Global Assessment of High-Altitude Wind Power
Abstract
:1. Introduction
2. Methods and Data
3. Geographical and Statistical Distributions
3.1. Global Vertical Profiles
3.2. City Vertical Profiles
3.3. Atlas
3.4. Optimal Height
4. Dealing with Intermittency
5. Climate Effects
Difference from control case | |||
---|---|---|---|
Device area (m2/km3) | Mean surface temperature (oC) | Sea ice cover (%) | Total precipitation (%) |
1 | -0.04 | +0.45 | -0.12 |
6. Conclusions
Supplementary Files
Supplementary File 1Acknowledgements
References and Notes
- Arya, S. Introduction to micrometeorology; Academic Press: New York, NY, USA, 1988; p. 303. [Google Scholar]
- Koch, P.; Wernli, H.; Davies, H.C. An event-based jet-stream climatology and typology. Int. J. Climatol. 2006, 26, 283–301. [Google Scholar] [CrossRef]
- Roberts, B.W.; Shepard, D.H.; Caldeira, K.; Cannon, M.E.; Eccles, D.G.; Grenier, A.J.; Freidin, J.F. Harnessing high-altitude wind power. IEEE Trans. Energy Convers. 2007, 22, 136–144. [Google Scholar] [CrossRef]
- Canale, M.; Fagiano, L.; Milanese, M. Power Kites for Wind Energy Generation [Applications of Control]. IEEE Control Syst. Mag. 2007, 27, 25–38. [Google Scholar] [CrossRef]
- Ragusa, S.M. Evaluation of energy in high-altitude winds: Kite Gen [in Italian]; Politecnico di Torino: Turin, Italy, 2007; p. 45. [Google Scholar]
- Canale, M.; Fagiano, L.; Milanese, M. KiteGen: A revolution in wind energy generation. Energy 2009, 34, 355–361. [Google Scholar] [CrossRef]
- Masters, G.; Wiley, J.; InterScience, W. Renewable and efficient electric power systems; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Archer, C.; Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 2008, 35, L08803. [Google Scholar] [CrossRef]
- Francis, J. Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett. 2002, 29, 1315. [Google Scholar] [CrossRef]
- Archer, C.; Jacobson, M. Spatial and temporal distributions of US winds and wind power at 80 m derived from measurements. J. Geophys. Res. 2003, 108, 4289. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Corrections to “Spatial and temporal distribution of US winds and wind power at 80 m derived from measurements”. J. Geophys. Res. 2004, 109, 1–11. [Google Scholar]
- Argatov, I.; Rautakorpi, P.; Silvennoinen, R. Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 2009, 34, 1525–1532. [Google Scholar] [CrossRef]
- O'Doherty, R.J.; Roberts, B.W. Application of US upper wind data in one design of tethered wind energy systems; Technical Report; Solar Energy Research Inst.: Golden, CO, USA, 1982; p. 133. [Google Scholar]
- Hsieh, Y. On the wind and temperature fields over western Pacific and eastern Asia in winter. J. Chin. Geophys. Soc 1951, 2, 279–297. [Google Scholar]
- Kung, E.C.; Chan, P.H. Energetics Characteristics of the Asian Winter Monsoon in the Source Region. Mon. Weather Rev. 1981, 109, 854–870. [Google Scholar] [CrossRef]
- Stull, R. An introduction to boundary layer meteorology; Springer: New York, NY, USA, 1988; p. 670. [Google Scholar]
- Chen, W.; Lui, E. Handbook of structural engineering; CRC Press: Boca Raton, FL, USA, 2005; p. 1768. [Google Scholar]
- Cadet, D. Meteorology of the Indian summer monsoon. Nature 1979, 279, 761–767. [Google Scholar] [CrossRef]
- Stensrud, D. Importance of low-level jets to climate: A review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Supplying baseload power and reducing transmission requirements by interconnecting wind farms. J. Appl. Meteorol. climatol. 2007, 46, 1701–1717. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkin, N.; Bossanyi, E. Wind energy handbook; John Wiley and Sons: Chichester, U.K., 2001; p. 617. [Google Scholar]
- Collins, W.; Blackmon, M.; Bitz, C.; Bonan, G.; Bretherton, C.; Carton, J.; Chang, P.; Doney, S.; Hack, J.; Kiehl, J. The Community Climate System Model: CCSM3. J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Keith, D.; DeCarolis, J.; Denkenberger, D.; Lenschow, D.; Malyshev, S.; Pacala, S.; Rasch, P. The influence of large-scale wind power on global climate. Proc. Nat. Acad. Sci. 2004, 101, 16115–16120. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Archer, C.L.; Caldeira, K. Global Assessment of High-Altitude Wind Power. Energies 2009, 2, 307-319. https://doi.org/10.3390/en20200307
Archer CL, Caldeira K. Global Assessment of High-Altitude Wind Power. Energies. 2009; 2(2):307-319. https://doi.org/10.3390/en20200307
Chicago/Turabian StyleArcher, Cristina L., and Ken Caldeira. 2009. "Global Assessment of High-Altitude Wind Power" Energies 2, no. 2: 307-319. https://doi.org/10.3390/en20200307
APA StyleArcher, C. L., & Caldeira, K. (2009). Global Assessment of High-Altitude Wind Power. Energies, 2(2), 307-319. https://doi.org/10.3390/en20200307