Next Issue
Volume 21, August
Previous Issue
Volume 21, June
 
 

Mar. Drugs, Volume 21, Issue 7 (July 2023) – 52 articles

Cover Story (view full-size image): In this review, we provide comprehensive information about how flow chemistry has contributed to the development of marine drugs in recent decades. This novel synthetic technology has facilitated difficult synthetic pathways in a more efficient and safer manner, increasing the benefits of using this technique over the batch mode. Thus, a plethora of organic reactions with promising biological activities have been achieved in a wide range of marine drug-like molecules. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 2449 KiB  
Review
Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications
by Rajesh Jeewon, Aadil Ahmad Aullybux, Daneshwar Puchooa, Nadeem Nazurally, Abdulwahed Fahad Alrefaei and Ying Zhang
Mar. Drugs 2023, 21(7), 420; https://doi.org/10.3390/md21070420 - 24 Jul 2023
Cited by 3 | Viewed by 1887
Abstract
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely [...] Read more.
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin. Full article
(This article belongs to the Special Issue Poly- and Oligosaccharides from Marine Origins)
Show Figures

Graphical abstract

16 pages, 2029 KiB  
Article
Exopolysaccharide Production from Marine-Derived Brevundimonas huaxiensis Obtained from Estremadura Spur Pockmarks Sediments Revealing Potential for Circular Economy
by Marta Catalão, Mafalda Fernandes, Lorena Galdon, Clara F. Rodrigues, Rita G. Sobral, Susana P. Gaudêncio and Cristiana A. V. Torres
Mar. Drugs 2023, 21(7), 419; https://doi.org/10.3390/md21070419 - 23 Jul 2023
Cited by 2 | Viewed by 1697
Abstract
Marine environments represent an enormous biodiversity reservoir due to their numerous different habitats, being abundant in microorganisms capable of producing biomolecules, namely exopolysaccharides (EPS), with unique physical characteristics and applications in a broad range of industrial sectors. From a total of 67 marine-derived [...] Read more.
Marine environments represent an enormous biodiversity reservoir due to their numerous different habitats, being abundant in microorganisms capable of producing biomolecules, namely exopolysaccharides (EPS), with unique physical characteristics and applications in a broad range of industrial sectors. From a total of 67 marine-derived bacteria obtained from marine sediments collected at depths of 200 to 350 m from the Estremadura Spur pockmarks field, off the coast of Continental Portugal, the Brevundimonas huaxiensis strain SPUR-41 was selected to be cultivated in a bioreactor with saline culture media and glucose as a carbon source. The bacterium exhibited the capacity to produce 1.83 g/L of EPS under saline conditions. SPUR-41 EPS was a heteropolysaccharide composed of mannose (62.55% mol), glucose (9.19% mol), rhamnose (19.41% mol), glucuronic acid (4.43% mol), galactose (2.53% mol), and galacturonic acid (1.89% mol). Moreover, SPUR-41 EPS also revealed acyl groups in its composition, namely acetyl, succinyl, and pyruvyl. This study revealed the importance of research on marine environments for the discovery of bacteria that produce new value-added biopolymers for pharmaceutical and other biotechnological applications, enabling us to potentially address saline effluent pollution via a sustainable circular economy. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

13 pages, 4913 KiB  
Article
Functional Characterization of Lycopene β- and ε-Cyclases from a Lutein-Enriched Green Microalga Chlorella sorokiniana FZU60
by Hong Fang, Junjie Liu, Ruijuan Ma, Yiping Zou, Shih-Hsin Ho, Jianfeng Chen and Youping Xie
Mar. Drugs 2023, 21(7), 418; https://doi.org/10.3390/md21070418 - 23 Jul 2023
Cited by 2 | Viewed by 1598
Abstract
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key [...] Read more.
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently β-cyclize both ends of lycopene to produce β-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into β-monocyclic γ-carotene and ultimately produced α-carotene with a β-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60. Full article
(This article belongs to the Special Issue Marine Microbial Diversity as Source of Bioactive Compounds - Part II)
Show Figures

Figure 1

37 pages, 8767 KiB  
Review
Extracellular Matrix of Echinoderms
by Igor Yu. Dolmatov and Vladimir A. Nizhnichenko
Mar. Drugs 2023, 21(7), 417; https://doi.org/10.3390/md21070417 - 22 Jul 2023
Viewed by 1626
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. [...] Read more.
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins. Full article
Show Figures

Figure 1

26 pages, 2457 KiB  
Article
Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region
by Ana Rotter, Antonia Giannakourou, Jesús E. Argente García, Grazia Marina Quero, Charlène Auregan, George Triantaphyllidis, Amalia Venetsanopoulou, Roberta De Carolis, Chrysa Efstratiou, Marina Aboal, María Ángeles Esteban Abad, Ernesta Grigalionyte-Bembič, Yannis Kotzamanis, Mate Kovač, Maja Ljubić Čmelar, Gian Marco Luna, Cristóbal Aguilera, Francisco Gabriel Acién Fernández, Juan Luis Gómez Pinchetti, Sonia Manzo, Iva Milašinčić, Antun Nadarmija, Luisa Parrella, Massimiliano Pinat, Efstratios Roussos, Colin Ruel, Elisabetta Salvatori, Francisco Javier Sánchez Vázquez, María Semitiel García, Antonio F. Skarmeta Gómez, Jan Ulčar and Cristian Chiavettaadd Show full author list remove Hide full author list
Mar. Drugs 2023, 21(7), 416; https://doi.org/10.3390/md21070416 - 22 Jul 2023
Viewed by 2637
Abstract
Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a [...] Read more.
Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential. Full article
Show Figures

Figure 1

29 pages, 3373 KiB  
Article
Seasonal Monitoring of Volatiles and Antioxidant Activity of Brown Alga Cladostephus spongiosus
by Sanja Radman, Martina Čagalj, Vida Šimat and Igor Jerković
Mar. Drugs 2023, 21(7), 415; https://doi.org/10.3390/md21070415 - 21 Jul 2023
Cited by 1 | Viewed by 4057
Abstract
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). [...] Read more.
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). The effects of air drying and growing season on VOCs were determined. Two different extraction methods (ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE)) were used to obtain ethanolic extracts of C. spongiosus. In addition, the seasonal antioxidant potential of the extracts was determined, and non-volatile compounds were identified from the most potent antioxidant extract. Aliphatic compounds (e.g., pentadecane) were predominantly found by HS-SPME/GC-MS. Hydrocarbons were more than twice as abundant in the dry samples (except in May). Aliphatic alcohols (e.g., hexan-1-ol, octan-1-ol, and oct-1-en-3-ol) were present in high percentages and were more abundant in the fresh samples. Hexanal, heptanal, nonanal, and tridecanal were also found. Aliphatic ketones (octan-3-one, 6-methylhept-5-en-2-one, and (E,Z)-octa-3,5-dien-2-one) were more abundant in the fresh samples. Benzene derivatives (e.g., benzyl alcohol and benzaldehyde) were dominant in the fresh samples from May and August. (E)-Verbenol and p-cymen-8-ol were the most abundant in dry samples in May. HD revealed aliphatic compounds (e.g., heptadecane, pentadecanal, (E)-heptadec-8-ene, (Z)-heptadec-3-ene), sesquiterpenes (germacrene D, epi-bicyclosesquiphellandrene, gleenol), diterpenes (phytol, pachydictyol A, (E)-geranyl geraniol, cembra-4,7,11,15-tetraen-3-ol), and others. Among them, terpenes were the most abundant (except for July). Seasonal variations in the antioxidant activity of the ethanolic extracts were evaluated via different assays. MAE extracts showed higher peroxyl radical inhibition activity from 55.1 to 74.2 µM TE (Trolox equivalents). The highest reducing activity (293.8 µM TE) was observed for the May sample. Therefore, the May MAE extract was analysed via high-performance liquid chromatography with high-resolution mass spectrometry and electrospray ionisation (UHPLC-ESI-HRMS). In total, 17 fatty acid derivatives, 9 pigments and derivatives, and 2 steroid derivatives were found. The highest content of pheophorbide a and fucoxanthin, as well as the presence of other pigment derivatives, could be related to the observed antioxidant activity. Full article
Show Figures

Graphical abstract

21 pages, 2291 KiB  
Article
Kinetic Extraction of Fucoxanthin from Undaria pinnatifida Using Ethanol as a Solvent
by Catarina Lourenço-Lopes, Aurora Silva, Paula Garcia-Oliveira, Anton Soria-Lopez, Javier Echave, Clara Grosso, Lucia Cassani, Maria Fatima Barroso, Jesus Simal-Gandara, Maria Fraga-Corral and Miguel A. Prieto
Mar. Drugs 2023, 21(7), 414; https://doi.org/10.3390/md21070414 - 21 Jul 2023
Cited by 1 | Viewed by 1346
Abstract
Fucoxanthin (Fx) has been proven to exert numerous biological properties, which makes it an interesting molecule with diverse industrial applications. In this study, the kinetic behavior of Fx was studied to optimize three variables: time (t—3 min to 7 days), temperature [...] Read more.
Fucoxanthin (Fx) has been proven to exert numerous biological properties, which makes it an interesting molecule with diverse industrial applications. In this study, the kinetic behavior of Fx was studied to optimize three variables: time (t—3 min to 7 days), temperature (T—5 to 85 °C), and concentration of ethanol in water (S—50 to 100%, v/v), in order to obtain the best Fx yield from Undaria pinnatifida using conventional heat extraction. The Fx content (Y1) was found through HPLC-DAD and expressed in µg Fx/g of algae sample dry weight (AS dw). Furthermore, extraction yield (Y2) was also found through dry weight analysis and was expressed in mg extract (E)/g AS dw. The purity of the extracts (Y3) was found and expressed in mg Fx/g E dw. The optimal conditions selected for Y1 were T = 45 °C, S = 70%, and t = 66 min, obtaining ~5.24 mg Fx/g AS; for Y2 were T = 65 °C, S = 60%, and t = ~10 min, obtaining ~450 mg E/g AS; and for Y3 were T = 45 °C, S = 70%, and t = 45 min, obtaining ~12.3 mg Fx/g E. In addition, for the selected optimums, a full screening of pigments was performed by HPLC-DAD, while phenolics and flavonoids were quantified by spectrophotometric techniques and several biological properties were evaluated (namely, antioxidant, antimicrobial, and cholinesterase inhibitory activity). These results could be of interest for future applications in the food, cosmetic, or pharmaceutical industries, as they show the Fx kinetic behavior and could help reduce costs associated with energy and solvent consumption while maximizing the extraction yields. Full article
Show Figures

Graphical abstract

25 pages, 4526 KiB  
Perspective
Case Studies in Molecular Network-Guided Marine Biodiscovery
by Shamsunnahar Khushi, Angela A. Salim and Robert J. Capon
Mar. Drugs 2023, 21(7), 413; https://doi.org/10.3390/md21070413 - 20 Jul 2023
Viewed by 1619
Abstract
In reviewing a selection of recent case studies from our laboratory, we revealed some lessons learned and benefits accrued from the application of mass spectrometry (MS/MS) molecular networking in the field of marine sponge natural products. Molecular networking proved pivotal to our discovery [...] Read more.
In reviewing a selection of recent case studies from our laboratory, we revealed some lessons learned and benefits accrued from the application of mass spectrometry (MS/MS) molecular networking in the field of marine sponge natural products. Molecular networking proved pivotal to our discovery of many new natural products and even new classes of natural product, some of which were opaque to alternate dereplication and prioritization strategies. Case studies included the discovery of: (i) trachycladindoles, an exceptionally rare class of bioactive indole alkaloid previously only known from a single southern Australia sample of Trachycladus laevispirulifer; (ii) dysidealactams, an unprecedented class of sesquiterpene glycinyl-lactam and glycinyl-imide from a Dysidea sp., a sponge genera often discounted as having been exhaustively studied; (iii) cacolides, an unprecedented family of sesterterpene α-methyl-γ-hydroxybutenolides from a Cacospongia sp., all too easily mischaracterized and deprioritized during dereplication as a well-known class of sponge sesterterpene tetronic acids; and (iv) thorectandrins, a new class of indole alkaloid which revealed unexpected insights into the chemical and biological properties of the aplysinopsins, one of the earliest and more extensively reported class of sponge natural products. Full article
(This article belongs to the Special Issue Marine Metabolomics 2023)
Show Figures

Graphical abstract

20 pages, 3356 KiB  
Article
1,3,4-Oxadiazole and 1,3,4-Thiadiazole Nortopsentin Derivatives against Pancreatic Ductal Adenocarcinoma: Synthesis, Cytotoxic Activity, and Inhibition of CDK1
by Daniela Carbone, Camilla Pecoraro, Giovanna Panzeca, Geng Xu, Margot S. F. Roeten, Stella Cascioferro, Elisa Giovannetti, Patrizia Diana and Barbara Parrino
Mar. Drugs 2023, 21(7), 412; https://doi.org/10.3390/md21070412 - 19 Jul 2023
Cited by 7 | Viewed by 1386
Abstract
A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell [...] Read more.
A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell lines, a primary culture and a gemcitabine-resistant variant. The five more potent compounds elicited EC50 values in the submicromolar–micromolar range, associated with a significant reduction in cell migration. Moreover, flow cytometric analysis after propidium iodide staining revealed an increase in the G2-M and a decrease in G1-phase, indicating cell cycle arrest, while a specific ELISA demonstrated the inhibition of CDK1 activity, a crucial regulator of cell cycle progression and cancer cell proliferation. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

15 pages, 2360 KiB  
Article
Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass
by Gonçalo Espírito Santo, Ana Barros, Margarida Costa, Hugo Pereira, Mafalda Trovão, Helena Cardoso, Bernardo Carvalho, Maria Soares, Nádia Correia, Joana T. Silva, Marília Mateus and Joana L. Silva
Mar. Drugs 2023, 21(7), 411; https://doi.org/10.3390/md21070411 - 19 Jul 2023
Cited by 1 | Viewed by 1987
Abstract
Microalgae attract interest worldwide due to their potential for several applications. Scenedesmus is one of the first in vitro cultured algae due to their rapid growth and handling easiness. Within this genus, cells exhibit a highly resistant wall and propagate both auto- and [...] Read more.
Microalgae attract interest worldwide due to their potential for several applications. Scenedesmus is one of the first in vitro cultured algae due to their rapid growth and handling easiness. Within this genus, cells exhibit a highly resistant wall and propagate both auto- and heterotrophically. The main goal of the present work is to find scalable ways to produce a highly concentrated biomass of Scenedesmus rubescens in heterotrophic conditions. Scenedesmus rubescens growth was improved at the lab-scale by 3.2-fold (from 4.1 to 13 g/L of dry weight) through medium optimization by response surface methodology. Afterwards, scale-up was evaluated in 7 L stirred-tank reactor under fed-batch operation. Then, the optimized medium resulted in an overall productivity of 8.63 g/L/day and a maximum biomass concentration of 69.5 g/L. S. rubescens protein content achieved approximately 31% of dry weight, similar to the protein content of Chlorella vulgaris in heterotrophy. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Figure 1

14 pages, 3276 KiB  
Article
A Comparative Study about the Neuroprotective Effects of DHA-Enriched Phosphatidylserine and EPA-Enriched Phosphatidylserine against Oxidative Damage in Primary Hippocampal Neurons
by Yi-Wen Wang, Qian Li, Xiao-Yue Li, Ying-Cai Zhao, Cheng-Cheng Wang, Chang-Hu Xue, Yu-Ming Wang and Tian-Tian Zhang
Mar. Drugs 2023, 21(7), 410; https://doi.org/10.3390/md21070410 - 19 Jul 2023
Cited by 5 | Viewed by 1613
Abstract
Nerve damage caused by accumulated oxidative stress is one of the characteristics and main mechanisms of Alzheimer’s disease (AD). Previous studies have shown that phosphatidylserine (PS) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) plays a significant role in preventing and mitigating [...] Read more.
Nerve damage caused by accumulated oxidative stress is one of the characteristics and main mechanisms of Alzheimer’s disease (AD). Previous studies have shown that phosphatidylserine (PS) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) plays a significant role in preventing and mitigating the progression of AD. However, whether DHA-PS and EPA-PS can directly protect primary hippocampal neurons against oxidative damage has not been studied. Here, the neuroprotective functions of DHA-PS and EPA-PS against H2O2/t-BHP-induced oxidative damage and the possible mechanisms were evaluated in primary hippocampal neurons. It was found that DHA-PS and EPA-PS could significantly improve cell morphology and promote the restoration of neural network structure. Further studies showed that both of them significantly alleviated oxidative stress-mediated mitochondrial dysfunction. EPA-PS significantly inhibited the phosphorylation of ERK, thus playing an anti-apoptotic role, and EPA-PS significantly increased the protein expressions of p-TrkB and p-CREB, thus playing a neuroprotective role. In addition, EPA-PS, rather than DHA-PS could enhance synaptic plasticity by increasing the expression of SYN, and both could significantly reduce the expression levels of p-GSK3β and p-Tau. These results provide a scientific basis for the use of DHA/EPA-enriched phospholipids in the treatment of neurodegenerative diseases, and also provide a reference for the development of related functional foods. Full article
(This article belongs to the Special Issue Marine Fish Oils as Functional Foods)
Show Figures

Figure 1

17 pages, 14900 KiB  
Article
Comparison of the Effect of Phospholipid Extracts from Salmon and Silver Carp Heads on High-Fat-Diet-Induced Metabolic Syndrome in C57BL/6J Mice
by Qi Wang, Rui Wang, Xiuju Zhao, Hongyan Lu, Peng Zhang, Xinjie Dong and Yuming Wang
Mar. Drugs 2023, 21(7), 409; https://doi.org/10.3390/md21070409 - 19 Jul 2023
Cited by 1 | Viewed by 1412
Abstract
Metabolic syndrome (MetS) is a global health problem, and EPA/DHA-enriched phospholipids (EPA/DHA-PLs) have been found to have positive effects on MetS improvement. Currently, research on EPA/DHA-PL mainly focuses on special and rare seafood, such as phospholipids derived from krill, sea cucumber, squid, and [...] Read more.
Metabolic syndrome (MetS) is a global health problem, and EPA/DHA-enriched phospholipids (EPA/DHA-PLs) have been found to have positive effects on MetS improvement. Currently, research on EPA/DHA-PL mainly focuses on special and rare seafood, such as phospholipids derived from krill, sea cucumber, squid, and fish roe. However, it has been recently demonstrated that abundant EPA/DHA-PL can also be found in bulk fish and its by-products. Nonetheless, there is still limited research on the biological activities of EPA/DHA-PL derived from these sources. The aim of this study was to investigate the effect of phospholipid extracts from the heads of salmon and silver carp (S-PLE and SC-PLE) on the high-fat-diet-induced MetS in C57/BL mice. After an 8-week intervention, both SC-PLE and S-PLE had a significant ameliorating effect on MetS. Moreover, SC-PLE was more effective than S-PLE in reducing liver inflammation and fasting glucose. Both of the PL extracts were able to regulate the expression of key genes in lipid synthesis, fatty acid β-oxidation, and insulin signaling pathways. Compared with S-PLE, dietary SC-PLE had a greater influence on liver metabolomics. Pathway enrichment analysis showed that the differential metabolites of SC-PLE were mainly involved in arachidonic acid metabolism and glutathione metabolism. The results indicated that the different metabolic regulation methods of S-PLE and SC-PLE could be related to their variant molecular composition in EPA/DHA-PL. Full article
(This article belongs to the Special Issue Marine Functional Foods)
Show Figures

Figure 1

20 pages, 5775 KiB  
Article
Characterization of Some Dermato-Cosmetic Preparations with Marine Lipids from Black Sea Wild Stingray
by Magdalena Mititelu, Monica Licu, Carmen Elena Lupu, Sorinel Marius Neacșu, Gabriel Olteanu, Gabriela Stanciu, Doina Drăgănescu, Carmen-Nicoleta Oancea, Ștefan Sebastian Busnatu, Lucian Hîncu, Maria Viorica Ciocîlteu and Dumitru Lupuleasa
Mar. Drugs 2023, 21(7), 408; https://doi.org/10.3390/md21070408 - 19 Jul 2023
Cited by 2 | Viewed by 1431
Abstract
The traditional knowledge about the therapeutic and nutritional value of fish has been unanimously recognized among the population since ancient times. So, thanks to the therapeutic virtues of these marine animals, it was possible to develop therapies for certain pathologies as well as [...] Read more.
The traditional knowledge about the therapeutic and nutritional value of fish has been unanimously recognized among the population since ancient times. So, thanks to the therapeutic virtues of these marine animals, it was possible to develop therapies for certain pathologies as well as the use of bioactive compounds as adjunctive therapies incorporated into the treatment regimen of patients. In the present study, stingray liver oil from wild species collected from the Romanian coast of the Black Sea was isolated and analyzed. Fatty acid analysis was performed by gas chromatography. The analysis of the distribution of fatty acids in the composition of stingray liver oil indicates a ratio of 2.83 of omega 3 fatty acids to omega 6, a ratio of 1.33 of polyunsaturated fatty acids to monounsaturated fatty acids, an iodine index of 111.85, and a total percentage of 68.98% of unsaturated fatty acids. Stingray liver oil was used to evaluate the healing action after preparing a fatty ointment. According to the experimental data, a complete regeneration capacity of the wounds was noted in 12 days without visible signs. Four emulgels with stingray liver oil were formulated and analyzed from a rheological and structural point of view in order to select the optimal composition, after which the anti-inflammatory effect on inflammation caused in laboratory rats was studied and an anti-inflammatory effect was found significant (a maximum inhibitory effect of 66.47% on the edemas induced by the 10% kaolin suspension and 65.64% on the edemas induced by the 6% dextran solution). Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms)
Show Figures

Figure 1

18 pages, 10784 KiB  
Review
Dimeric (Poly)Hydroxynaphthazarins, Metabolites of Echinoderms and Lichens: The History of the Synthesis and Structure Elucidation
by Dmitry N. Pelageev, Ksenia L. Borisova and Victor Ph. Anufriev
Mar. Drugs 2023, 21(7), 407; https://doi.org/10.3390/md21070407 - 19 Jul 2023
Viewed by 864
Abstract
This review provides information on the synthesis and revision of the structures of natural dimeric (poly)hydroxynaphthazarins, metabolites of echinoderms and lichens, and on the refinement of the direction and mechanism of reactions in the synthesis of some of these compounds. Full article
Show Figures

Graphical abstract

17 pages, 2067 KiB  
Review
The Rare Marine Bioactive Compounds in Neurological Disorders and Diseases: Is the Blood-Brain Barrier an Obstacle or a Target?
by Xiaozhen Diao, Hui Han, Bailin Li, Zhen Guo, Jun Fu and Wenhui Wu
Mar. Drugs 2023, 21(7), 406; https://doi.org/10.3390/md21070406 - 18 Jul 2023
Cited by 3 | Viewed by 1796
Abstract
The blood-brain barrier (BBB) is a dynamic barrier separating neurocytes and brain tissues from blood that is extremely sealed and strictly regulated by transporters such as aquaporin-4 (AQP-4), glucose transporter (GLUT), and specialized tight junctional complexes (TJCs) including tight junctions (TJs), adherens junctions [...] Read more.
The blood-brain barrier (BBB) is a dynamic barrier separating neurocytes and brain tissues from blood that is extremely sealed and strictly regulated by transporters such as aquaporin-4 (AQP-4), glucose transporter (GLUT), and specialized tight junctional complexes (TJCs) including tight junctions (TJs), adherens junctions (AJs), and Zonulae occludens (ZOs). With specifically selective transcellular and paracellular permeability, the BBB maintains a homeostatic microenvironment to protect the central nervous system (CNS). In recent years, increasing attention has been paied to the importance of BBB disruption and dysfunction in the pathology of neurological disorders and diseases, such as Alzheimer’s diseases (AD), Parkinson diseases (PD), stroke and cerebral edema. However, the further research on how the integral structure and function of BBB are altered under the physiological or pathological conditions is still needed. Focusing on the ultrastructural features of the BBB and combining the latest research on associated proteins and transporters, physiological regulation and pathological change of the BBB were elucidated. By summarizing the protective effects of known bioactive compounds derived from marine life on the BBB, this review aims to highlight the BBB as a key to the treatment of several major neurological diseases instead of a normally described obstacle to drug absorption and transport. Overall, the BBB’s morphological characteristics and physiological function and their regulation provide the theoretical basis for the study on the BBB and inspire the diagnosis of and therapy for neurological diseases. Full article
(This article belongs to the Special Issue Perspectives for the Development of New Multitarget Marine Drugs)
Show Figures

Figure 1

11 pages, 1719 KiB  
Article
Jejucarbosides B–E, Chlorinated Cycloaromatized Enediynes, from a Marine Streptomyces sp.
by Ji Hyeon Im, Yern-Hyerk Shin, Eun Seo Bae, Sang Kook Lee and Dong-Chan Oh
Mar. Drugs 2023, 21(7), 405; https://doi.org/10.3390/md21070405 - 18 Jul 2023
Cited by 1 | Viewed by 1355
Abstract
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D [...] Read more.
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 14 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 μM, respectively, while jejucarbosides B–D (13) showed moderate or no cytotoxic effects. Full article
(This article belongs to the Special Issue Marine Drug Research in Korea II)
Show Figures

Graphical abstract

25 pages, 5688 KiB  
Article
Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking
by Nouran M. Fahmy, Mariam I. Gamal El-Din, Maha M. Salem, Sarah H. Rashedy, Gyu Sung Lee, Yoon Seo Jang, Ki Hyun Kim, Chung Sub Kim, Mohamed El-Shazly and Shaimaa Fayez
Mar. Drugs 2023, 21(7), 404; https://doi.org/10.3390/md21070404 - 17 Jul 2023
Cited by 4 | Viewed by 1621
Abstract
Brown algae comprise up to 2000 species with wide dissemination in temperate zones. A comprehensive untargeted metabolic profiling guided by molecular networking of three uninvestigated Red-Sea-derived brown algae, namely Sirophysalis trinodis, Polycladia myrica, and Turbinaria triquetra, led to the identification [...] Read more.
Brown algae comprise up to 2000 species with wide dissemination in temperate zones. A comprehensive untargeted metabolic profiling guided by molecular networking of three uninvestigated Red-Sea-derived brown algae, namely Sirophysalis trinodis, Polycladia myrica, and Turbinaria triquetra, led to the identification of over 115 metabolites categorized as glycerolipids, fatty acids, sterol lipids, sphingolipids, and phospholipids. The three algae exhibited low-to-moderate antioxidant capacity using DPPH and ABTS assays. Preliminary in vitro antiproliferative studies showed that the algal extracts displayed high cytotoxic activity against a panel of cancer cell lines. The most potent activity was recorded against MCF-7 with IC50 values of 51.37 ± 1.19, 63.44 ± 1.13, and 59.70 ± 1.22 µg/mL for S. trinodis, P. myrica, and T. triquetra, respectively. The cytotoxicity of the algae was selective to MCF-7 without showing notable effects on the proliferation of normal human WISH cells. Morphological studies revealed that the algae caused cell shrinkage, increased cellular debris, triggered detachment, cell rounding, and cytoplasmic condensation in MCF-7 cancer cells. Mechanistic investigations using flow cytometry, qPCR, and Western blot showed that the algae induced apoptosis, initiated cell cycle arrest in the sub-G0/G1 phase, and inhibited the proliferation of cancer cells via increasing mRNA and protein expression of p53, while reducing the expression of PI3K, Akt, and mTOR. Full article
Show Figures

Graphical abstract

21 pages, 2388 KiB  
Article
Promoting Heme and Phycocyanin Biosynthesis in Synechocystis sp. PCC 6803 by Overexpression of Porphyrin Pathway Genes with Genetic Engineering
by Kai Cao, Xiaodong Wang, Fengjie Sun, Hao Zhang, Yulin Cui, Yujiao Cao, Qingshou Yao, Xiangyu Zhu, Ting Yao, Meng Wang, Chunxiao Meng and Zhengquan Gao
Mar. Drugs 2023, 21(7), 403; https://doi.org/10.3390/md21070403 - 13 Jul 2023
Cited by 1 | Viewed by 2189
Abstract
Due to their unique biochemical and spectroscopic properties, both heme and phycocyanobilin are widely applied in the medical and food industries. Synechocystis sp. PCC 6803 contains both heme and phycocyanin, and is capable of synthesizing phycocyanin using heme as a precursor. The aim [...] Read more.
Due to their unique biochemical and spectroscopic properties, both heme and phycocyanobilin are widely applied in the medical and food industries. Synechocystis sp. PCC 6803 contains both heme and phycocyanin, and is capable of synthesizing phycocyanin using heme as a precursor. The aim of this study was to uncover viable metabolic targets in the porphyrin pathway from Synechocystis sp. PCC 6803 to promote the accumulation of heme and phycocyanin in the recombinant strains of microalgae. A total of 10 genes related to heme synthesis pathway derived from Synechococcus elongatus PCC 7942 and 12 genes related to endogenous heme synthesis were individually overexpressed in strain PCC 6803. The growth rate and pigment content (heme, phycocyanin, chlorophyll a and carotenoids) of 22 recombinant algal strains were characterized. Quantitative real-time PCR technology was used to investigate the molecular mechanisms underlying the changes in physiological indicators in the recombinant algal strains. Among the 22 mutant strains, the mutant overexpressing the haemoglobin gene (glbN) of strain PCC 6803 had the highest heme content, which was 2.5 times higher than the wild type; the mutant overexpressing the gene of strain PCC 7942 (hemF) had the highest phycocyanin content, which was 4.57 times higher than the wild type. Overall, the results suggest that genes in the porphyrin pathway could significantly affect the heme and phycocyanin content in strain PCC 6803. Our study provides novel crucial targets for promoting the accumulation of heme and phycocyanin in cyanobacteria. Full article
(This article belongs to the Special Issue Novel Biotechnology of Microalgae)
Show Figures

Figure 1

21 pages, 8936 KiB  
Review
Continuous Flow Chemistry: A Novel Technology for the Synthesis of Marine Drugs
by Laura F. Peña, Paula González-Andrés, Lucía G. Parte, Raúl Escribano, Javier Guerra, Asunción Barbero and Enol López
Mar. Drugs 2023, 21(7), 402; https://doi.org/10.3390/md21070402 - 13 Jul 2023
Cited by 1 | Viewed by 3922
Abstract
In this perspective, we showcase the benefits of continuous flow chemistry and photochemistry and how these valuable tools have contributed to the synthesis of organic scaffolds from the marine environment. These technologies have not only facilitated previously described synthetic pathways, but also opened [...] Read more.
In this perspective, we showcase the benefits of continuous flow chemistry and photochemistry and how these valuable tools have contributed to the synthesis of organic scaffolds from the marine environment. These technologies have not only facilitated previously described synthetic pathways, but also opened new opportunities in the preparation of novel organic molecules with remarkable pharmacological properties which can be used in drug discovery programs. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 842 KiB  
Article
Hydantoanabaenopeptins from Lake Kinneret Microcystis Bloom, Isolation, and Structure Elucidation of the Possible Intermediates in the Anabaenopeptins Biosynthesis
by Shira Weisthal Algor, Assaf Sukenik and Shmuel Carmeli
Mar. Drugs 2023, 21(7), 401; https://doi.org/10.3390/md21070401 - 13 Jul 2023
Cited by 1 | Viewed by 936
Abstract
Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom [...] Read more.
Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The 1H NMR spectra of some of these compounds presented a significant difference in the appearance of the ureido bridge protons, and their molecular masses did not match any one of the 152 known anabaenopeptins. Analyses of the 1D and 2D NMR, HRMS, and MS/MS spectra of the new compounds revealed their structures as the hydantoin derivatives of anabaenopeptins A, B, F, and 1[Dht]-anabaenopeptin A and oscillamide Y (1, 2, 3, 6, and 4, respectively) and a new anabaenopeptin, 1[Dht]-anabaenopeptin A (5). The known anabaenopeptins A, B, and F and oscillamide Y (7, 8, 9, and 10, respectively) were present in the extract as well. We propose that 14 and 6 are the possible missing intermediates in the previously proposed partial biosynthesis route to the anabaenopeptins. Compounds 16 were tested for inhibition of the serine proteases trypsin and chymotrypsin and found inactive at a final concentration of ca. 54 μM. Full article
(This article belongs to the Special Issue 20 Years Commemorative Issue in Honor of Professor Paul J. Scheuer)
Show Figures

Graphical abstract

17 pages, 3851 KiB  
Article
Light-Mediated Transformation of Renieramycins and Semisynthesis of 4′-Pyridinecarbonyl-Substituted Renieramycin-Type Derivatives as Potential Cytotoxic Agents against Non-Small-Cell Lung Cancer Cells
by Suwimon Sinsook, Koonchira Buaban, Iksen Iksen, Korrakod Petsri, Bhurichaya Innets, Chaisak Chansriniyom, Khanit Suwanborirux, Masashi Yokoya, Naoki Saito, Varisa Pongrakhananon, Pithi Chanvorachote and Supakarn Chamni
Mar. Drugs 2023, 21(7), 400; https://doi.org/10.3390/md21070400 - 13 Jul 2023
Viewed by 1775
Abstract
The semisynthesis of renieramycin-type derivatives was achieved under mild and facile conditions by attaching a 1,3-dioxole-bridged phenolic moiety onto ring A of the renieramycin structure and adding a 4′-pyridinecarbonyl ester substituent at its C-5 or C-22 position. These were accomplished through a light-induced [...] Read more.
The semisynthesis of renieramycin-type derivatives was achieved under mild and facile conditions by attaching a 1,3-dioxole-bridged phenolic moiety onto ring A of the renieramycin structure and adding a 4′-pyridinecarbonyl ester substituent at its C-5 or C-22 position. These were accomplished through a light-induced intramolecular photoredox reaction using blue light (4 W) and Steglich esterification, respectively. Renieramycin M (4), a bis-tetrahydroisoquinolinequinone compound isolated from the Thai blue sponge (Xestospongia sp.), served as the starting material. The cytotoxicity of the 10 natural and semisynthesized renieramycins against non-small-cell lung cancer (NSCLC) cell lines was evaluated. The 5-O-(4′-pyridinecarbonyl) renieramycin T (11) compound exhibited high cytotoxicity with half-maximal inhibitory concentration (IC50) values of 35.27 ± 1.09 and 34.77 ± 2.19 nM against H290 and H460 cells, respectively. Notably, the potency of compound 11 was 2-fold more than that of renieramycin T (7) and equal to those of 4 and doxorubicin. Interestingly, the renieramycin-type derivatives with a hydroxyl group at C-5 and C-22 exhibited weak cytotoxicity. In silico molecular docking and dynamics studies confirmed that the mitogen-activated proteins, kinase 1 and 3 (MAPK1 and MAPK3), are suitable targets for 11. Thus, the structure–cytotoxicity study of renieramycins was extended to facilitate the development of potential anticancer agents for NSCLC cells. Full article
Show Figures

Graphical abstract

18 pages, 2487 KiB  
Review
The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy
by Atiporn Therdyothin, Nacharin Phiphopthatsanee and Masoud Isanejad
Mar. Drugs 2023, 21(7), 399; https://doi.org/10.3390/md21070399 - 13 Jul 2023
Cited by 9 | Viewed by 4549
Abstract
Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality, and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation, have been sought to prevent [...] Read more.
Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality, and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation, have been sought to prevent this condition. This narrative review summarizes the current evidence on the effect and mechanism of n-3 PUFA on musculoskeletal health. Despite conflicting evidence, n-3 PUFA is suggested to benefit muscle mass and volume, with more evident effects with higher supplementation dose (>2 g/day). n-3 PUFA supplementation likely improves handgrip and quadriceps strength in the elderly. Improved muscle functions, measured by walking speed and time-up-to-go test, are also observed, especially with longer duration of supplementation (>6 months), although the changes are small and unlikely to be clinically meaningful. Lastly, n-3 PUFA supplementation may positively affect muscle protein synthesis response to anabolic stimuli, alleviating age-related anabolic resistance. Proposed mechanisms by which n-3 PUFA supplementation improves muscle health include 1. anti-inflammatory properties, 2. augmented expression of mechanistic target of rapamycin complex 1 (mTORC1) pathway, 3. decreased intracellular protein breakdown, 4. improved mitochondrial biogenesis and function, 5. enhanced amino acid transport, and 6. modulation of neuromuscular junction activity. In conclusion, n-3 PUFAs likely improve musculoskeletal health related to sarcopenia, with suggestive effect on muscle mass, strength, physical performance, and muscle protein synthesis. However, the interpretation of the findings is limited by the small number of participants, heterogeneity of supplementation regimens, and different measuring protocols. Full article
Show Figures

Graphical abstract

13 pages, 3277 KiB  
Article
Omega-3 Polyunsaturated Fatty Acid Eicosapentaenoic Acid or Docosahexaenoic Acid Improved Ageing-Associated Cognitive Decline by Regulating Glial Polarization
by Juan Xia, Longen Yang, Chengyi Huang, Shuyi Deng, Zhiyou Yang, Yongping Zhang, Cai Zhang and Cai Song
Mar. Drugs 2023, 21(7), 398; https://doi.org/10.3390/md21070398 - 10 Jul 2023
Cited by 3 | Viewed by 1988
Abstract
Neuroinflammation induced by microglial and astrocyte polarizations may contribute to neurodegeneration and cognitive impairment. Omega (n)-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory and neuroprotective effects, but conflicting results were reported after different n-3 PUFA treatments. This study examined both the change in glial [...] Read more.
Neuroinflammation induced by microglial and astrocyte polarizations may contribute to neurodegeneration and cognitive impairment. Omega (n)-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory and neuroprotective effects, but conflicting results were reported after different n-3 PUFA treatments. This study examined both the change in glial polarizations in ageing rats and the differential effects of two omega-3 PUFAs. The results showed that both PUFAs improved spatial memory in ageing rats, with docosahexaenoic acid (DHA) being more effective than eicosapentaenoic acid (EPA). The imbalance between microglial M1/M2 polarizations, such as up-regulating ionized calcium binding adaptor molecule 1 (IBA1) and down-regulating CD206 and arginase-1 (ARG-1) was reversed in the hippocampus by both n-3 PUFAs, while the DHA effect on CD206 was stronger. Astrocyte A1 polarization presented increasing S100B and C3 but decreasing A2 parameter S100A10 in the ageing brain, which were restored by both PUFAs, while DHA was more effective on S100A10 than EPA. Consistent with microglial M1 activation, the concentration of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were significantly increased, which were attenuated by DHA, while EPA only suppressed IL-6. In correlation with astrocyte changes, brain-derived neurotrophic factor precursor was increased in ageing rats, which was more powerfully down-regulated by DHA than EPA. In summary, enhanced microglial M1 and astrocytic A1 polarizations may contribute to increased brain pro-inflammatory cytokines, while DHA was more powerful than EPA to alleviate ageing-associated neuroimmunological changes, thereby better-improving memory impairment. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds against Oxidative Stress and Inflammation)
Show Figures

Graphical abstract

18 pages, 4385 KiB  
Article
Valorisation of the Invasive Macroalgae Undaria pinnatifida (Harvey) Suringar for the Green Synthesis of Gold and Silver Nanoparticles with Antimicrobial and Antioxidant Potential
by Noelia González-Ballesteros, Mário Fernandes, Raúl Machado, Paula Sampaio, Andreia C. Gomes, Antonella Cavazza, Franca Bigi and Maria Carmen Rodríguez-Argüelles
Mar. Drugs 2023, 21(7), 397; https://doi.org/10.3390/md21070397 - 9 Jul 2023
Cited by 7 | Viewed by 1818
Abstract
Bacterial and fungal infections are a challenging global problem due to the reported increasing resistance of pathogenic microorganisms to conventional antimicrobials. Nanomaterials are a promising strategy to fight infections caused by multidrug-resistant microbes. In this work, gold (Au@UP) and silver (Ag@UP) nanoparticles were [...] Read more.
Bacterial and fungal infections are a challenging global problem due to the reported increasing resistance of pathogenic microorganisms to conventional antimicrobials. Nanomaterials are a promising strategy to fight infections caused by multidrug-resistant microbes. In this work, gold (Au@UP) and silver (Ag@UP) nanoparticles were produced for the first time by green synthesis using an aqueous extract of the invasive macroalgae Undaria pinnatifida (UP). The nanoparticles were characterized by a wide range of physicochemical techniques. Au@UP and Ag@UP demonstrated to be spherical and crystalline with an average size of 6.8 ± 1.0 nm and 14.1 ± 2.8 nm, respectively. Carbohydrates and proteins of the UP extract may participate in the synthesis and capping of the nanoparticles. The UP extract, Ag@UP, and Au@UP were assessed for their antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Candida auris. Ag@UP showed the highest antimicrobial activity with very low MIC and MBC values for all the tested bacteria, and Au@UP demonstrated to be very effective against biofilm-producing bacteria. The antifungal properties of both Ag@UP and Au@UP were remarkable, inhibiting hyphae formation. This study points towards a very promising biomedical exploitation of this invasive brown algae. Full article
(This article belongs to the Special Issue Nanoparticles Synthesis with Marine Substances)
Show Figures

Graphical abstract

17 pages, 4588 KiB  
Article
Brevetoxin versus Brevenal Modulation of Human Nav1 Channels
by Rocio K. Finol-Urdaneta, Boris S. Zhorov, Daniel G. Baden and David J. Adams
Mar. Drugs 2023, 21(7), 396; https://doi.org/10.3390/md21070396 - 7 Jul 2023
Cited by 6 | Viewed by 1269
Abstract
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In [...] Read more.
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In this study, the PbTx-3 and brevenal modulation of tissue-representative Nav channel subtypes Nav1.2, Nav1.4, Nav1.5, and Nav1.7 were examined using automated patch-clamp. While PbTx-3 and brevenal elicit concentration-dependent and subtype-specific modulatory effects, PbTx-3 is >1000-fold more potent than brevenal. Consistent with effects observed in native tissues, Nav1.2 and Nav1.4 channels were PbTx-3- and brevenal-sensitive, whereas Nav1.5 and Nav1.7 appeared resistant. Interestingly, the incorporation of brevenal in the intracellular solution caused Nav channels to become less sensitive to PbTx-3 actions. Furthermore, we generated a computational model of PbTx-2 bound to the lipid-exposed side of the interface between domains I and IV of Nav1.2. Our results are consistent with competitive antagonism between brevetoxins and brevenal, setting a basis for future mutational analyses of Nav channels’ interaction with brevetoxins and brevenal. Our findings provide valuable insights into the functional modulation of Nav channels by brevetoxins and brevenal, which may have implications for the development of new Nav channel modulators with potential therapeutic applications. Full article
Show Figures

Figure 1

15 pages, 2781 KiB  
Article
The Structural Characteristics and Bioactivity Stability of Cucumaria frondosa Intestines and Ovum Hydrolysates Obtained by Different Proteases
by Qiuting Wang, Gongming Wang, Chuyi Liu, Zuli Sun, Ruimin Li, Jiarun Gao, Mingbo Li and Leilei Sun
Mar. Drugs 2023, 21(7), 395; https://doi.org/10.3390/md21070395 - 6 Jul 2023
Cited by 1 | Viewed by 1094
Abstract
The study aimed to investigate the effects of alcalase, papain, flavourzyme, and neutrase on the structural characteristics and bioactivity stability of Cucumaria frondosa intestines and ovum hydrolysates (CFHs). The findings revealed that flavourzyme exhibited the highest hydrolysis rate (51.88% ± 1.87%). At pH [...] Read more.
The study aimed to investigate the effects of alcalase, papain, flavourzyme, and neutrase on the structural characteristics and bioactivity stability of Cucumaria frondosa intestines and ovum hydrolysates (CFHs). The findings revealed that flavourzyme exhibited the highest hydrolysis rate (51.88% ± 1.87%). At pH 2.0, the solubility of hydrolysate was the lowest across all treatments, while the solubility at other pH levels was over 60%. The primary structures of hydrolysates of different proteases were similar, whereas the surface hydrophobicity of hydrolysates was influenced by the types of proteases used. The hydrolysates produced by different proteases were also analyzed for their absorption peaks and antioxidant activity. The hydrolysates of flavourzyme had β-fold absorption peaks (1637 cm−1), while the neutrase and papain hydrolysates had N-H bending vibrations. The tertiary structure of CFHs was unfolded by different proteases, exposing the aromatic amino acids and red-shifting of the λ-peak of the hydrolysate. The alcalase hydrolysates showed better antioxidant activity in vitro and better surface hydrophobicity than the other hydrolysates. The flavourzyme hydrolysates displayed excellent antioxidant stability and pancreatic lipase inhibitory activity during gastrointestinal digestion, indicating their potential use as antioxidants in the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Marine Bioactive Peptides—Structure, Function, and Application 2.0)
Show Figures

Graphical abstract

15 pages, 7791 KiB  
Article
Chitosan/Virgin-Coconut-Oil-Based System Enriched with Cubosomes: A 3D Drug-Delivery Approach
by Simone S. Silva, Luísa C. Rodrigues, Emanuel M. Fernandes, Diana Soares da Costa, Denise G. Villalva, Watson Loh and Rui L. Reis
Mar. Drugs 2023, 21(7), 394; https://doi.org/10.3390/md21070394 - 6 Jul 2023
Cited by 2 | Viewed by 1717
Abstract
Emulsion-based systems that combine natural polymers with vegetable oils have been identified as a promising research avenue for developing structures with potential for biomedical applications. Herein, chitosan (CHT), a natural polymer, and virgin coconut oil (VCO), a resource obtained from coconut kernels, were [...] Read more.
Emulsion-based systems that combine natural polymers with vegetable oils have been identified as a promising research avenue for developing structures with potential for biomedical applications. Herein, chitosan (CHT), a natural polymer, and virgin coconut oil (VCO), a resource obtained from coconut kernels, were combined to create an emulsion system. Phytantriol-based cubosomes encapsulating sodium diclofenac, an anti-inflammatory drug, were further dispersed into CHT/VCO- based emulsion. Then, the emulsions were frozen and freeze-dried to produce scaffolds. The scaffolds had a porous structure ranging from 20.4 to 73.4 µm, a high swelling ability (up to 900%) in PBS, and adequate stiffness, notably in the presence of cubosomes. Moreover, a well-sustained release of the entrapped diclofenac in the cubosomes into the CHT/VCO-based system, with an accumulated release of 45 ± 2%, was confirmed in PBS, compared to free diclofenac dispersed (80 ± 4%) into CHT/VCO-based structures. Overall, the present approach opens up new avenues for designing porous biomaterials for drug delivery through a sustainable pathway. Full article
(This article belongs to the Special Issue Marine Biopolymers and Their Applications in Drug Delivery)
Show Figures

Graphical abstract

17 pages, 2132 KiB  
Article
Quantification of Xylanolytic and Cellulolytic Activities of Fungal Strains Isolated from Palmaria palmata to Enhance R-Phycoerythrin Extraction of Palmaria palmata: From Seaweed to Seaweed
by Yoran Le Strat, Margaux Mandin, Nicolas Ruiz, Thibaut Robiou du Pont, Emilie Ragueneau, Alexandre Barnett, Paul Déléris and Justine Dumay
Mar. Drugs 2023, 21(7), 393; https://doi.org/10.3390/md21070393 - 5 Jul 2023
Cited by 1 | Viewed by 1402
Abstract
R-phycoerythrin (R-PE) can be enzymatically extracted from red seaweeds such as Palmaria palmata. This pigment has numerous applications and is notably known as an antioxidant, antitumoral or anti-inflammatory agent. Enzymes secreted by P. palmata associated fungal strains were assumed to be efficient [...] Read more.
R-phycoerythrin (R-PE) can be enzymatically extracted from red seaweeds such as Palmaria palmata. This pigment has numerous applications and is notably known as an antioxidant, antitumoral or anti-inflammatory agent. Enzymes secreted by P. palmata associated fungal strains were assumed to be efficient and adapted for R-PE extraction from this macroalga. The aim of the present study was to quantify both xylanolytic and cellulolytic activities of enzymatic extracts obtained from six Palmaria palmata derived fungal strains. Degradation of P. palmata biomass by fungal enzymatic extracts was also investigated, focused on soluble protein and R-PE extraction. Enzymatic extracts were obtained by solid state fermentation. Macroalgal degradation abilities were evaluated by measuring reducing sugar release using DNS assays. Soluble proteins and R-PE recovery yields were evaluated through bicinchoninic acid and spectrophotometric assays, respectively. Various enzymatic activities were obtained according to fungal isolates up to 978 U/mL for xylanase and 50 U/mL for cellulase. Enzymatic extract allowed high degrading abilities, with four of the six fungal strains assessed exhibiting at least equal results as the commercial enzymes for the reducing sugar release. Similarly, all six strains allowed the same soluble protein extraction yield and four of them led to an improvement of R-PE extraction. R-PE extraction from P. palamata using marine fungal enzymes appeared particularly promising. To the best of our knowledge, this study is the first on the use of enzymes of P. palmata associated fungi in the degradation of its own biomass for biomolecules recovery. Full article
(This article belongs to the Special Issue Marine Algal Biorefinery for Bioactive Compound Production)
Show Figures

Graphical abstract

19 pages, 755 KiB  
Article
Impact of Harvest Month and Drying Process on the Nutritional and Bioactive Properties of Wild Palmaria palmata from Atlantic Canada
by Bétina Lafeuille, Éric Tamigneaux, Karine Berger, Véronique Provencher and Lucie Beaulieu
Mar. Drugs 2023, 21(7), 392; https://doi.org/10.3390/md21070392 - 3 Jul 2023
Cited by 1 | Viewed by 1502
Abstract
The macroalga Palmaria palmata could be a sustainable and nutritional food resource. However, its composition may vary according to its environment and to processing methods used. To investigate these variations, wild P. palmata from Quebec were harvested in October 2019 and June 2020, [...] Read more.
The macroalga Palmaria palmata could be a sustainable and nutritional food resource. However, its composition may vary according to its environment and to processing methods used. To investigate these variations, wild P. palmata from Quebec were harvested in October 2019 and June 2020, and dried (40 °C, ≃5 h) or stored as frozen controls (−80 °C). The chemical (lipids, proteins, ash, carbohydrates, fibers), mineral (I, K, Na, Ca, Mg, Fe), potential bioactive compound (carotenoids, polyphenols, β-carotene, α-tocopherol) compositions, and the in vitro antioxidant activity and angiotensin-converting enzyme (ACE) inhibition potential of water-soluble extracts were determined. The results suggested a more favorable macroalgae composition in June with a higher content of most nutrients, minerals, and bioactive compounds. October specimens were richer only in carbohydrates and carotenoids. No significant differences in antioxidant or anti-ACE inhibitory activities were found between the two harvest months. The drying process did not significantly impact the chemical and mineral compositions, resulting in only small variations. However, drying had negative impacts on polyphenols and anti-ACE activities in June, and on carotenoids in October. In addition, a concentration effect was observed for carotenoids, β-carotene and α-tocopherol in June. To provide macroalgae of the highest nutritional quality, the drying process for June specimens should be selected. Full article
(This article belongs to the Special Issue Health Benefits of Seaweeds’ Consumption)
Show Figures

Graphical abstract

13 pages, 3307 KiB  
Article
Protective Effect of Fucoxanthin on Zearalenone-Induced Hepatic Damage through Nrf2 Mediated by PI3K/AKT Signaling
by Rebai Ben Ammar, Hamad Abu Zahra, Abdulmalek Mohammad Abu Zahra, Manal Alfwuaires, Sarah Abdulaziz Alamer, Ashraf M. Metwally, Thnaian A. Althnaian and Saeed Y. Al-Ramadan
Mar. Drugs 2023, 21(7), 391; https://doi.org/10.3390/md21070391 - 3 Jul 2023
Cited by 1 | Viewed by 1482
Abstract
Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) [...] Read more.
Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) is a brown-algae-derived dietary compound that is reported to prevent hepatotoxicity caused by ZEA. This compound has multiple biological functions, including anti-diabetic, anti-obesity, anti-microbial, and anti-cancer properties. Furthermore, FXN is a powerful antioxidant. In this study, we examined the effects of FXN on ZEA-induced stress and inflammation in HepG2 cells. MTT assays, ROS generation assays, Western blots, and apoptosis analysis were used to evaluate the effects of FXN on ZEA-induced HepG2 cell inflammation. Pre-incubation with FXN reduced the cytotoxicity of ZEA toward HepG2 cells. FXN inhibited the ZEA-induced production of pro-inflammatory cytokines, including IL-1 β, IL-6, and TNF-α. Moreover, FXN increased HO-1 expression in HepG2 by activating the PI3K/AKT/NRF2 signaling pathway. In conclusion, FXN inhibits ZEA-induced inflammation and oxidative stress in hepatocytes by targeting Nrf2 via activating PI3K/AKT signaling. Full article
(This article belongs to the Special Issue Advances in Marine-Derived Fucoxanthin Studies)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop