Next Issue
Volume 8, February
Previous Issue
Volume 7, December
 
 

Mar. Drugs, Volume 8, Issue 1 (January 2010) – 11 articles , Pages 1-218

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
290 KiB  
Review
Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications
by Xiao Ting Fu and Sang Moo Kim
Mar. Drugs 2010, 8(1), 200-218; https://doi.org/10.3390/md8010200 - 26 Jan 2010
Cited by 255 | Viewed by 20103
Abstract
Agarases are the enzymes which catalyze the hydrolysis of agar. They are classified into α-agarase (E.C. 3.2.1.158) and β-agarase (E.C. 3.2.1.81) according to the cleavage pattern. Several agarases have been isolated from different genera of bacteria found in seawater and marine sediments, as [...] Read more.
Agarases are the enzymes which catalyze the hydrolysis of agar. They are classified into α-agarase (E.C. 3.2.1.158) and β-agarase (E.C. 3.2.1.81) according to the cleavage pattern. Several agarases have been isolated from different genera of bacteria found in seawater and marine sediments, as well as engineered microorganisms. Agarases have wide applications in food industry, cosmetics, and medical fields because they produce oligosaccharides with remarkable activities. They are also used as a tool enzyme for biological, physiological, and cytological studies. The paper reviews the category, source, purification method, major characteristics, and application fields of these native and gene cloned agarases in the past, present, and future. Full article
(This article belongs to the Special Issue Enzymes from the Sea: Sources, Molecular Biology and Bioprocesses)
Show Figures

362 KiB  
Article
ESI FTICR-MS Analysis of Larvae from the Marine Sponge Luffariella variabilis
by Cherie A. Motti, Piers Ettinger-Epstein, Richard H. Willis and Dianne M. Tapiolas
Mar. Drugs 2010, 8(1), 190-199; https://doi.org/10.3390/md8010190 - 22 Jan 2010
Cited by 9 | Viewed by 11844
Abstract
The viviparous Great Barrier Reef sponge Luffariella variabilis (Poléjaeff 1884) contains a range of secondary metabolites, including manoalide (1) and manoalide monoacetate (3). ESI (+) FTICR-MS accurate mass determination has, for the first time, been used to detected the [...] Read more.
The viviparous Great Barrier Reef sponge Luffariella variabilis (Poléjaeff 1884) contains a range of secondary metabolites, including manoalide (1) and manoalide monoacetate (3). ESI (+) FTICR-MS accurate mass determination has, for the first time, been used to detected the presence of 3 only in an organic extract of a single L. variabilis larva showing that the parentally produced 3 is sequestered in the larva. As 3 has previously been shown to have antibacterial and quorum sensing inhibition activity, and readily converts to 1, which also exhibits similar activity, it may provide a chemical defence against predation and microbial attack. Full article
Show Figures

Graphical abstract

260 KiB  
Article
Qualitative and Quantitative Saponin Contents in Five Sea Cucumbers from the Indian Ocean
by Séverine Van Dyck, Pascal Gerbaux and Patrick Flammang
Mar. Drugs 2010, 8(1), 173-189; https://doi.org/10.3390/md8010173 - 21 Jan 2010
Cited by 108 | Viewed by 16616
Abstract
To avoid predation, holothuroids produce feeding-deterrent molecules in their body wall and viscera, the so-called saponins. Five tropical sea cucumber species of the family Holothuriidae were investigated in order to study their saponin content in two different organs, the body wall and the [...] Read more.
To avoid predation, holothuroids produce feeding-deterrent molecules in their body wall and viscera, the so-called saponins. Five tropical sea cucumber species of the family Holothuriidae were investigated in order to study their saponin content in two different organs, the body wall and the Cuvierian tubules. Mass spectrometry techniques (MALDI- and ESI-MS) were used to detect and analyze saponins. The smallest number of saponins was observed in Holothuria atra, which contained a total of four congeners, followed by Holothuria leucospilota, Pearsonothuria graeffei and Actinopyga echinites with six, eight and ten congeners, respectively. Bohadschia subrubra revealed the highest saponin diversity (19 congeners). Saponin mixtures also varied between the two body compartments within a given animal. A semi-quantitative approach completed these results and showed that a high diversity of saponins is not particularly correlated to a high saponin concentration. Although the complexity of the saponin mixtures described makes the elucidation of their respective biological roles difficult, the comparisons between species and between body compartments give some clues about how these molecules may act as predator repellents. Full article
(This article belongs to the Special Issue Marine Biotoxins: Novel Issues about Old Compounds)
Show Figures

Graphical abstract

2365 KiB  
Review
Calyculins and Related Marine Natural Products as Serine- Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C
by Annika E. Fagerholm, Damien Habrant and Ari M. P. Koskinen
Mar. Drugs 2010, 8(1), 122-172; https://doi.org/10.3390/md80100122 - 21 Jan 2010
Cited by 56 | Viewed by 16477
Abstract
Calyculins, highly cytotoxic polyketides, originally isolated from the marine sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges group. These molecules have become interesting targets for cell biologists and synthetic organic chemists. The serine/threonine protein phosphatases play an essential role [...] Read more.
Calyculins, highly cytotoxic polyketides, originally isolated from the marine sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges group. These molecules have become interesting targets for cell biologists and synthetic organic chemists. The serine/threonine protein phosphatases play an essential role in the cellular signalling, metabolism, and cell cycle control. Calyculins express potent protein phosphatase 1 and 2A inhibitory activity, and have therefore become valuable tools for cellular biologists studying intracellular processes and their control by reversible phosphorylation. Calyculins might also play an important role in the development of several diseases such as cancer, neurodegenerative diseases, and type 2-diabetes mellitus. The fascinating structures of calyculins have inspired various groups of synthetic organic chemists to develop total syntheses of the most abundant calyculins A and C. However, with fifteen chiral centres, a cyano-capped tetraene unit, a phosphate-bearing spiroketal, an anti, anti, anti dipropionate segment, an α-chiral oxazole, and a trihydroxylated γ-amino acid, calyculins reach versatility that only few natural products can surpass, and truly challenge modern chemists’ asymmetric synthesis skills. Full article
(This article belongs to the Special Issue Synthesis around Marine Natural Products)
Show Figures

Graphical abstract

219 KiB  
Article
Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme
by Lorenzo Ferroni, Manfred Klisch, Simonetta Pancaldi and Donat-Peter Häder
Mar. Drugs 2010, 8(1), 106-121; https://doi.org/10.3390/md8010106 - 20 Jan 2010
Cited by 48 | Viewed by 16128
Abstract
Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW [...] Read more.
Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW-1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. Full article
(This article belongs to the Special Issue Marine Photoprotective Compounds)
Show Figures

Graphical abstract

203 KiB  
Article
Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment
by Anabela Tavares, Carla M. B. Carvalho, Maria A. Faustino, Maria G. P. M. S. Neves, João P. C. Tomé, Augusto C. Tomé, José A. S. Cavaleiro, Ângela Cunha, Newton C. M. Gomes, Eliana Alves and Adelaide Almeida
Mar. Drugs 2010, 8(1), 91-105; https://doi.org/10.3390/md8010091 - 20 Jan 2010
Cited by 336 | Viewed by 19134
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as [...] Read more.
Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 µM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m-2) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process. Full article
Show Figures

293 KiB  
Article
Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells
by Florence W. K. Cheung, Chunman Li, Chun-Tao Che, Bonnie P. L. Liu, Lijun Wang and Wing-Keung Liu
Mar. Drugs 2010, 8(1), 80-90; https://doi.org/10.3390/md8010080 - 19 Jan 2010
Cited by 15 | Viewed by 12941
Abstract
Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA), and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [...] Read more.
Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA), and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH), but suppressed by N-acetylcysteine (NAC), a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene. Full article
Show Figures

Graphical abstract

258 KiB  
Review
Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms
by Vítor Vasconcelos, Joana Azevedo, Marisa Silva and Vítor Ramos
Mar. Drugs 2010, 8(1), 59-79; https://doi.org/10.3390/md8010059 - 19 Jan 2010
Cited by 69 | Viewed by 17636
Abstract
Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may [...] Read more.
Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may be produced in large amounts by dinoflagellates, cyanobacteria, bacteria and diatoms and accumulate in vectors that transfer the toxin along food chains. These may affect top predator organisms, including human populations, leading in some cases to death. Nevertheless, these toxins may also affect the reproduction of aquatic organisms that may be in contact with the toxins, either by decreasing the amount or quality of gametes or by affecting embryonic development. Adults of some species may be insensitive to toxins but early stages are more prone to intoxication because they lack effective enzymatic systems to detoxify the toxins and are more exposed to the toxins due to a higher metabolic growth rate. In this paper we review the current knowledge on the effects of some of the most common marine toxins on the reproduction and development of early stages of some organisms. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds Acting on Animal Reproduction)
Show Figures

199 KiB  
Article
Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa
by Ilkay Orhan, Bilge Şener, Marcel Kaiser, Reto Brun and Deniz Tasdemir
Mar. Drugs 2010, 8(1), 47-58; https://doi.org/10.3390/md8010047 - 15 Jan 2010
Cited by 173 | Viewed by 16640
Abstract
In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1), furospinulosin-2 (2), furospongin-1 (3), furospongin-4 (4), and demethylfurospongin-4 (5); four linear meroterpenes: 2-(hexaprenylmethyl)-2-methylchromenol (6), 4-hydroxy-3-octaprenylbenzoic acid (7), [...] Read more.
In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1), furospinulosin-2 (2), furospongin-1 (3), furospongin-4 (4), and demethylfurospongin-4 (5); four linear meroterpenes: 2-(hexaprenylmethyl)-2-methylchromenol (6), 4-hydroxy-3-octaprenylbenzoic acid (7), 4-hydroxy-3-tetraprenyl-phenylacetic acid (8), and heptaprenyl-p-quinol (9); a linear triterpene, squalene (10); two spongian-type diterpenes dorisenone D (11) and 11β-acetoxyspongi-12-en-16-one (12); a scalarane-type sesterterpene; 12-epi-deoxoscalarin (13), as well as an indole alkaloid, tryptophol (14) were screened for their in vitro activity against four parasitic protozoa; Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Cytotoxic potential of the compounds on mammalian cells was also assessed. All compounds were active against T. brucei rhodesiense, with compound 8 being the most potent (IC50 0.60 μg/mL), whereas 9 and 12 were the most active compounds against T. cruzi, with IC50 values around 4 μg/mL. Compound 12 showed the strongest leishmanicidal activity (IC50 0.75 µg/mL), which was comparable to that of miltefosine (IC50 0.20 µg/mL). The best antiplasmodial effect was exerted by compound 11 (IC50 0.43 µg/mL), followed by compounds 7, 10, and 12 with IC50 values around 1 µg/mL. Compounds 9, 11 and 12 exhibited, besides their antiprotozoal activity, also some cytotoxicity, whereas all other compounds had low or no cytotoxicity towards the mammalian cell line. This is the first report of antiprotozoal activity of marine metabolites 114, and points out the potential of marine sponges in discovery of new antiprotozoal lead compounds. Full article
Show Figures

271 KiB  
Review
Chitin Deacetylases: Properties and Applications
by Yong Zhao, Ro-Dong Park and Riccardo A.A. Muzzarelli
Mar. Drugs 2010, 8(1), 24-46; https://doi.org/10.3390/md8010024 - 14 Jan 2010
Cited by 279 | Viewed by 24888
Abstract
Chitin deacetylases, occurring in marine bacteria, several fungi and a few insects, catalyze the deacetylation of chitin, a structural biopolymer found in countless forms of marine life, fungal cell and spore walls as well as insect cuticle and peritrophic matrices. The deacetylases recognize [...] Read more.
Chitin deacetylases, occurring in marine bacteria, several fungi and a few insects, catalyze the deacetylation of chitin, a structural biopolymer found in countless forms of marine life, fungal cell and spore walls as well as insect cuticle and peritrophic matrices. The deacetylases recognize a sequence of four GlcNAc units in the substrate, one of which undergoes deacetylation: the resulting chitosan has a more regular deacetylation pattern than a chitosan treated with hot NaOH. Nevertheless plain chitin is a poor substrate, but glycolated, reprecipitated or depolymerized chitins are good ones. The marine Vibrio sp. colonize the chitin particles and decompose the chitin thanks to the concerted action of chitinases and deacetylases, otherwise they could not tolerate chitosan, a recognized antibacterial biopolymer. In fact, chitosan is used to prevent infections in fishes and crustaceans. Considering that chitin deacetylases play very important roles in the biological attack and defense systems, they may find applications for the biological control of fungal plant pathogens or insect pests in agriculture and for the biocontrol of opportunistic fungal human pathogens. Full article
(This article belongs to the Special Issue Marine Chitin and Chitosan)
Show Figures

Graphical abstract

401 KiB  
Article
Iron Complexation to Oxygen Rich Marine Natural Products: A Computational Study
by Thomas J. Manning, Jimmy Williams, Joey Jarrard and Teresa Gorman
Mar. Drugs 2010, 8(1), 1-23; https://doi.org/10.3390/md8010001 - 04 Jan 2010
Cited by 5 | Viewed by 11763
Abstract
The natural products kahalalide F, halichondrin B, and discodermolide are relatively large structures that were originally harvested from marine organisms. They are oxygen rich structures that, to varying degrees, should have the ability to bind iron (II or III) by Fe-O and/or Fe-N [...] Read more.
The natural products kahalalide F, halichondrin B, and discodermolide are relatively large structures that were originally harvested from marine organisms. They are oxygen rich structures that, to varying degrees, should have the ability to bind iron (II or III) by Fe-O and/or Fe-N bonds. In this semi empirical study, the binding of these natural products to iron (II) is studied and the aqueous stability factor (ASF) is used to determine which bonding configuration is most stable. The energy, the complex charge (+1), the average Fe-O (or Fe-N) bond distances and the dipole moments are used to calculate the ASF. The ASF provides insight to which complex will be the most stable and water soluble, important for a medicinal application. The ability of a molecule with a more than six oxygen and/or nitrogen atoms to bind iron (hexavalent, octahedral) by shifting which six atoms (O/N) are bound to the iron qualifies it as a polarity adaptive molecule. Full article
Show Figures

Previous Issue
Next Issue
Back to TopTop