Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis
Abstract
:1. Introduction
2. Model and Methods
2.1. Description of Computational Fluid Dynamic Model
2.2. Ground Tube Model Description
2.3. Numerical Set-up
3. Parametric Performance Analysis
3.1. Effect of the Depth
3.2. Effect of the Thermal Conductivity
4. Assessments of Heat Flux
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Argiriou, A. Ground cooling. In Passive Cooling of Buildings; Santamouris, M., Asimakopoulos, D., Eds.; Earthscan: New York, NY, USA, 2013; pp. 360–403. [Google Scholar]
- Ascione, F.; Bellia, L.; Minichiello, F. Earth-to-air heat exchangers for italian climates. Renew. Energy 2011, 36, 2177–2188. [Google Scholar] [CrossRef]
- Pfafferott, J. Evaluation of earth-to-air heat exchangers with a standardised method to calculate energy efficiency. Energy Build. 2003, 35, 971–983. [Google Scholar] [CrossRef]
- Lee, K.H.; Strand, R.K. The cooling and heating potential of an earth tube system in buildings. Energy Build. 2008, 40, 486–494. [Google Scholar] [CrossRef]
- Lee, K.H.; Strand, R.K. Implementation of an earth tube system into energyplus program. In SimBuild 2006, Proceedings of the 2nd National Conference of IBPSA-USA (SimBuild 2006), Cambridge, MA, USA, 2–4 August 2006.
- Michopoulos, A.; Papakostas, K.T.; Kyriakis, N. Potential of autonomous ground-coupled heat pump system installations in greece. Appl. Energy 2011, 88, 2122–2129. [Google Scholar] [CrossRef]
- Hackel, S.; Nellis, G.; Klein, S. Optimization of cooling-dominated hybrid ground-coupled heat pump systems. ASHRAE Trans. 2009, 115, 565–580. [Google Scholar]
- Dickinson, J.; Jackson, T.; Matthews, M.; Cripps, A. The economic and environmental optimisation of integrating ground source energy systems into buildings. Energy 2009, 34, 2215–2222. [Google Scholar] [CrossRef]
- Bernier, M.A.; Chahla, A.; Pinel, P. Long-term ground-temperature changes in geo-exchange systems. ASHRAE Trans. 2008, 114, 342–350. [Google Scholar]
- Esen, H.; Inalli, M.; Esen, M. Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern turkey. Energy Convers. Manag. 2006, 47, 1281–1297. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Esen, M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Build. Environ. 2007, 42, 1955–1965. [Google Scholar] [CrossRef]
- Energy Performance Building Directive. 2002. Available online: http://www.bre.co.uk/filelibrary/Scotland/Energy_Performance_of_Buildings_Directive_(EPBD).pdf (accessed on 8 November 2016).
- Green Paper: Towards a European Strategy for the Security of Energy Supply; European Commission: Brussels, Belgium, 1999.
- Renewable Energy Target for Europe: 20% by 2020; European Renewable Energy Council: Brussels, Belgium, 2004.
- Lund, W.J. Present utilization and future prospects of geothermal energy worldwide. In Proceedings of the Renewable Energy 2006 Conference, Chiba, Japan, 9–13 October 2006; pp. 47–52.
- Andritsos, N.; Arvanitis, A.; Papachristou, M.; Fytikas, M.; Dalambakis, P. Geothermal activities in Greece during 2005–2009. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010.
- Ramamoorthy, M.; Jin, H.; Chiasson, A.D.; Spitler, J.D. Optimal sizing of hybrid ground-source heat pump systems that use a cooling pond as a supplemental heat rejecter—A system simulation approach/discussion. ASHRAE Trans. 2001, 107, 26–38. [Google Scholar]
- Li, H.; Yang, H. Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong. Appl. Energy 2010, 87, 2818–2825. [Google Scholar] [CrossRef]
- Chen, C.; Sun, F.-L.; Feng, L.; Liu, M. Underground water-source loop heat-pump air-conditioning system applied in a residential building in Beijing. Appl. Energy 2005, 82, 331–344. [Google Scholar] [CrossRef]
- Carlucci, C.; Conciauro, F.; Scremin, B.F.; Antico, A.G.; Muscogiuri, M. Properties of aluminosilicate refractories with synthesized boron-modified TiO2 nanocrystals. Nanomater. Nanotechnol. 2015, 5, 8. [Google Scholar] [CrossRef]
- Lorusso, C.; Vergaro, V.; Monteduro, A.; Saracino, A.; Ciccarella, G. Characterization of polyurethane foam added with synthesized acetic and oleic-modified TiO2 nanocrystals. Nanomater. Nanotechnol. 2015, 5, 26. [Google Scholar]
- Conciauro, F.; Filippo, E.; Carlucci, C.; Vergaro, V.; Baldassarre, F. Properties of nanocrystals-formulated aluminosilicate bricks. Nanomater. Nanotechnol. 2015, 5, 28. [Google Scholar] [CrossRef]
- Tzaferis, A.; Liparakis, D.; Santamouris, M.; Argiriou, A. Analysis of the accuracy and sensitivity of eight models to predict the performance of earth-to-air heat exchangers. Energy Build. 1992, 18, 35–43. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D. Modelling the thermal performance of earth-to-air heat exchangers. Sol. Energy 1994, 53, 301–305. [Google Scholar] [CrossRef]
- Bojic, M.; Trifunovic, N.; Papadakis, G.; Kyritsis, S. Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building. Energy 1997, 22, 1151–1158. [Google Scholar] [CrossRef]
- Gauthier, C.; Lacroix, M.; Bernier, H. Numerical simulation of soil heat exchanger-storage systems for greenhouses. Sol. Energy 1997, 60, 333–346. [Google Scholar] [CrossRef]
- Hollmuller, P.; Lachal, B. Cooling and preheating with buried pipe systems: Monitoring, simulation and economic aspects. Energy Build. 2001, 33, 509–518. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Zhu, D. Modelling and evaluation of cooling capacity of earth–air–pipe systems. Energy Convers. Manag. 2007, 48, 1462–1471. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Bashir, M.H.; Khan, A.R.; Ahmad, K.N.; Khan, S. CFD applications in various heat exchangers design: A review. Appl. Therm. Eng. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Sehli, A.; Hasni, A.; Tamali, M. The potential of earth-air heat exchangers for low energy cooling of buildings in South Algeria. Energy Procedia 2012, 18, 496–506. [Google Scholar] [CrossRef]
- Cucumo, M.; Cucumo, S.; Montoro, L.; Vulcano, A. A one-dimensional transient analytical model for earth-to-air heat exchangers, taking into account condensation phenomena and thermal perturbation from the upper free surface as well as around the buried pipes. Int. J. Heat Mass Transf. 2008, 51, 506–516. [Google Scholar] [CrossRef]
- Badescu, V. Simple and accurate model for the ground heat exchanger of a passive house. Renew. Energy 2007, 32, 845–855. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.; Tselepidaki, I. Parametric prediction of the buried pipes cooling potential for passive cooling applications. Sol. Energy 1995, 55, 163–173. [Google Scholar] [CrossRef]
- Kabashnikov, V.P.; Danilevskii, L.N.; Nekrasov, V.P.; Vityaz, I.P. Analytical and numerical investigation of the characteristics of a soil heat exchanger for ventilation systems. Int. J. Heat Mass Transf. 2002, 45, 2407–2418. [Google Scholar] [CrossRef]
- Tittelein, P.; Achard, G.; Wurtz, E. Corrigendum to “modelling earth-to-air heat exchanger behaviour with the convolutive response factors method” [Appl. Energy 86 (9) 1683–1691]. Appl. Energy 2013, 107, 474. [Google Scholar] [CrossRef]
- De Paepe, M.; Janssens, A. Thermo-hydraulic design of earth-air heat exchangers. Energy Build. 2003, 35, 389–397. [Google Scholar] [CrossRef]
- Ozgener, L.; Ozgener, O. An experimental study of the exergetic performance of an underground air tunnel system for greenhouse cooling. Renew. Energy 2010, 35, 2804–2811. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L. Determining the optimal design of a closed loop earth to air heat exchanger for greenhouse heating by using exergoeconomics. Energy Build. 2011, 43, 960–965. [Google Scholar] [CrossRef]
- Al-Ajmi, F.; Loveday, D.L.; Hanby, V.I. The cooling potential of earth–air heat exchangers for domestic buildings in a desert climate. Build. Environ. 2006, 41, 235–244. [Google Scholar] [CrossRef]
- Woodson, T. Earth-air heat exchangers for passive air conditioning: Case study burkina faso. J. Constr. Dev. Ctries 2012, 17, 21–32. [Google Scholar]
- Khalajzadeh, V.; Farmahini-Farahani, M.; Heidarinejad, G. A novel integrated system of ground heat exchanger and indirect evaporative cooler. Energy Build. 2012, 49, 604–610. [Google Scholar] [CrossRef]
- Thiers, S.; Peuportier, B. Thermal and environmental assessment of a passive building equipped with an earth-to-air heat exchanger in France. Sol. Energy 2008, 82, 820–831. [Google Scholar] [CrossRef]
- Hamada, Y.; Nakamura, M.; Saitoh, H.; Kubota, H.; Ochifuji, K. Improved underground heat exchanger by using no-dig method for space heating and cooling. Renew. Energy 2007, 32, 480–495. [Google Scholar] [CrossRef]
- Breesch, H.; Bossaer, A.; Janssens, A. Passive cooling in a low-energy office building. Sol. Energy 2005, 79, 682–696. [Google Scholar] [CrossRef]
- Vaz, J.; Sattler, M.A.; dos Santos, E.D.; Isoldi, L.A. Experimental and numerical analysis of an earth–air heat exchanger. Energy Build. 2011, 43, 2476–2482. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Li, X.; Dai, C. Experimental investigation and theoretical model of heat transfer of saturated soil around coaxial ground coupled heat exchanger. Appl. Therm. Eng. 2008, 28, 116–125. [Google Scholar] [CrossRef]
- Balghouthi, M.; Kooli, S.; Farhat, A.; Daghari, H.; Belghith, A. Experimental investigation of thermal and moisture behaviors of wet and dry soils with buried capillary heating system. Sol. Energy 2005, 79, 669–681. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Lewis, J.O.; Asimakopoulos, D.N. On the application of the energy balance equation to predict ground temperature profiles. Sol. Energy 1997, 60, 181–190. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, W.; Bai, T.; Zheng, M. Experimental study of a ground sink direct cooling system in cold areas. Energy Build. 2009, 41, 1233–1237. [Google Scholar] [CrossRef]
- Rodríguez, R.; Díaz, M.B. Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method. Renew. Energy 2009, 34, 1716–1725. [Google Scholar] [CrossRef]
- Maerefat, M.; Haghighi, A. Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renew. Energy 2010, 35, 2316–2324. [Google Scholar] [CrossRef]
- Eicker, U.; Vorschulze, C. Potential of geothermal heat exchangers for office building climatisation. Renew. Energy 2009, 34, 1126–1133. [Google Scholar] [CrossRef]
- Ghosal, M.; Tiwari, G.; Das, D.; Pandey, K. Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy Build. 2005, 37, 613–621. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth–air heat exchanger (eahe) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Bansal, V.; Misra, R.; Agarwal, G.D.; Mathur, J. “Derating factor” new concept for evaluating thermal performance of earth air tunnel heat exchanger: A transient CFD analysis. Appl. Energy 2013, 102, 418–426. [Google Scholar] [CrossRef]
- Ozgener, L. A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey. Renew. Sustain. Energy Rev. 2011, 15, 4483–4490. [Google Scholar] [CrossRef]
- Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T. Transient analysis based determination of derating factor for earth air tunnel heat exchanger in summer. Energy Build. 2013, 58, 103–110. [Google Scholar] [CrossRef]
- Congedo, P.M.; Colangelo, G.; Starace, G. CFD simulations of horizontal ground heat exchangers: A comparison among different configurations. Appl. Therm. Eng. 2012, 33–34, 24–32. [Google Scholar] [CrossRef]
- Congedo, P.; Lorusso, C.; De Giorgi, M.; Laforgia, D. Computational fluid dynamic modeling of horizontal air-ground heat exchangers (HAGHE) for HVAC systems. Energies 2014, 7, 8465. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS FLUENT Release 14.0 User Manual; ANSYS Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Lee, E. Development, Verification and Implementation of a Horizontal Buried Pipe Ground Heat Transfer Model in Energy Plus; ProQuest: Ann Arbor, MI, USA, 2008; p. 211. [Google Scholar]
- Niu, F.; Yu, Y.; Yu, D.; Li, H. Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger. Appl. Energy 2015, 137, 211–221. [Google Scholar] [CrossRef]
- Thermo Technical Committee Italian Energy and Environment. UNI EN ISO 15927-4. 2012. Available online: http://shop.cti2000.it (accessed on 8 November 2016).
Symbol | Description |
---|---|
Tmean | Annual average surface temperature (K) |
Tamp | Annual surface temperature amplitude (K) |
Zdepth | Pipe burial depth (m) |
αsoil | Ground thermal diffusivity (m2/day) |
tyear | Simulation run time (day) |
Tshift | Day of minimum surface temperature (8 February) (day) |
Ground Thermal Conductivity W/(mK) | Heat Flux (m3/h) | Winter (kWh) | Summer (kWh) |
---|---|---|---|
1 | 300 | 23,036 | 36,631 |
1 | 400 | 25,177 | 38,681 |
1 | 500 | 25,701 | 37,412 |
2 | 300 | 24,760 | 37,544 |
2 | 400 | 25,591 | 39,840 |
2 | 500 | 26,593 | 39,720 |
3 | 300 | 25,854 | 37,327 |
3 | 400 | 25,792 | 40,077 |
3 | 500 | 26,737 | 40,724 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Congedo, P.M.; Lorusso, C.; De Giorgi, M.G.; Marti, R.; D’Agostino, D. Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis. Energies 2016, 9, 930. https://doi.org/10.3390/en9110930
Congedo PM, Lorusso C, De Giorgi MG, Marti R, D’Agostino D. Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis. Energies. 2016; 9(11):930. https://doi.org/10.3390/en9110930
Chicago/Turabian StyleCongedo, Paolo Maria, Caterina Lorusso, Maria Grazia De Giorgi, Riccardo Marti, and Delia D’Agostino. 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis" Energies 9, no. 11: 930. https://doi.org/10.3390/en9110930
APA StyleCongedo, P. M., Lorusso, C., De Giorgi, M. G., Marti, R., & D’Agostino, D. (2016). Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis. Energies, 9(11), 930. https://doi.org/10.3390/en9110930