Folate Receptor Targeted Alpha-Therapy Using Terbium-149
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents for Production and Purification of 149Tb
2.2. Production of 149Tb
2.3. Purification of 149Tb
2.4. Preparation of 149Tb-cm09 and Stability in Blood Plasma
2.5. Cell Culture
2.6. In Vitro Cell Viability Studies
2.7. In Vivo Therapy Studies
Number of mice [n] | Injection solution | Injected radioactivity [MBq] | |
---|---|---|---|
Group A | 4 | L-lactate solution | - |
Group B | 4 | 149Tb-cm09 in L-lactate solution | 2.2 |
Group C | 4 | 149Tb-cm09 in L-lactate solution | 3.0 |
2.8. Determination of Plasma Parameters
2.9. Dosimetric Calculations
2.10. Statistical Significance
3. Results and Discussion
3.1. Production and Purification of 149Tb
3.2. Radiosynthesis of 149Tb-cm09 and Stability in Blood Plasma
3.3. In Vitro Application of 149Tb-cm09
3.4. Therapy Study in Tumor-Bearing Mice Using 149Tb-cm09
BUN [mmol/L] | ALP [U/L] | TBIL [μmol/L) | |
---|---|---|---|
Group A | 7.0 ± 1.8 (4.1 ± 0.5) | 77 ± 10 (99 ± 16) | 6.5 ± 2.5 (6.3 ± 1.0) |
Group B | 4.6 ± 0.6 (4.7 ± 0.4) | 67 ± 5 (119 ± 7) | 7.6 ± 4.7 (6.0 ± 1.0) |
Group C | 5.2 ± 1.3 (5.9 ± 1.4) | 75 ± 14 (73 ± 21) | 7.0 ± 0.8 (5.0 ± 1.0) |
3.5. Dosimetric Calculations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oyen, W.J.; Bodei, L.; Giammarile, F.; Maecke, H.R.; Tennvall, J.; Luster, M.; Brans, B. Targeted therapy in nuclear medicine-current status and future prospects. Ann. Oncol. 2007, 18, 1782–1792. [Google Scholar] [CrossRef]
- Zoller, F.; Eisenhut, M.; Haberkorn, U.; Mier, W. Endoradiotherapy in cancer treatment—Basic concepts and future trends. Eur. J. Pharmacol. 2009, 625, 55–62. [Google Scholar] [CrossRef]
- Allen, B.J.; Blagojevic, N. Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: The potential role of terbium-149. Nucl. Med. Commun. 1996, 17, 40–47. [Google Scholar] [CrossRef]
- Allen, B.J. Targeted alpha therapy: Evidence for potential efficacy of alpha-immunoconjugates in the management of micrometastatic cancer. Australas. Radiol. 1999, 43, 480–486. [Google Scholar]
- Beyer, G.J.; Miederer, M.; Vranjes-Duric, S.; Comor, J.J.; Kunzi, G.; Hartley, O.; Senekowitsch-Schmidtke, R.; Soloviev, D.; Buchegger, F. Targeted alpha therapy in vivo: Direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 547–554. [Google Scholar] [CrossRef]
- Beyer, G.J.; Comor, J.J.; Dakovic, M.; Soloviev, D.; Tamburella, C.; Hagebo, E.; Allan, B.; Dmitriev, S.N.; Zaitseva, N.G.; Starodub, G.Y.; et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta. 2002, 90, 247–252. [Google Scholar]
- Müller, C.; Zhernosekov, K.; Köster, U.; Johnston, K.; Dorrer, H.; Hohn, A.; van der Walt, N.T.; Türler, A.; Schibli, R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β−-radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 2012, 53, 1951–1959. [Google Scholar] [CrossRef]
- Lehenberger, S.; Barkhausen, C.; Cohrs, S.; Fischer, E.; Grünberg, J.; Hohn, A.; Koster, U.; Schibli, R.; Türler, A.; Zhernosekov, K. The low-energy beta- and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl. Med. Biol. 2011, 38, 917–924. [Google Scholar]
- Müller, C.; Reber, J.; Haller, S.; Dorrer, H.; Bernhardt, P.; Zhernosekov, K.; Türler, A.; Schibli, R. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 476–485. [Google Scholar] [CrossRef]
- Imam, S.K. Advancements in cancer therapy with alpha-emitters: A review. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 271–278. [Google Scholar] [CrossRef]
- Miederer, M.; Seidl, C.; Beyer, G.J.; Charlton, D.E.; Vranjes-Duric, S.; Comor, J.J.; Huber, R.; Nikula, T.; Apostolidis, C.; Schuhmacher, C.; et al. Comparison of the radiotoxicity of two alpha-particle-emitting immunoconjugates, terbium-149 and bismuth-213, directed against a tumor-specific, exon 9 deleted (d9) e-cadherin adhesion protein. Radiat. Res. 2003, 159, 612–620. [Google Scholar] [CrossRef]
- Mirzadeh, S.; Kumar, K.; Gansow, O.A. The chemical fate of 212Bi-DOTA formed by β− decay of 212Pb-DOTA2−. Radiochim. Acta 1993, 60, 1–10. [Google Scholar]
- Schwartz, J.; Jaggi, J.S.; O’Donoghue, J.A.; Ruan, S.; McDevitt, M.; Larson, S.M.; Scheinberg, D.A.; Humm, J.L. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys. Med. Biol. 2011, 56, 721–733. [Google Scholar]
- Wilbur, D.S. Enigmatic astatine. Nat. Chem. 2013, 5, 246. [Google Scholar] [CrossRef]
- Müller, C.; Struthers, H.; Winiger, C.; Zhernosekov, K.; Schibli, R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J. Nucl. Med. 2013, 54, 124–131. [Google Scholar] [CrossRef]
- Allen, B.J.; Goozee, G.; Sarkar, S.; Beyer, G.; Morel, C.; Byrne, A.P. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl. Radiat. Isot. 2001, 54, 53–58. [Google Scholar] [CrossRef]
- Köster, U.; Collaboration ISOLDE. Isolde target and ion source chemistry. Radiochim. Acta 2001, 89, 749–756. [Google Scholar]
- Müller, C.; Fischer, E.; Behe, M.; Köster, U.; Dorrer, H.; Reber, J.; Haller, S.; Cohrs, S.; Blanc, A.; Grünberg, J.; et al. Future prospects for SPECT imaging using the radiolanthanide terbium-155—Production and preclinical evaluation in tumor-bearing mice. Nucl. Med. Biol. 2013. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Reber, J.; Struthers, H.; Betzel, T.; Hohn, A.; Schibli, R.; Müller, C. Radioiodinated folic acid conjugates: Evaluation of a valuable concept to improve tumor-to-background contrast. Mol. Pharm. 2012, 9, 1213–1221. [Google Scholar]
- Mathias, C.J.; Wang, S.; Lee, R.J.; Waters, D.J.; Low, P.S.; Green, M.A. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J. Nucl. Med. 1996, 37, 1003–1008. [Google Scholar]
- Sanceau, J.; Poupon, M.F.; Delattre, O.; Sastre-Garau, X.; Wietzerbin, J. Strong inhibition of ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene 2002, 21, 7700–7709. [Google Scholar] [CrossRef]
- Radiation Dose Assessment Resource (RADAR). Available online: www.doseinfo-radar.com (accessed on 7 March 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Müller, C.; Reber, J.; Haller, S.; Dorrer, H.; Köster, U.; Johnston, K.; Zhernosekov, K.; Türler, A.; Schibli, R. Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals 2014, 7, 353-365. https://doi.org/10.3390/ph7030353
Müller C, Reber J, Haller S, Dorrer H, Köster U, Johnston K, Zhernosekov K, Türler A, Schibli R. Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals. 2014; 7(3):353-365. https://doi.org/10.3390/ph7030353
Chicago/Turabian StyleMüller, Cristina, Josefine Reber, Stephanie Haller, Holger Dorrer, Ulli Köster, Karl Johnston, Konstantin Zhernosekov, Andreas Türler, and Roger Schibli. 2014. "Folate Receptor Targeted Alpha-Therapy Using Terbium-149" Pharmaceuticals 7, no. 3: 353-365. https://doi.org/10.3390/ph7030353
APA StyleMüller, C., Reber, J., Haller, S., Dorrer, H., Köster, U., Johnston, K., Zhernosekov, K., Türler, A., & Schibli, R. (2014). Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals, 7(3), 353-365. https://doi.org/10.3390/ph7030353