; https://doi.org/10.3390/s24113581 (registering DOI) - 1 Jun 2024
Abstract
For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose [...] Read more.
For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose a time-varying multipath channel estimation method based on distributed compressed sensing and a multi-symbol complex exponential basis expansion model (MS-CE-BEM) by exploiting the temporal correlation and the joint delay sparsity of wideband wireless channels within the duration of multiple OFDM symbols. Furthermore, in the proposed method, a sparse pilot pattern with the self-cancellation of pilot intercarrier interference (ICI) is adopted to reduce the input parameter error of the MS-CE-BEM, and a symmetrical extension technique is introduced to reduce the modeling error. Simulation results show that, compared with existing methods, this proposed method has superior performances in channel estimation and spectrum utilization for sparse time-varying channels. Full article
Show Figures

Figure 1

15 pages, 4724 KiB  
Article
On the Generalizability of Time-of-Flight Convolutional Neural Networks for Noninvasive Acoustic Measurements
by Abhishek Saini, John James Greenhall, Eric Sean Davis and Cristian Pantea
Sensors 2024, 24(11), 3580; https://doi.org/10.3390/s24113580 (registering DOI) - 1 Jun 2024
Abstract
Bulk wave acoustic time-of-flight (ToF) measurements in pipes and closed containers can be hindered by guided waves with similar arrival times propagating in the container wall, especially when a low excitation frequency is used to mitigate sound attenuation from the material. Convolutional neural [...] Read more.
Bulk wave acoustic time-of-flight (ToF) measurements in pipes and closed containers can be hindered by guided waves with similar arrival times propagating in the container wall, especially when a low excitation frequency is used to mitigate sound attenuation from the material. Convolutional neural networks (CNNs) have emerged as a new paradigm for obtaining accurate ToF in non-destructive evaluation (NDE) and have been demonstrated for such complicated conditions. However, the generalizability of ToF-CNNs has not been investigated. In this work, we analyze the generalizability of the ToF-CNN for broader applications, given limited training data. We first investigate the CNN performance with respect to training dataset size and different training data and test data parameters (container dimensions and material properties). Furthermore, we perform a series of tests to understand the distribution of data parameters that need to be incorporated in training for enhanced model generalizability. This is investigated by training the model on a set of small- and large-container datasets regardless of the test data. We observe that the quantity of data partitioned for training must be of a good representation of the entire sets and sufficient to span through the input space. The result of the network also shows that the learning model with the training data on small containers delivers a sufficiently stable result on different feature interactions compared to the learning model with the training data on large containers. To check the robustness of the model, we tested the trained model to predict the ToF of different sound speed mediums, which shows excellent accuracy. Furthermore, to mimic real experimental scenarios, data are augmented by adding noise. We envision that the proposed approach will extend the applications of CNNs for ToF prediction in a broader range. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
RSDNet: A New Multiscale Rail Surface Defect Detection Model
by Jingyi Du, Ruibo Zhang, Rui Gao, Lei Nan and Yifan Bao
Sensors 2024, 24(11), 3579; https://doi.org/10.3390/s24113579 (registering DOI) - 1 Jun 2024
Abstract
The rapid and accurate identification of rail surface defects is critical to the maintenance and operational safety of the rail. For the problems of large-scale differences in rail surface defects and many small-scale defects, this paper proposes a rail surface defect detection algorithm, [...] Read more.
The rapid and accurate identification of rail surface defects is critical to the maintenance and operational safety of the rail. For the problems of large-scale differences in rail surface defects and many small-scale defects, this paper proposes a rail surface defect detection algorithm, RSDNet (Rail Surface Defect Detection Net), with YOLOv8n as the baseline model. Firstly, the CDConv (Cascade Dilated Convolution) module is designed to realize multi-scale convolution by cascading the cavity convolution with different cavity rates. The CDConv is embedded into the backbone network to gather earlier defect local characteristics and contextual data. Secondly, the feature fusion method of Head is optimized based on BiFPN (Bi-directional Feature Pyramids Network) to fuse more layers of feature information and improve the utilization of original information. Finally, the EMA (Efficient Multi-Scale Attention) attention module is introduced to enhance the network’s attention to defect information. The experiments are conducted on the RSDDs dataset, and the experimental results show that the RSDNet algorithm achieves a mAP of 95.4% for rail surface defect detection, which is 4.6% higher than the original YOLOv8n. This study provides an effective technical means for rail surface defect detection that has certain engineering applications. Full article
18 pages, 861 KiB  
Article
Gamified Exercise with Kinect: Can Kinect-Based Virtual Reality Training Improve Physical Performance and Quality of Life in Postmenopausal Women with Osteopenia? A Randomized Controlled Trial
by Saima Riaz, Syed Shakil Ur Rehman, Danish Hassan and Sana Hafeez
Sensors 2024, 24(11), 3577; https://doi.org/10.3390/s24113577 (registering DOI) - 1 Jun 2024
Abstract
Background: Osteopenia, caused by estrogen deficiency in postmenopausal women (PMW), lowers Bone Mineral Density (BMD) and increases bone fragility. It affects about half of older women’s social and physical health. PMW experience pain and disability, impacting their health-related Quality of Life (QoL) and [...] Read more.
Background: Osteopenia, caused by estrogen deficiency in postmenopausal women (PMW), lowers Bone Mineral Density (BMD) and increases bone fragility. It affects about half of older women’s social and physical health. PMW experience pain and disability, impacting their health-related Quality of Life (QoL) and function. This study aimed to determine the effects of Kinect-based Virtual Reality Training (VRT) on physical performance and QoL in PMW with osteopenia. Methodology: The study was a prospective, two-arm, parallel-design, randomized controlled trial. Fifty-two participants were recruited in the trial, with 26 randomly assigned to each group. The experimental group received Kinect-based VRT thrice a week for 24 weeks, each lasting 45 min. Both groups were directed to participate in a 30-min walk outside every day. Physical performance was measured by the Time Up and Go Test (TUG), Functional Reach Test (FRT), Five Times Sit to Stand Test (FTSST), Modified Sit and Reach Test (MSRT), Dynamic Hand Grip Strength (DHGS), Non-Dynamic Hand Grip Strength (NDHGS), BORG Score and Dyspnea Index. Escala de Calidad de vida Osteoporosis (ECOS-16) questionnaire measured QoL. Both physical performance and QoL measures were assessed at baseline, after 12 weeks, and after 24 weeks. Data were analyzed on SPSS 25. Results: The mean age of the PMW participants was 58.00 ± 5.52 years. In within-group comparison, all outcome variables (TUG, FRT, FTSST, MSRT, DHGS, NDHGS, BORG Score, Dyspnea, and ECOS-16) showed significant improvements (p < 0.001) from baseline at both the 12th and 24th weeks and between baseline and the 24th week in the experimental group. In the control group, all outcome variables except FRT (12th week to 24th week) showed statistically significant improvements (p < 0.001) from baseline at both the 12th and 24th weeks and between baseline and the 24th week. In between-group comparison, the experimental group demonstrated more significant improvements in most outcome variables at all points than the control group (p < 0.001), indicating the positive additional effects of Kinect-based VRT. Conclusion: The study concludes that physical performance and QoL measures were improved in both the experimental and control groups. However, in the group comparison, these variables showed better results in the experimental group. Thus, Kinect-based VRT is an alternative and feasible intervention to improve physical performance and QoL in PMW with osteopenia. This novel approach may be widely applicable in upcoming studies, considering the increasing interest in virtual reality-based therapy for rehabilitation. Full article
(This article belongs to the Section Biomedical Sensors)
13 pages, 7278 KiB  
Article
Short-Term and Imminent Rainfall Prediction Model Based on ConvLSTM and SmaAT-UNet
by Yuanyuan Liao, Shouqian Lu and Gang Yin
Sensors 2024, 24(11), 3576; https://doi.org/10.3390/s24113576 (registering DOI) - 1 Jun 2024
Abstract
Short-term precipitation forecasting methods are mainly divided into statistical forecasting, numerical model-based forecasting, and radar image extrapolation techniques. The two methods based on statistical prediction and numerical model have the disadvantages of being unstable and generating large errors. Therefore, this study proposes the [...] Read more.
Short-term precipitation forecasting methods are mainly divided into statistical forecasting, numerical model-based forecasting, and radar image extrapolation techniques. The two methods based on statistical prediction and numerical model have the disadvantages of being unstable and generating large errors. Therefore, this study proposes the use of deep learning for radar image extrapolation for precipitation forecasting, in particular by developing algorithms for ConvLSTM and SmaAT-UNet. The ConvLSTM model is a fusion of a CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory network), which solves the challenge of processing spatial sequence data, which is a task that traditional LSTM models cannot accomplish. At the same time, SmaAT-UNet enhances the traditional UNet structure by incorporating the CBAM (Convolutional Block Attention Module) attention mechanism and replacing the standard convolutional layer with depthwise separable convolution. This innovative approach aims to improve the efficiency and accuracy of short-term precipitation forecasting by improving feature extraction and data processing techniques. Evaluation and analysis of experimental data show that both models exhibit good predictive ability, with the SmaAT-UNet model outperforming ConvLSTM in terms of accuracy. The results show that the performance indicators of precipitation prediction, especially detection probability (POD) and the Critical Success index (CSI), show a downward trend with the extension of the prediction time. This trend highlights the inherent challenges of maintaining predictive accuracy over longer periods of time and highlights the superior performance and resilience of the SmaAT-UNet model under these conditions. Compared with the statistical forecasting method and numerical model forecasting method, its accuracy in short-term rainfall forecasting is improved. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 1322 KiB  
Article
Two-Layered Multi-Factor Authentication Using Decentralized Blockchain in IoT Environment
by Saeed Bamashmos, Naveen Chilamkurti and Ahmad Salehi Shahraki
Sensors 2024, 24(11), 3575; https://doi.org/10.3390/s24113575 (registering DOI) - 1 Jun 2024
Abstract
Abstract: Internet of Things (IoT) technology is evolving over the peak of smart infrastructure with the participation of IoT devices in a wide range of applications. Traditional IoT authentication methods are vulnerable to threats due to wireless data transmission. However, IoT devices are [...] Read more.
Abstract: Internet of Things (IoT) technology is evolving over the peak of smart infrastructure with the participation of IoT devices in a wide range of applications. Traditional IoT authentication methods are vulnerable to threats due to wireless data transmission. However, IoT devices are resource- and energy-constrained, so building lightweight security that provides stronger authentication is essential. This paper proposes a novel, two-layered multi-factor authentication (2L-MFA) framework using blockchain to enhance IoT devices and user security. The first level of authentication is for IoT devices, one that considers secret keys, geographical location, and physically unclonable function (PUF). Proof-of-authentication (PoAh) and elliptic curve Diffie–Hellman are followed for lightweight and low latency support. Second-level authentication for IoT users, which are sub-categorized into four levels, each defined by specific factors such as identity, password, and biometrics. The first level involves a matrix-based password; the second level utilizes the elliptic curve digital signature algorithm (ECDSA); and levels 3 and 4 are secured with iris and finger vein, providing comprehensive and robust authentication. We deployed fuzzy logic to validate the authentication and make the system more robust. The 2L-MFA model significantly improves performance, reducing registration, login, and authentication times by up to 25%, 50%, and 25%, respectively, facilitating quicker cloud access post-authentication and enhancing overall efficiency. Full article
(This article belongs to the Section Internet of Things)
17 pages, 943 KiB  
Article
Transferring Learned Behaviors between Similar and Different Radios
by Braeden P. Muller, Brennan E. Olds, Lauren J. Wong and Alan J. Michaels
Sensors 2024, 24(11), 3574; https://doi.org/10.3390/s24113574 (registering DOI) - 1 Jun 2024
Abstract
Transfer learning (TL) techniques have proven useful in a wide variety of applications traditionally dominated by machine learning (ML), such as natural language processing, computer vision, and computer-aided design. Recent extrapolations of TL to the radio frequency (RF) domain are being used to [...] Read more.
Transfer learning (TL) techniques have proven useful in a wide variety of applications traditionally dominated by machine learning (ML), such as natural language processing, computer vision, and computer-aided design. Recent extrapolations of TL to the radio frequency (RF) domain are being used to increase the potential applicability of RFML algorithms, seeking to improve the portability of models for spectrum situational awareness and transmission source identification. Unlike most of the computer vision and natural language processing applications of TL, applications within the RF modality must contend with inherent hardware distortions and channel condition variations. This paper seeks to evaluate the feasibility and performance trade-offs when transferring learned behaviors from functional RFML classification algorithms, specifically those designed for automatic modulation classification (AMC) and specific emitter identification (SEI), between homogeneous radios of similar construction and quality and heterogeneous radios of different construction and quality. Results derived from both synthetic data and over-the-air experimental collection show promising performance benefits from the application of TL to the RFML algorithms of SEI and AMC. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
47 pages, 3384 KiB  
Review
Obstacle Avoidance and Path Planning Methods for Autonomous Navigation of Mobile Robot
by Kornél Katona, Husam A. Neamah and Péter Korondi
Sensors 2024, 24(11), 3573; https://doi.org/10.3390/s24113573 (registering DOI) - 1 Jun 2024
Abstract
Path planning creates the shortest path from the source to the destination based on sensory information obtained from the environment. Within path planning, obstacle avoidance is a crucial task in robotics, as the autonomous operation of robots needs to reach their destination without [...] Read more.
Path planning creates the shortest path from the source to the destination based on sensory information obtained from the environment. Within path planning, obstacle avoidance is a crucial task in robotics, as the autonomous operation of robots needs to reach their destination without collisions. Obstacle avoidance algorithms play a key role in robotics and autonomous vehicles. These algorithms enable robots to navigate their environment efficiently, minimizing the risk of collisions and safely avoiding obstacles. This article provides an overview of key obstacle avoidance algorithms, including classic techniques such as the Bug algorithm and Dijkstra’s algorithm, and newer developments like genetic algorithms and approaches based on neural networks. It analyzes in detail the advantages, limitations, and application areas of these algorithms and highlights current research directions in obstacle avoidance robotics. This article aims to provide comprehensive insight into the current state and prospects of obstacle avoidance algorithms in robotics applications. It also mentions the use of predictive methods and deep learning strategies. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing)
15 pages, 287 KiB  
Review
Assistive Systems for Visually Impaired Persons: Challenges and Opportunities for Navigation Assistance
by Gabriel Iluebe Okolo, Turke Althobaiti and Naeem Ramzan
Sensors 2024, 24(11), 3572; https://doi.org/10.3390/s24113572 (registering DOI) - 1 Jun 2024
Abstract
The inability to see makes moving around very difficult for visually impaired persons. Due to their limited movement, they also struggle to protect themselves against moving and non-moving objects. Given the substantial rise in the population of those with vision impairments in recent [...] Read more.
The inability to see makes moving around very difficult for visually impaired persons. Due to their limited movement, they also struggle to protect themselves against moving and non-moving objects. Given the substantial rise in the population of those with vision impairments in recent years, there has been an increasing amount of research devoted to the development of assistive technologies. This review paper highlights the state-of-the-art assistive technology, tools, and systems for improving the daily lives of visually impaired people. Multi-modal mobility assistance solutions are also evaluated for both indoor and outdoor environments. Lastly, an analysis of several approaches is also provided, along with recommendations for the future. Full article
37 pages, 2092 KiB  
Review
Systematic Literature Review of IoT Botnet DDOS Attacks and Evaluation of Detection Techniques
by Metehan Gelgi, Yueting Guan, Sanjay Arunachala, Maddi Samba Siva Rao and Nicola Dragoni
Sensors 2024, 24(11), 3571; https://doi.org/10.3390/s24113571 (registering DOI) - 1 Jun 2024
Abstract
Internet of Things (IoT) technology has become an inevitable part of our daily lives. With the increase in usage of IoT Devices, manufacturers continuously develop IoT technology. However, the security of IoT devices is left behind in those developments due to cost, size, [...] Read more.
Internet of Things (IoT) technology has become an inevitable part of our daily lives. With the increase in usage of IoT Devices, manufacturers continuously develop IoT technology. However, the security of IoT devices is left behind in those developments due to cost, size, and computational power limitations. Since these IoT devices are connected to the Internet and have low security levels, one of the main risks of these devices is being compromised by malicious malware and becoming part of IoT botnets. IoT botnets are used for launching different types of large-scale attacks including Distributed Denial-of-Service (DDoS) attacks. These attacks are continuously evolving, and researchers have conducted numerous analyses and studies in this area to narrow security vulnerabilities. This paper systematically reviews the prominent literature on IoT botnet DDoS attacks and detection techniques. Architecture IoT botnet DDoS attacks, evaluations of those attacks, and systematically categorized detection techniques are discussed in detail. The paper presents current threats and detection techniques, and some open research questions are recommended for future studies in this field. Full article
(This article belongs to the Special Issue Network Security and IoT Security)
18 pages, 2444 KiB  
Article
Assessing Trail Running Biomechanics: A Comparative Analysis of the Reliability of StrydTM and GARMINRP Wearable Devices
by César Berzosa, Cristina Comeras-Chueca, Pablo Jesus Bascuas, Héctor Gutiérrez and Ana Vanessa Bataller-Cervero
Sensors 2024, 24(11), 3570; https://doi.org/10.3390/s24113570 (registering DOI) - 1 Jun 2024
Abstract
This study investigated biomechanical assessments in trail running, comparing two wearable devices—Stryd Power Meter and GARMINRP. With the growing popularity of trail running and the complexities of varied terrains, there is a heightened interest in understanding metabolic pathways, biomechanics, and performance [...] Read more.
This study investigated biomechanical assessments in trail running, comparing two wearable devices—Stryd Power Meter and GARMINRP. With the growing popularity of trail running and the complexities of varied terrains, there is a heightened interest in understanding metabolic pathways, biomechanics, and performance factors. The research aimed to assess the inter- and intra-device agreement for biomechanics under ecological conditions, focusing on power, speed, cadence, vertical oscillation, and contact time. The participants engaged in trail running sessions while wearing two Stryd and two Garmin devices. The intra-device reliability demonstrated high consistency for both GARMINRP and StrydTM, with strong correlations and minimal variability. However, distinctions emerged in inter-device agreement, particularly in power and contact time uphill, and vertical oscillation downhill, suggesting potential variations between GARMINRP and StrydTM measurements for specific running metrics. The study underscores that caution should be taken in interpreting device data, highlighting the importance of measuring with the same device, considering contextual and individual factors, and acknowledging the limited research under real-world trail conditions. While the small sample size and participant variations were limitations, the strength of this study lies in conducting this investigation under ecological conditions, significantly contributing to the field of biomechanical measurements in trail running. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

18 pages, 5867 KiB  
Article
Virtual Sensor for On-Line Hardness Assessment in TIG Welding of Inconel 600 Alloy Thin Plates
by Jacek Górka, Wojciech Jamrozik, Bernard Wyględacz, Marta Kiel-Jamrozik and Batalha Gilmar Ferreira
Sensors 2024, 24(11), 3569; https://doi.org/10.3390/s24113569 (registering DOI) - 1 Jun 2024
Abstract
Maintaining high-quality welded connections is crucial in many industries. One of the challenges is assessing the mechanical properties of a joint during its production phase. Currently, in industrial practice, this occurs through NDT (non-destructive testing) conducted after the production process. This article proposes [...] Read more.
Maintaining high-quality welded connections is crucial in many industries. One of the challenges is assessing the mechanical properties of a joint during its production phase. Currently, in industrial practice, this occurs through NDT (non-destructive testing) conducted after the production process. This article proposes the use of a virtual sensor, which, based on temperature distributions observed on the joint surface during the welding process, allows for the determination of hardness distribution across the cross-section of a joint. Welding trials were conducted with temperature recording, hardness measurements were taken, and then, neural networks with different hyperparameters were tested and evaluated. As a basis for developing a virtual sensor, LSTM networks were utilized, which can be applied to time series prediction, as in the analyzed case of hardness value sequences across the cross-section of a welded joint. Through the analysis of the obtained results, it was determined that the developed virtual sensor can be applied to predict global temperature changes in the weld area, in terms of both its value and geometry changes, with the mean average error being less than 20 HV (mean for model ~35 HV). However, in its current form, predicting local hardness disturbances resulting from process instabilities and defects is not feasible. Full article
(This article belongs to the Special Issue Research Development in Terahertz and Infrared Sensing Technology)
Show Figures

Figure 1

9 pages, 1216 KiB  
Article
Reliability of Dynamic Shoulder Strength Test Battery Using Multi-Joint Isokinetic Device
by Gustavo García-Buendía, Ángela Rodríguez-Perea, Ignacio Chirosa-Ríos, Luis Javier Chirosa-Ríos and Darío Martínez-García
Sensors 2024, 24(11), 3568; https://doi.org/10.3390/s24113568 (registering DOI) - 1 Jun 2024
Abstract
This study aimed to determine the absolute and relative reliability of concentric and eccentric flexion, extension, horizontal abduction, and adduction movements of the shoulder using a functional electromechanical dynamometer (FEMD). Forty-three active male university students (23.51 ± 4.72 years) were examined for concentric [...] Read more.
This study aimed to determine the absolute and relative reliability of concentric and eccentric flexion, extension, horizontal abduction, and adduction movements of the shoulder using a functional electromechanical dynamometer (FEMD). Forty-three active male university students (23.51 ± 4.72 years) were examined for concentric and eccentric strength of shoulder flexion, extension, horizontal abduction, and horizontal adduction with an isokinetic test at 0.80 m·s−1. Relative reliability was determined by intraclass correlation coefficients (ICCs) with 95% confidence intervals. Absolute reliability was quantified by the standard error of measurement (SEM) and coefficient of variation (CV). Reliability was very high to extremely high for all movements on concentric and eccentric strength measurements (ICC: 0.76–0.94, SEM: 0.63–6.57%, CV: 9.40–19.63%). The results of this study provide compelling evidence for the absolute and relative reliability of concentric and eccentric flexion, extension, horizontal abduction, and horizontal adduction shoulder isokinetic strength tests in asymptomatic adults. The mean concentric force was the most reliable strength value for all tests. Full article
(This article belongs to the Collection Sensors for Gait, Human Movement Analysis, and Health Monitoring)
Show Figures

Figure 1

11 pages, 2740 KiB  
Article
Visual and Quantitative Evaluation of Low-Concentration Bismuth in Dual-Contrast Imaging of Iodine and Bismuth Using Clinical Photon-Counting CT
by Afrouz Ataei, Vasantha Vasan, Todd C. Soesbe, Cecelia C. Brewington, Zhongxing Zhou, Lifeng Yu, Kristina A. Hallam and Liqiang Ren
Sensors 2024, 24(11), 3567; https://doi.org/10.3390/s24113567 (registering DOI) - 1 Jun 2024
Abstract
Simultaneous dual-contrast imaging of iodine and bismuth has shown promise in prior phantom and animal studies utilizing spectral CT. However, it is noted that in previous studies, Pepto-Bismol has frequently been employed as the source of bismuth, exceeding the recommended levels for human [...] Read more.
Simultaneous dual-contrast imaging of iodine and bismuth has shown promise in prior phantom and animal studies utilizing spectral CT. However, it is noted that in previous studies, Pepto-Bismol has frequently been employed as the source of bismuth, exceeding the recommended levels for human subjects. This investigation sought to assess the feasibility of visually differentiating and precisely quantifying low-concentration bismuth using clinical dual-source photon-counting CT (PCCT) in a scenario involving both iodinated and bismuth-based contrast materials. Four bismuth samples (0.6, 1.3, 2.5, and 5.1 mg/mL) were prepared using Pepto-Bismol, alongside three iodine rods (1, 2, and 5 mg/mL), inserted into multi-energy CT phantoms with three different sizes, and scanned on a PCCT system at three tube potentials (120, 140, and Sn140 kV). A generic image-based three-material decomposition method generated iodine and bismuth maps, with mean mass concentrations and noise levels measured. The root-mean-square errors for iodine and bismuth determined the optimal tube potential. The tube potential of 140 kV demonstrated optimal quantification performance when both iodine and bismuth were considered. Distinct differentiation of iodine rods with all three concentrations and bismuth samples with mass concentrations ≥ 1.3 mg/mL was observed across all phantom sizes at the optimal kV setting. Full article
(This article belongs to the Special Issue Recent Advances in X-ray Sensing and Imaging)
Show Figures

Figure 1

Previous Issue
Back to TopTop