Rapid Characterization of Monoclonal Antibodies using the Piezoelectric Immunosensor
Abstract
:1. Introduction
2. Experimental Section
2.1 Monoclonal antibodies preparation
2.2 Lipopolysaccharides preparation
2.3 Indirect ELISA
2.4 Immobilization of LPS on the sensor surface
2.5 Experimental setup
2.6. Kinetic calculations of the antigen-antibody interaction
3. Results and Discussion
3.1. Screening of antibodies
3.2 Selectivity of the immunosensor and antibody
3.3 Isotypization
3.4. Kinetic calculations
4. Conclusions
Acknowledgments
References and Notes
- Emanuel, P.A.; Dang, J.; Gebhardt, J.S.; Aldrich, J.; Garber, E.A.E.; Henrieta, K.; Stopa, P.; Valdes, J.J.; Schultz, A.D. Recombinant antibodies: a new reagent for biological agent detection. Biosens. Bioelectron. 2000, 14, 761–770. [Google Scholar]
- Hitchcock, P.J.; Leive, L.; Makela, H.; Rietschel, E.T.; Strittmatter, W.; Morrison, D.C. Lipopolysaccharide nomenclature - past, present, and future. J. Bacteriol. 1986, 166, 699–705. [Google Scholar]
- Lerouge, I.; Vanderleyden, J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 2002, 26, 17–47. [Google Scholar]
- Weintraub, A. Immunology of bacterial polysaccharide antigens. Carbohydrate Res. 2003, 338, 2539–2547. [Google Scholar]
- Fulop, M.J.; Webber, T.; Manchee, R.J.; Kelly, D.C. Production and characterization of monoclonal-antibodies directed against the lipopolysaccharide of Francisella tularensis. J. Clin. Microbiol. 1991, 29, 1407–1412. [Google Scholar]
- Özcürümez, M.P.; Kischel, N.; Priebe, H.; Splettstösser, W.; Finke, E.J.; Grunow, R. Comparison of enzyme-linked immunosorbent assay, western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin. Diagn. Lab. Immun. 2004, 11, 1008–1015. [Google Scholar]
- Ota, M.; Sawamura, D.; Yokota, K.; Ueda, M.; Horiguchi, Y.; Kodama, K.; Goto, M.; Shimizu, H. 2005. A unique monoclonal antibody 29A stains the cytoplasm of amniotic epithelia and cutaneous basement membrane. J. Deratol. Sci. 2006, 42, 23–29. [Google Scholar]
- Sumi, M.G.; Mathai, A.; Sarada, C.; Radhakrishnan, V.V. Rapid diagnosis of tuberculous meningitis by a dot immunobinding assay to detect mycobacterial antigen in cerebrospinal fluid specimens. J. Clin. Microbiol. 1999, 37, 3925–3927. [Google Scholar]
- Llorente, M.J.; Jimenez, J.; Gonzalez, C.; Alarcon, I.; Alsina, M.; Casas, L.M.; Benedito, J.E.; Araquistain, L.J.; Farre, V.; Gonzalez-Buitrago, J.M. Effectiveness of different methods for anti-Sm antibody identification. A multicentre study. Clin. Chem. Lab. Med. 2005, 43, 748–752. [Google Scholar]
- Kikuchi, Y.; Uno, S.; Nanami, M.; Yoshimura, Y.; Iida, S.; Fukushima, N.; Tsuchiya, M. Determination of concentration and binding affinity of antibody fragments by use of surface plasmon resonance. J. Biosci. Bioeng. 2005, 100, 311–317. [Google Scholar]
- Skládal, P. Effect of methanol on the interaction of monoclonal antibody with free and immobilized atrazine studied using the resonant mirror-based biosensor. Biosens. Bioelectron. 1999, 14, 257–263. [Google Scholar]
- Thirumalapura, N.R.; Morton, R.J.; Ramachandran, A.; Malayer, J.R. Lipopolysaccharide microarrays for the detection of antibodies. J. Immunol. Meth. 2005, 298, 73–81. [Google Scholar]
- Thomas, T.M.; Shave, E.E.; Bate, I.M.; Gee, S.C.; Franklin, S.; Rylatt, D.B. Preparative electrophoresis: a general method for the purification of polyclonal antibodies. J. Chromatogr. A. 2002, 944, 161–168. [Google Scholar]
- Leive, L.; Shovlin, V.K. Physical, chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate. J. Biol. Chem. 1968, 243, 4384–4391. [Google Scholar]
- Laegreid, W.; Hoffman, M.; Keen, J.; Elder, R.; Kwang, J. Development of a blocking enzym-linked immunosorbent assay for detection of serum antibodies to O157 antigen of Escherichia coli. Clin. Diagn. Lab. Immun. 1998, 5, 242–246. [Google Scholar]
- Horáček, J.; Skládal, P. Effect of organic solvents on immunoassays of environmental pollutants studied using a piezoelectric biosensor. Anal. Chim. Acta 2000, 412, 37–45. [Google Scholar]
- Lieberzeit, P.A.; Glanznig, G.; Jenik, M.; Gazda-Miarecka, S.; Dickert, F.L.; Leidl, A. Softlithography in Chemical Sensing – Analytes from Molecules to Cells. Sensors 2005, 5, 509–518. [Google Scholar]
Antibody | Isotype | Titer | Signal (Hz) |
---|---|---|---|
6E5D7E11 | IgG2a | ≥10 | 5 |
3E5E3G12 | IgG2a | ≥10 | 8 |
4H3B9D3 | IgM | ≥320 | 264 |
4H3H6B8 | IgM | ≥10 | 6 |
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Pohanka, M.; Pavliš, O.; Skládal, P. Rapid Characterization of Monoclonal Antibodies using the Piezoelectric Immunosensor. Sensors 2007, 7, 341-353. https://doi.org/10.3390/s7030341
Pohanka M, Pavliš O, Skládal P. Rapid Characterization of Monoclonal Antibodies using the Piezoelectric Immunosensor. Sensors. 2007; 7(3):341-353. https://doi.org/10.3390/s7030341
Chicago/Turabian StylePohanka, Miroslav, Oto Pavliš, and Petr Skládal. 2007. "Rapid Characterization of Monoclonal Antibodies using the Piezoelectric Immunosensor" Sensors 7, no. 3: 341-353. https://doi.org/10.3390/s7030341
APA StylePohanka, M., Pavliš, O., & Skládal, P. (2007). Rapid Characterization of Monoclonal Antibodies using the Piezoelectric Immunosensor. Sensors, 7(3), 341-353. https://doi.org/10.3390/s7030341