Comparison of Fused Diffusion-Weighted Imaging Using Unenhanced MRI and Abbreviated Post-Contrast-Enhanced MRI in Patients with Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Descriptions
2.2. MRI Acquisition
2.3. Protocols of Fused High-b-Value DWI and Abbreviated MRI
2.4. Review Sessions
2.5. Pathologic Analysis
2.6. Statistical Analysis
3. Results
3.1. Breast Cancer Characteristics
3.2. Lesion Detection and Conspicuity
3.3. Interobserver Agreement
3.4. Relations of Cancer Detection with Histopathological and Radiological Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baltzer, P.A.; Bickel, H.; Spick, C.; Wengert, G.; Woitek, R.; Kapetas, P.; Clauser, P.; Helbich, T.H.; Pinker, K. Potential of noncontrast magnetic resonance imaging with diffusion-weighted imaging in characterization of breast lesions: Intraindividual comparison with dynamic contrast-enhanced magnetic resonance imaging. Investig. Radiol. 2018, 53, 229–235. [Google Scholar] [CrossRef]
- Kuhl, C.K. The changing world of breast cancer: A radiologist’s perspective. Investig. Radiol. 2015, 50, 615. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.; Messersmith, H.; Causer, P.; Eisen, A.; Shumak, R.; Plewes, D. Systematic review: Using magnetic resonance imaging to screen women at high risk for breast cancer. Ann. Intern. Med. 2008, 148, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Huang, M.; Shen, Y.-Y.; Liu, C.-L.; Xu, C.-X. Abbreviated MRI protocols for detecting breast cancer in women with dense breasts. Korean J. Radiol. 2017, 18, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Heller, S.L. Abbreviated and ultrafast breast MRI in clinical practice. Radiographics 2020, 40, 1507–1527. [Google Scholar] [CrossRef]
- Yabuuchi, H.; Matsuo, Y.; Sunami, S.; Kamitani, T.; Kawanami, S.; Setoguchi, T.; Sakai, S.; Hatakenaka, M.; Kubo, M.; Tokunaga, E.; et al. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: Comparison with mammography and dynamic contrast-enhanced MR imaging. Eur. Radiol. 2011, 21, 11–17. [Google Scholar] [CrossRef]
- Choi, J.W.; Moon, W.-J. Gadolinium deposition in the brain: Current updates. Korean J. Radiol. 2019, 20, 134–147. [Google Scholar] [CrossRef]
- Gulani, V.; Calamante, F.; Shellock, F.G.; Kanal, E.; Reeder, S.B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570. [Google Scholar] [CrossRef]
- Lenkinski, R.E. Gadolinium deposition and retention in the brain: Should we be concerned? Radiol. Cardiothorac. Imaging 2019, 1, e190104. [Google Scholar] [CrossRef]
- Kang, J.W.; Shin, H.J.; Shin, K.C.; Chae, E.Y.; Choi, W.J.; Cha, J.H.; Kim, H.H. Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: Role of fused DWI for postoperative screening. Breast Cancer Res. Treat. 2017, 165, 119–128. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, J.Y. Fusion of high b-value diffusion-weighted and unenhanced T1-weighted images to diagnose invasive breast cancer: Factors associated with false-negative results. Eur. Radiol. 2021, 31, 4860–4871. [Google Scholar] [CrossRef]
- Shin, H.J.; Chae, E.Y.; Choi, W.J.; Ha, S.M.; Park, J.Y.; Shin, K.C.; Cha, J.H.; Kim, H.H. Diagnostic performance of fused diffusion-weighted imaging using unenhanced or postcontrast T1-weighted MR imaging in patients with breast cancer. Medicine 2016, 95, e3502. [Google Scholar] [CrossRef] [PubMed]
- Kul, S.; Cansu, A.; Alhan, E.; Dinc, H.; Gunes, G.; Reis, A. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. Am. J. Roentgenol. 2011, 196, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D. Apparent diffusion coefficient and beyond: What diffusion MR imaging can tell us about tissue structure. Radiology 2013, 268, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, W.L.; Zhang, Y.L.; Wu, Q.; Guo, Y.M.; Bai, Z.L. Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 2010, 10, 693. [Google Scholar] [CrossRef]
- Marini, C.; Iacconi, C.; Giannelli, M.; Cilotti, A.; Moretti, M.; Bartolozzi, C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur. Radiol. 2007, 17, 2646–2655. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.C.; Mullins, C.D.; Kurland, B.F.; Allain, M.D.; DeMartini, W.B.; Eby, P.R.; Lehman, C.D. Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: Effects of lesion type and size. Am. J. Roentgenol. 2010, 194, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, P.A.; Renz, D.M.; Herrmann, K.H.; Dietzel, M.; Krumbein, I.; Gajda, M.; Camara, O.; Reichenbach, J.R.; Kaiser, W.A. Diffusion-weighted imaging (DWI) in MR mammography (MRM): Clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur. Radiol. 2009, 19, 1612–1620. [Google Scholar] [CrossRef]
- Baltzer, P.A.; Renz, D.M.; Herrmann, K.H.; Dietzel, M.; Krumbein, I.; Gajda, M.; Camara, O.; Reichenbach, J.R.; Kaiser, W.A. Fusion of high B-value diffusion-weighted and T2-weighted MR images increases sensitivity for identification of extraprostatic disease in prostate cancer. Clin. Imaging 2020, 68, 202–209. [Google Scholar]
- Park, J.J.; Kim, C.K.; Park, S.Y.; Park, B.K. Parametrial invasion in cervical cancer: Fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology 2015, 274, 734–741. [Google Scholar] [CrossRef]
- Tsushima, Y.; Takano, A.; Taketomi-Takahashi, A.; Endo, K. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: Usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad. Radiol. 2007, 14, 643–650. [Google Scholar] [CrossRef]
- Eghtedari, M.; Ma, J.; Fox, P.; Guvenc, I.; Yang, W.T.; Dogan, B.E. Effects of magnetic field strength and b value on the sensitivity and specificity of quantitative breast diffusion-weighted MRI. Quant. Imaging Med. Surg. 2016, 6, 374–380. [Google Scholar] [CrossRef]
- Zhou, B.; He, W.; Kaur, J.; Cai, Q.; Bhat, A.; Liu, Q. Meta-analysis of abbreviated MRI scanning reveals a high specificity and sensitivity in detecting breast cancer. Clin Exp Obs. Gynecol 2023, 50, 115. [Google Scholar] [CrossRef]
- Chen, P.; Shao, G.; Li, B.; Zhang, H.; Xiao, J.; Zhao, S. Performance of abbreviated protocols versus unenhanced MRI in detecting occult breast lesions of mammography in patients with dense breasts. Sci. Rep. 2022, 12, 13660. [Google Scholar] [CrossRef]
- Yamada, T.; Kanemaki, Y.; Okamoto, S.; Nakajima, Y. Comparison of detectability of breast cancer by abbreviated breast MRI based on diffusion-weighted images and postcontrast MRI. Jpn. J. Radiol. 2018, 36, 331–339. [Google Scholar] [CrossRef]
- Partridge, S.C.; McDonald, E.S. Diffusion weighted magnetic resonance imaging of the breast: Protocol optimization, interpretation, and clinical applications. Magn. Reson. Imaging Clin. 2013, 21, 601–624. [Google Scholar] [CrossRef]
- McDonald, E.S.; Hammersley, J.A.; Chou, S.H.; Rahbar, H.; Scheel, J.R.; Lee, C.I.; Liu, C.L.; Lehman, C.D.; Partridge, S.C. Performance of DWI as a rapid unenhanced technique for detecting mammographically occult breast cancer in elevated-risk women with dense breasts. Am. J. Roentgenol. 2016, 207, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Diagnostic Accuracy of Unenhanced Abbreviated Diffusion-Weighted Magnetic Resonance Imaging Versus Postcontrast Abbreviated Breast Magnetic Resonance Imaging for Breast Cancer. Hong Kong J. Radiol. 2021, 24, 238. [Google Scholar] [CrossRef]
- Partridge, S.C.; Singer, L.; Sun, R.; Wilmes, L.J.; Klifa, C.S.; Lehman, C.D.; Hylton, N.M. Diffusion-weighted MRI: Influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Magn. Reson. Imaging 2011, 29, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, X.J.; Jin, R.; Guo, Y.M.; Zhao, X.; Kang, H.F.; Mo, L.P.; Wu, Q. Conspicuity of breast lesions at different b values on diffusion-weighted imaging. BMC Cancer 2012, 12, 334. [Google Scholar] [CrossRef]
- DelPriore, M.R.; Biswas, D.; Hippe, D.S.; Zecevic, M.; Parsian, S.; Scheel, J.R.; Rahbar, H.; Partridge, S.C. Breast cancer conspicuity on computed versus acquired high b-value diffusion-weighted, M.R.I. Acad. Radiol. 2021, 28, 1108–1117. [Google Scholar] [CrossRef]
- Kazama, T.; Kuroki, Y.; Kikuchi, M.; Sato, Y.; Nagashima, T.; Miyazawa, Y.; Sakakibara, M.; Kaneoya, K.; Makimoto, Y.; Hashimoto, H.; et al. Diffusion-weighted MRI as an adjunct to mammography in women under 50 years of age: An initial study. J. Magn. Reson. Imaging 2012, 36, 139–144. [Google Scholar] [CrossRef]
- Bragg, A.; Candelaria, R.; Adrada, B.; Huang, M.; Rauch, G.; Santiago, L.; Scoggins, M.; Whitman, G. Imaging of Noncalcified Ductal Carcinoma In Situ. J. Clin. Imaging Sci. 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Pinker, K.; Moy, L.; Sutton, E.J.; Mann, R.M.; Weber, M.; Thakur, S.B.; Jochelson, M.S.; Bago-Horvath, Z.; Morris, E.A.; Baltzer, P.A.; et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone-parameter: Comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Investig. Radiol. 2018, 53, 587. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Sun, X.; Wang, K.; Sun, Y.; Zhang, G.; Shen, B. Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 376. [Google Scholar]
- Cheon, H.; Kim, H.J.; Lee, S.M.; Cho, S.H.; Shin, K.M.; Kim, G.C.; Park, J.Y.; Kim, W.H. Preoperative MRI features associated with lymphovascular invasion in node-negative invasive breast cancer: A propensity-matched analysis. J. Magn. Reson. Imaging 2017, 46, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Pinder, S.E.; Macmillan, R.D.; Mitchell, M.; Ellis, I.O.; Elston, C.W.; Blamey, R.W. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur. J. Cancer 2006, 42, 357–362. [Google Scholar] [CrossRef]
- Geschwind, J.F.; Artemov, D.; Abraham, S.; Omdal, D.; Huncharek, M.S.; McGee, C.; Arepally, A.; Lambert, D.; Venbrux, A.C.; Lund, G.B. Chemoembolization of liver tumor in a rabbit model: Assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J. Vasc. Interv. Radiol. 2000, 11, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
Fused DWI | ABMR | p | ||
---|---|---|---|---|
Radiologist 1 | Cancer detection (+), | 174 (89.7) | 184 (94.8) | 0.057 |
Cancer detection (−), | 20 (10.3) | 10 (5.2) | ||
Conspicuity | 8.78 ± 3.03 | 9.37 ± 2.24 | <0.001 | |
Radiologist 2 | Cancer detection (+), | 174 (89.7) | 183 (94.3) | 0.092 |
Cancer detection (−), | 20 (10.3) | 11 (5.7) | ||
Conspicuity | 8.39 ± 2.93 | 9.16 ± 2.32 | <0.001 |
Lesion Type on MRI | Size on MRI (cm) | Kinetic Curve Assessment | High-Diffusion Background Signals | Background Parenchymal Enhancement | |
---|---|---|---|---|---|
Patient 1 | Mass | 1.0 | Persistent | (−) | Minimal |
Patient 2 | Mass | 1.0 | Persistent | (−) | Minimal |
Patient 3 | Mass | 0.8 | Persistent | (−) | Minimal |
Patient 4 | NME | 5.5 | Persistent | (+) | Minimal |
Patient 5 | NME | 6.5 | Persistent | (+) | Minimal |
Parameter | Number (%) of Participants (n = 194) | Radiologist 1 | Radiologist 2 | ||
---|---|---|---|---|---|
Fused DWI (+) (n = 174) | ABMR (+) (n = 184) | Fused DWI (+) (n = 174) | ABMR (+) (n = 183) | ||
Invasiveness | |||||
Invasive | 179 (92.3) | 164 (94.3) | 173 (94.0) | 162 (93.1) | 171 (93.4) |
In situ | 15 (7.7) | 10 (5.7) | 11 (6.0) | 12 (6.9) | 12 (6.6) |
p | 0.011 2 | 0.004 2 | 0.190 2 | 0.043 2 | |
ER | |||||
Positive | 149 (76.8) | 131 (75.3) | 141 (76.6) | 131 (75.3) | 140 (76.5) |
Negative | 45 (23.2) | 43 (24.7) | 43 (23.4) | 43 (24.7) | 43 (23.5) |
p | 0.171 2 | 1.000 2 | 0.171 2 | 1.000 2 | |
PR | |||||
Positive | 127 (65.5) | 112 (64.4) | 120 (65.2) | 112 (64.4) | 120 (65.6) |
Negative | 67 (34.5) | 62 (35.6) | 64 (34.8) | 62 (35.6) | 63 (34.4) |
p | 0.344 | 1.000 2 | 0.344 | 1.000 2 | |
HER-2 | |||||
Positive | 39 (20.1) | 37 (21.3) | 38 (20.7) | 37 (21.3) | 38 (20.8) |
Negative | 155 (79.9) | 137 (78.7) | 146 (79.3) | 137 (78.7) | 145 (79.2) |
p | 0.376 2 | 0.690 2 | 0.376 2 | 0.697 2 | |
Ki-67 | |||||
≥14% | 108 (55.7) | 100 (57.5) | 102 (55.4) | 98 (56.3) | 101 (55.2) |
<14% | 86 (44.3) | 74 (42.5) | 82 (44.6) | 76 (43.7) | 82 (44.8) |
p | 0.136 | 1.000 2 | 0.590 | 0.758 2 | |
Lymphovascular invasion | |||||
Positive | 62 (32.0) | 59 (33.9) | 62 (33.7) | 58 (33.3) | 61 (33.3) |
Negative | 132 (68.0) | 115 (66.1) | 122 (66.3) | 116 (66.7) | 122 (66.7) |
p | 0.086 | 0.032 2 | 0.226 | 0.179 2 | |
Necrosis | |||||
Positive | 72 (37.1) | 67 (38.5) | 69 (37.5) | 69 (39.7) | 69 (37.7) |
Negative | 122 (62.9) | 107 (61.5) | 115 (62.5) | 105 (60.3) | 114 (62.3) |
p | 0.236 | 0.747 2 | 0.031 | 0.749 2 | |
LN metastasis | |||||
Positive | 67 (34.5) | 64 (36.8) | 66 (35.9) | 63 (36.2) | 65 (35.5) |
Negative | 127 (65.5) | 110 (63.2) | 118 (64.1) | 111 (63.8) | 118 (64.5) |
p | 0.052 | 0.169 2 | 0.149 | 0.336 2 | |
Tumor size (Invasive only) (cm) | 2.6 ± 1.62 (range 0.1–12.5) | 2.70 ± 1.62 | 2.68 ± 1.58 | 2.67 ± 1.59 | 2.72 ± 1.59 |
p | 0.061 1 | 0.588 1 | 0.605 1 | 0.127 1 | |
Lesion type on MRI | |||||
Mass | 169 (87.1) | 152 (87.3) | 162 (88.0) | 154 (88.5) | 161 (88.0) |
Non-mass enhancement | 25 (12.9) | 22 (12.7) | 22 (12.0) | 20 (11.5) | 22 (12.0) |
p | 0.765 | 0.097 | 0.087 | 0.142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Jeong, Y.J.; Choo, K.S.; Nam, S.B.; Kim, H.Y.; Jung, Y.J.; Lee, S.J.; Joo, J.H.; Kim, J.Y.; Kim, J.J.; et al. Comparison of Fused Diffusion-Weighted Imaging Using Unenhanced MRI and Abbreviated Post-Contrast-Enhanced MRI in Patients with Breast Cancer. Medicina 2023, 59, 1563. https://doi.org/10.3390/medicina59091563
Lee K, Jeong YJ, Choo KS, Nam SB, Kim HY, Jung YJ, Lee SJ, Joo JH, Kim JY, Kim JJ, et al. Comparison of Fused Diffusion-Weighted Imaging Using Unenhanced MRI and Abbreviated Post-Contrast-Enhanced MRI in Patients with Breast Cancer. Medicina. 2023; 59(9):1563. https://doi.org/10.3390/medicina59091563
Chicago/Turabian StyleLee, Kyeyoung, Yeo Jin Jeong, Ki Seok Choo, Su Bong Nam, Hyun Yul Kim, Youn Joo Jung, Seung Ju Lee, Ji Hyeon Joo, Jin You Kim, Jin Joo Kim, and et al. 2023. "Comparison of Fused Diffusion-Weighted Imaging Using Unenhanced MRI and Abbreviated Post-Contrast-Enhanced MRI in Patients with Breast Cancer" Medicina 59, no. 9: 1563. https://doi.org/10.3390/medicina59091563