Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ILs
2.3. PET Glycolysis under UV Radiation
2.4. Recycling of the EG and Catalyst
2.5. Characterization
3. Results
3.1. Screening of Catalysts
3.2. The Effect of UV Radiation
3.3. Influence of Reaction Conditions
3.4. Recycling of Solvent and Catalyst
3.5. Kinetics of PET Glycolysis
3.6. PET Degradation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartolome, L.; Imran, M.; Cho, B.G.; Al-Masry, W.A.; Kim, D.H. Recent developments in the chemical recycling of PET. Mater. Recycl. Trends Perspect. 2012, 406, 576–596. [Google Scholar]
- Zekriardehani, S.; Joshi, A.; Jabarin, S.; Gidley, D.; Coleman, M. Effect of dimethyl terephthalate and dimethyl isophthalate on the free volume and barrier properties of poly (ethylene terephthalate)(PET): Amorphous PET. Macromolecules 2018, 51, 456–467. [Google Scholar] [CrossRef]
- Bartolome, L.; Imran, M.; Lee, K.G.; Sangalang, A.; Ahn, J.K. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem. 2014, 16, 279–286. [Google Scholar] [CrossRef]
- Choudhary, K.; Sangwan, K.S.; Goyal, D. Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP 2019, 80, 422–427. [Google Scholar] [CrossRef]
- Palm, G.J.; Reisky, L.; Böttcher, D.; Müller, H.; Michels, E.A.; Walczak, M.C.; Berndt, L.; Weiss, M.S.; Bornscheuer, U.T.; Weber, G. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun. 2019, 10, 1717. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.S.; Edge, M.; Mohammadian, M.; Jones, K. Physicochemical aspects of the environmental degradation of poly (ethylene terephthalate). Polym. Degrad. Stab. 1994, 43, 229–237. [Google Scholar] [CrossRef]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef]
- Shojaei, B.; Abtahi, M.; Najafi, M. Chemical recycling of PET: A stepping-stone toward sustainability. Polym. Adv. Technol. 2020, 31, 2912–2938. [Google Scholar] [CrossRef]
- Kathalewar, M.; Dhopatkar, N.; Pacharane, B.; Sabnis, A.; Raut, P.; Bhave, V. Chemical recycling of PET using neopentyl glycol: Reaction kinetics and preparation of polyurethane coatings. Prog. Org. Coat. 2013, 76, 147–156. [Google Scholar] [CrossRef]
- Shirazimoghaddam, S.; Amin, I.; Faria Albanese, J.A.; Shiju, N.R. Chemical recycling of used PET by glycolysis using niobia-based catalysts. ACS Eng. Au 2023, 3, 37–44. [Google Scholar] [CrossRef]
- Arias, J.J.R.; Thielemans, W. Instantaneous hydrolysis of PET bottles: An efficient pathway for the chemical recycling of condensation polymers. Green Chem. 2021, 23, 9945–9956. [Google Scholar] [CrossRef]
- Laldinpuii, Z.; Khiangte, V.; Lalhmangaihzuala, S.; Lalmuanpuia, C.; Pachuau, Z.; Lalhriatpuia, C.; Vanlaldinpuia, K. Methanolysis of PET waste using heterogeneous catalyst of bio-waste origin. J. Polym. Environ. 2022, 30, 1600–1614. [Google Scholar] [CrossRef]
- Mora-Cortes, L.F.; Rivas-Muñoz, A.N.; Neira-Velázquez, M.G.; Contreras-Esquivel, J.C.; Roger, P.; Mora-Cura, Y.N.; Soria-Arguello, G.; Bolaina-Lorenzo, E.D.; Reyna-Martínez, R.; Zugasti-Cruz, A. Biocompatible enhancement of poly (ethylene terephthalate)(PET) waste films by cold plasma aminolysis. J. Chem. Technol. Biotechnol. 2022, 97, 3001–3010. [Google Scholar] [CrossRef]
- Mishra, S.; Goje, A. Kinetics of glycolysis of poly (ethylene terephthalate) waste powder at moderate pressure and temperature. J. Appl. Polym. Sci. 2003, 87, 1569–1573. [Google Scholar] [CrossRef]
- Huang, J.; Veksha, A.; Chan, W.P.; Giannis, A.; Lisak, G. Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renew. Sustain. Energy Rev. 2022, 154, 111866. [Google Scholar] [CrossRef]
- Imran, M.; Al-Masry, W.A.; Mahmood, A.; Hassan, A.; Haider, S.; Ramay, S.M. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis. Polym. Degrad. Stab. 2013, 98, 904–915. [Google Scholar] [CrossRef]
- Shukla, S.; Palekar, V.; Pingale, N. Zeolite catalyzed glycolysis of poly (ethylene terephthalate) bottle waste. J. Appl. Polym. Sci. 2008, 110, 501–506. [Google Scholar] [CrossRef]
- Zhu, M.; Li, S.; Li, Z.; Lu, X.; Zhang, S. Investigation of solid catalysts for glycolysis of polyethylene terephthalate. Chem. Eng. J. 2012, 185, 168–177. [Google Scholar] [CrossRef]
- Barnard, E.; Arias, J.J.R.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Liu, Y.; Zhang, X.; Zhang, S. Degradation of poly (ethylene terephthalate) using ionic liquids. Green Chem. 2009, 11, 1568–1575. [Google Scholar] [CrossRef]
- Wang, Q.; Geng, Y.; Lu, X.; Zhang, S. First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly (ethylene terephthalate)(PET). ACS Sustain. Chem. Eng. 2015, 3, 340–348. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Zhou, X.; Zhu, M.; He, H.; Zhang, X. 1-Allyl-3-methylimidazolium halometallate ionic liquids as efficient catalysts for the glycolysis of poly (ethylene terephthalate). J. Appl. Polym. Sci. 2013, 129, 3574–3581. [Google Scholar] [CrossRef]
- Yue, Q.F.; Yang, H.G.; Zhang, M.L.; Bai, X.F. Metal-containing ionic liquids: Highly effective catalysts for degradation of poly (ethylene terephthalate). Adv. Mater. Sci. Eng. 2014, 2014, 454756. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly (ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131. [Google Scholar] [CrossRef]
- Sun, J.; Liu, D.; Young, R.P.; Cruz, A.G.; Isern, N.G.; Schuerg, T.; Cort, J.R.; Simmons, B.A.; Singh, S. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid. ChemSusChem 2018, 11, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Jehanno, C.; Pérez-Madrigal, M.M.; Demarteau, J.; Sardon, H.; Dove, A.P. Organocatalysis for depolymerisation. Polym. Chem. 2019, 10, 172–186. [Google Scholar] [CrossRef]
- Alnaqbi, M.A.; Mohsin, M.A.; Busheer, R.M.; Haik, Y. Microwave assisted glycolysis of poly (ethylene terephthalate) catalyzed by 1-butyl-3-methylimidazolium bromide ionic liquid. J. Appl. Polym. Sci. 2015, 132, 41666. [Google Scholar] [CrossRef]
- Imran, M.; Kim, B.-K.; Han, M.; Cho, B.G. Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis (2-hydroxyethyl) terephthalate (BHET). Polym. Degrad. Stab. 2010, 95, 1686–1693. [Google Scholar] [CrossRef]
- Le, N.H.; Ngoc Van, T.T.; Shong, B.; Cho, J. Low-temperature glycolysis of polyethylene terephthalate. ACS Sustain. Chem. Eng. 2022, 10, 17261–17273. [Google Scholar] [CrossRef]
- Oliveira, J.; Belchior, A.; da Silva, V.D.; Rotter, A.; Petrovski, Ž.; Almeida, P.L.; Lourenço, N.D. Gaudêncio SP: Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Front. Mar. Sci. 2020, 7, 567126. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.O.; Chae, B.; Kim, S.B.; Jung, Y.M.; Lee, S.W. Two-dimensional correlation analysis study of the photo-degradation of poly (ethylene terephthalate) film. Vib. Spectrosc. 2012, 60, 142–145. [Google Scholar] [CrossRef]
- More, A.P.; Kokate, S.R.; Rane, P.C.; Mhaske, S.T. Studies of different techniques of aminolysis of poly (ethylene terephthalate) with ethylenediamine. Polym. Bull. 2017, 74, 3269–3282. [Google Scholar] [CrossRef]
- Zhu, X.; Song, M.; Xu, Y. DBU-based protic ionic liquids for CO2 capture. ACS Sustain. Chem. Eng. 2017, 5, 8192–8198. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, X.; Wang, K.; Zhang, C.; Song, H.; Guo, Z.; Lv, Z. Synthesis of 2, 2, 4-trimethyl-1, 3-pentaerediol monoisobutyrate catalyzed by homogeneous catalysis-liquid/liquid separation catalytic system based on Bibasic sites Ionic Liquids. Appl. Organomet. Chem. 2020, 34, e5915. [Google Scholar] [CrossRef]
- Son, S.-Y.; Jo, A.Y.; Jung, G.Y.; Chung, Y.-S.; Lee, S. Accelerating the stabilization of polyacrylonitrile fibers by UV irradiation. J. Ind. Eng. Chem. 2019, 73, 47–51. [Google Scholar] [CrossRef]
- Kordoghli, B.; Khiari, R.; Dhaouadi, H.; Belgacem, M.N.; Mhenni, M.F.; Sakli, F. UV irradiation-assisted grafting of poly (ethylene terephthalate) fabrics. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 606–613. [Google Scholar] [CrossRef]
- Fang, L.; Jin, W.; Hong, S.; Nan, H. Surface characterization and in vitro blood compatibility of poly (ethylene terephthalate) immobilized with hirudin. Plasma Sci. Technol. 2010, 12, 235. [Google Scholar] [CrossRef]
- Raheem, A.B.; Noor, Z.Z.; Hassan, A.; Abd Hamid, M.K.; Samsudin, S.A.; Sabeen, A.H. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Prod. 2019, 225, 1052–1064. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eissa, A.-M.M.; Moustafa, M.E.; Eshaq, G.; Rabie, A.-R.M.; ElMetwally, A.E. Glycolysis of poly (ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc]. Ind. Eng. Chem. Res. 2014, 53, 18443–18451. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.; Gutiérrez-Ortiz, J.I. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem. Eng. J. 2011, 168, 312–320. [Google Scholar] [CrossRef]
- Pingale, N.; Shukla, S. Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste. Eur. Polym. J. 2008, 44, 4151–4156. [Google Scholar] [CrossRef]
- Lu, X.; Xu, R.; Sun, K.; Jiang, J.; Sun, Y.; Zhang, Y. Study on the effect of torrefaction on pyrolysis kinetics and thermal behavior of cornstalk based on a combined approach of chemical and structural analyses. ACS Omega 2022, 7, 13789–13800. [Google Scholar] [CrossRef] [PubMed]
- Scé, F.; Cano, I.; Martin, C.; Beobide, G.; Castillo, O.; de Pedro, I. Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes. New J. Chem. 2019, 43, 3476–3485. [Google Scholar] [CrossRef]
- Marullo, S.; Rizzo, C.; Dintcheva, N.T.; D’Anna, F. Amino acid-based cholinium ionic liquids as sustainable catalysts for PET depolymerization. ACS Sustain. Chem. Eng. 2021, 9, 15157–15165. [Google Scholar] [CrossRef]
- Ju, Z.; Xiao, W.; Lu, X.; Liu, X.; Yao, X.; Zhang, X.; Zhang, S. Theoretical studies on glycolysis of poly (ethylene terephthalate) in ionic liquids. RSC Adv. 2018, 8, 8209–8219. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Hidaka, M.; Anpo, M. Simple evaluation of the adsorption states of benzene molecule on the hydroxyl, H+ and Na+ sites of Y-zeolite surfaces by using UV absorption spectroscopy. Res. Chem. Intermed. 2014, 40, 2315–2325. [Google Scholar] [CrossRef]
- Liu, F.; Beames, J.M.; Green, A.M.; Lester, M.I. UV spectroscopic characterization of dimethyl-and ethyl-substituted carbonyl oxides. J. Phys. Chem. A 2014, 118, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.W.; De Paula, J.; Keeler, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Lv, Z.; Zhang, S.; Guo, Z.; Cheng, X.; Wang, J.; Zhang, C. Synthesis of alcohol ester 12 in 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU)-based Self-separation catalytic system. Appl. Organomet. Chem. 2019, 33, e5145. [Google Scholar] [CrossRef]
- Simons W, W. Sadtler Handbook of Infrared Spectra; Sadtler Research Laboratories: Watford, UK, 1978. [Google Scholar]
- Liu, M.; Guo, J.; Gu, Y.; Gao, J.; Liu, F. Versatile Imidazole-Anion-Derived Ionic Liquids with Unparalleled Activity for Alcoholysis of Polyester Wastes under Mild and Green Conditions. ACS Sustain. Chem. Eng. 2018, 6, 15127–15134. [Google Scholar] [CrossRef]
- Fang, P.; Liu, B.; Xu, J.; Zhou, Q.; Zhang, S.; Ma, J. High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites. Polym. Degrad. Stab. 2018, 156, 22–31. [Google Scholar] [CrossRef]
- Matsuo, M.; Luo, Y.; Galeski, A. Gauche-trans transitions in amorphous polymers under annealing: Lattice model and polarized light scattering. Phys. Rev. E 2009, 79, 041801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.; Duan, Y.; Zhang, J.; Yan, S.; Shen, D. Reflection–absorption infrared spectroscopy investigation of the crystallization kinetics of poly (ethylene terephthalate) ultrathin films. J. Polym. Sci. Part B 2004, 42, 4440–4447. [Google Scholar] [CrossRef]
- Cole, K.C.; Ajji, A.; Pellerin, E. New insights into the development of ordered structure in poly (ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules 2002, 35, 770–784. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, D.; Qian, R. Subglass-transition-temperature annealing of poly (ethylene terephthalate) studied by FTIR. J. Polym. Sci. Part B 1998, 36, 783–788. [Google Scholar] [CrossRef]
- Qian, R.; Shen, D.; Sun, F.; Wu, L. The effects of physical ageing on conformational changes of poly (ethylene terephthalate) in the glass transition region. Macromol. Chem. Phys. 1996, 197, 1485–1493. [Google Scholar] [CrossRef]
Entry | ILs | PET Conversion (%) | BHET Yield (%) |
---|---|---|---|
1 | [HDBU][Im] | 100 | 82.9 |
2 | [HDBU][4-MeIm] | 100 | 78.3 |
3 | [HDBU][2-MeIm] | 100 | 77.2 |
4 | [HDBU][2-EtIm] | 96.2 | 74.1 |
5 | [HDBU][2-Et-4-MeIm] | 100 | 70.5 |
Condition | Mn (g∙mol−1) | Mw (g∙mol−1) | PD |
---|---|---|---|
Without UV radiation | 2419 | 2461 | 1.02 |
With UV radiation | 1084 | 1102 | 1.02 |
Catalyst | Conversion of PET (%) | Yield of BHET (%) |
---|---|---|
Imidazole | 22.5 | 14.5 |
DBU | 100 | 71.5 |
[HDBU]Im | 100 | 88.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zheng, X.; Cheng, X.; Xu, J.; Li, Y.; Zhou, Q.; Xin, J.; Yan, D.; Lu, X. Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation. Materials 2024, 17, 1583. https://doi.org/10.3390/ma17071583
Zhang R, Zheng X, Cheng X, Xu J, Li Y, Zhou Q, Xin J, Yan D, Lu X. Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation. Materials. 2024; 17(7):1583. https://doi.org/10.3390/ma17071583
Chicago/Turabian StyleZhang, Ruiqi, Xu Zheng, Xiujie Cheng, Junli Xu, Yi Li, Qing Zhou, Jiayu Xin, Dongxia Yan, and Xingmei Lu. 2024. "Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation" Materials 17, no. 7: 1583. https://doi.org/10.3390/ma17071583