Responses of Stream Water Temperature to Water Levels in Forested Catchments of South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Measurement and Data Analysis
3. Results and Discussion
3.1. Distribution of Precipitation, Temperature, and Level Responses in Stream Water
3.2. Factor Affecting Falling Temperature and Rising Levels in Stream Water
3.3. Relationship between Falling Temperature and Rising Level in Stream Water
3.4. Approaches to Estimating Rising Levels Using Falling Temperature in Stream Water
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis-Summary for Policy Makers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC WGI 4th Assessment Report; IPCC: Cambridge, UK, 2007. [Google Scholar]
- McMichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 3. [Google Scholar]
- Kim, Y.H.; Kim, E.S.; Choi, M.J.; Shim, K.M.; Ahn, J.B. Evaluation of long-term seasonal predictability of heatwave over South Korea using PNU CGCM-WRF Chain. Atmosphere 2019, 29, 671–687. (In Korean) [Google Scholar]
- Ahn, J.J. Lessons learned from major environmental health disasters in South Korea and the role of environmental health experts. J. Environ. Health Sci. 2022, 48, 9–18. (In Korean) [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef]
- Frederick, K.D.; Major, D.C. Climate change and water resources. Clim. Change 1997, 37, 7–23. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Change 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Dey, D.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Kim, I.J.; Han, D.H. A Small Stream Management Plan to Protect the Aquatic Ecosystem; RE-09; Korea Environment Institute (KEI): Sejong, Republic of Korea, 2008; p. 149. (In Korean)
- Korea Forest Service (KFS). Statistical Yearbook of Forestry 2019; Korea Forest Service: Daejeon, Republic of Korea, 2019; p. 444. (In Korean)
- Jun, J.H.; Kim, K.H.; Yoo, J.Y.; Choi, H.T.; Jeong, Y.H. Variation of suspended solid concentration, electrical conductivity and pH of stream water in the regrowth and rehabilitation forested catchments, South Korea. J. Korean Soc. For. Sci. 2007, 96, 21–28. (In Korean) [Google Scholar]
- Robinson, C.T.; Tonolla, D.; Imhof, B.; Vukelic, R.; Uehling, U. Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquat. Sci. 2016, 78, 327–341. [Google Scholar] [CrossRef]
- Kim, D.Y. Effect of regional climate change on precipitation in the 21st century. J. Korean Soc. Environ. Technol. 2020, 21, 205–210. (In Korean) [Google Scholar] [CrossRef]
- Gillham, R.W. The capillary fringe and its effect on watertable response. J. Hydrol. 1984, 67, 307–324. [Google Scholar] [CrossRef]
- Woods, R.; Sivapalan, M.; Duncan, M. Investigating the representative elementary area concept: An approach based on field data. Hydrol. Process. 1995, 9, 291–312. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems. Bioscience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Wood, E.F.; Sivapalan, M.; Beven, K.; Band, L. Effects of spatial variability and scale with implications to hydrologic modeling. J. Hydrol. 1988, 102, 29–47. [Google Scholar] [CrossRef]
- Townsend, C.R. The patch dynamics concept of stream community ecology. J. N. Am. Benthol. Soc. 1989, 8, 36–50. [Google Scholar] [CrossRef]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An ecosystems perspective of riparian zones. BioScience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Montgomery, D.R. Process domain and river continuum. J. Am. Water Resour. Assoc. 1999, 35, 397–410. [Google Scholar] [CrossRef]
- Shanley, J.B.; Peters, N.E. Preliminary observations of streamflow generation during storms in a forested Piedmont watershed using temperature as a tracer. J. Contam. Hydrol. 1988, 3, 349–365. [Google Scholar] [CrossRef]
- Kobayashi, D.; Ishii, Y.; Kodama, Y. Stream temperature, specific conductance and runoff process in mountain watersheds. Hydrol. Process. 1999, 13, 865–876. [Google Scholar] [CrossRef]
- Dallas, H.; Day, J.; Musibono, D.; Day, E. Water quality for aquatic ecosystems: Tools for evaluating regional guidelines. WRC Rep. 1998, 626, 98–240. [Google Scholar]
- Arismendi, I.; Johnson, S.L.; Dunham, J.B.; Haggerty, R. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America. Freshw. Biol. 2013, 58, 880–894. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Torgerse, C.E.; Lawler, J.J.; Faux, R.N.; Steel, E.A.; Beechie, T.J.; Ebersole, J.L.; Leibowitz, S.G. Rethinking the longitudinal stream temperature paradigm: Region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 2015, 29, 4719–4737. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.; Iglesias Rey, P.L. Drinking water temperature around the global: Understanding, policies, challenges and opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Webb, B.W.; Hannah, D.W.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Nam, S.; Jang, S.J.; Chun, K.W.; Lee, J.U.; Kim, S.W. Seasonal water temperature variations in response to air temperature and precipitation in a forested headwater stream and an urban river: A case study from the Bukhan River basin, South Korea. Forest Sci. Technol. 2021, 17, 46–55. [Google Scholar] [CrossRef]
- Subehi, L.; Fukushima, T.; Onda, Y.; Mizugaki, S.; Gomi, T.; Kosugi, K.; Hiramatsu, S.; Kitahara, H.; Kuraji, K.; Terajima, T. Analysis of stream water temperature changes during rainfall events in forested watersheds. Limnology 2010, 11, 115–124. [Google Scholar] [CrossRef]
- Webb, B.W.; Clack, P.D.; Walling, D.E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 2003, 17, 3069–3084. [Google Scholar] [CrossRef]
- Brown, L.E.; Hannah, D.M.; Milner, A.M. Hydroclimatological influences on water column and streambed thermal dynamics in an alpine river system. J. Hydrol. 2006, 325, 1–20. [Google Scholar] [CrossRef]
- Watts, L.G.; Calver, A. Effects of spatially-distributed rainfall on runoff for a conceptual catchment. Nord. Hydrol. 1991, 22, 1–14. [Google Scholar] [CrossRef]
- Poole, G.C.; Berman, C.H. An ecological perspective on the in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag 2001, 14, 621–628. [Google Scholar] [CrossRef]
- Feng, Y.; Brubaker, K.L. Sensitivity of flood-depth frequency to watershed-runoff change and sea-level rise using a one-dimensional hydraulic model. J. Hydrol. Eng. 2016, 21, 05016015. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.-O.; Levin, S.; Ma¨ler, K.-G.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Kaczorowski, D.; Sekulska-Nalewajko, J.; Kiedrzyńska, E. Three-dimensional model of flooding of the river floodplain—visualization of ecohydrological interactions. In Perspective Technologies and Methods in MEMS Design, Proceedings of the 2nd International Conference of Young Scientists, MEMSTECH 2006, Lviv, Ukraine, 24–27 May 2006; IEEE: New York, NY, USA, 2006; pp. 146–148. [Google Scholar]
- Kiedrzynska, E.; Kiedrzynski, M.; Zalewski, M. Sustainable floodplain management for flood prevention and water quality improvement. Nat. Hazards 2015, 76, 955–977. [Google Scholar] [CrossRef]
- Zalewski, M.; Janauer, G.S.; Jolankai, G. Ecohydrology—A New Paradigm for the Sustainable Use of Aquatic Resources; Technical Document on Hydrology; International Hydrological Program UNESCO: Paris, France, 1997. [Google Scholar]
- Zalewski, M. Flood pulses and river ecosystem robustness. In Frontiers in Flood Research; Kovacs colloquium; Tchiguirinskaia, I., Thein, K.N.N., Hubert, P., Eds.; IAHS Publication: Port Elizabeth, South Africa; UNESCO: Paris, France, 2006; p. 212. [Google Scholar]
- Rivaes, R.; Rodríguez-González, P.M.; Albuquerque, A.; Pinheiro, A.N.; Egger, G.; Ferreira, M.T. Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers: Riparian vegetation responses to altered flow regimes. Ecohydrology 2013, 6, 413–424. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, A.; Kreyling, J.; Beierkhunlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Lawson, C.R.; Vindenes, Y.; Bailey, L.; van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 2015, 18, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Sieg, T.; Schinko, T.; Vogel, K.; Mechler, R.; Merz, B.; Kreibich, H. Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification. PLoS ONE 2019, 14, e0212932. [Google Scholar] [CrossRef]
- Chang, H.; Franczyk, J.; Im, E.S.; Kwon, W.T.; Bae, D.H.; Jung, I.W. Vulnerability of Korean water resources to climate change and population growth. Water Sci. Technol. 2007, 56, 57–62. [Google Scholar] [CrossRef]
- Bae, S.K.; Kim, Y.H. Estimation of groundwater recharge rate using the NRCS-CN and the baseflow separation methods. J. Environ. Sci. Int. 2006, 15, 253–260. (In Korean) [Google Scholar]
- Lee, J.Y.; Jeon, W.H.; Park, Y.; Lim, H.G. Status and prospect of groundwater resources in Pyeongchang, Gangwon-do. J. Geo. Soc. Korea 2012, 48, 435–444. (In Korean) [Google Scholar]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Kinzig, A.P. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Teuling, A.J.; De Badts, E.A.; Jansen, F.A.; Fuchs, R.; Buitink, J.; Hoek van Dijke, A.J.; Sterling, S.M. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 2019, 23, 3631–3652. [Google Scholar] [CrossRef]
- Gulahmadov, N.; Liu, T.; Anjum, M.N.; Rizwan, M. Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River basin in central Asia under CMIP5 RCP scenarios. Water 2020, 12, 1426. [Google Scholar] [CrossRef]
- Danso-Amoako, E.; Scholz, M.; Kalimeris, N.; Yang, Q.; Shao, J. Predicting dam failure risk for sustainable flood retention basins: A generic case study for the wider Greater Manchester area. Comput. Environ. Urban Syst. 2012, 36, 423–433. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Foufoula-Georgiou, E. Channel network source representation using digital elevation models. Water Resour. Res. 1993, 29, 3925–3934. [Google Scholar] [CrossRef]
- Swanson, F.J.; Johnson, S.L.; Gregory, S.V.; Acker, S.A. Flood disturbance in a forested mountain landscape. BioScience 1998, 48, 681–689. [Google Scholar] [CrossRef]
- Brown, L.E.; Hannah, D.M. Alpine stream temperature response to storm events, J. Hydrometeorol. 2007, 8, 952–967. [Google Scholar] [CrossRef]
- Jain, S.; Sudheer, K. Fitting of hydrologic models: A close look at the Nash–Sutcliffe Index. J. Hydrol. Eng. 2008, 13, 981–986. [Google Scholar] [CrossRef]
- Sevat, E.; Dexetter, A. Selection of calibration objective functions in the context of rainfall-runoff modeling in a Sudanese Savannah Area. Hydrol. Sci. J. 1991, 36, 307–330. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of ‘Goodness-of-Fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Demissie, M. Hydrologic modeling of the Iroquois River Watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 361–375. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Yndman, R.J. Another look at forecast accuracy metrics for intermittent demand. Foresight 2006, 4, 43–46. [Google Scholar]
- Chen, H.; Xu, C.Y.; Guo, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol. 2012, 434–435, 36–45. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Zhong, W.; Dutta, U. Engaging Nash-Sutcliffe efficiency and model efficiency factor indicators in selecting and validating effective light rail system operation and maintenance cost models. J. Traffic Transport. Eng. 2015, 3, 255–265. [Google Scholar]
- Irons, J.G.; Ray, S.R.; Miller, L.K.; Oswood, M.W. Spatial and seasonal patterns of streambed water temperatures in an Alaskan subarctic stream. In Proceedings of the Symposium on Headwaters Hydrology, Merano, Italy, 20–23 April 1998; American Water Resources Association: Bethesda, MD, USA, 1989; pp. 381–390. [Google Scholar]
- Hannah, D.M.; Malcolm, I.A.; Soulsby, C.; Youngson, A.F. Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: Seasonal and sub-seasonal dynamics. River Res. Appl. 2004, 20, 635–652. [Google Scholar] [CrossRef]
- Moore, R.D. Stream temperature patterns in British Columbia, Canada, based on routine spot measurements. Can. Water Resour. J. 2006, 31, 41–56. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, H.H. Variations of stream water quality caused by discharge change. J. Korean For. Soc. 2000, 89, 342–355. (In Korean) [Google Scholar]
- Anderson, N.H. Phenology of Trichoptera in summer-dry headwater streams in western Oregon, U.S.A. In Proceedings of the 8th International Symposium on Trichoptera, Lake Itasca, MN, USA, 9–15 August 1995; Holzenthal, R.W., Flint, O.S., Eds.; Ohio Biological Survey: Columbus, OH, USA, 1997; pp. 7–13. [Google Scholar]
- Meyer, J.L.; Wallace, J.B. Lost linkages and lotic ecology: Rediscovering small streams. In Ecology: Achievement and Challenge; Press, M.C., Huntly, N.J., Levin, S., Eds.; Blackwell Scientific: London, UK, 2001; pp. 295–317. [Google Scholar]
- Abdulrazzak, M.J.; Morel-Seytoux, H.J. Recharge from an ephemeral stream following wetting front arrival to water table. Water Resour. Res. 1983, 19, 194–200. [Google Scholar] [CrossRef]
- Camarasa-Belmonte, A.M.; Segura-Beltrán, F. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena 2001, 45, 229–249. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Paul, M.J.; Coffey, R.; Stamp, J.; Johnson, T. A review of water quality responses to air temperature and precipitation changes 1: Flow, water temperature, saltwater intrusion. J. Am. Water Resour. Assoc. 2019, 55, 824–843. [Google Scholar] [CrossRef]
- Wolman, M.G.; Miller, J.P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 1960, 68, 54–74. [Google Scholar] [CrossRef]
- Dunne, T. Stochastic aspect of the relations between climate, hydrology and landform evolution. Trans. Jpn. Geomorphol. Union 1991, 12, 1–24. [Google Scholar]
- Ziemer, R.R.; Lisle, T.E. Hydrology; Chapter 3 in River Ecology and Management; Naiman, R.S., Ed.; Springer: New York, NY, USA, 1998; pp. 143–162. [Google Scholar]
- Johnson, S.L. Factors influencing stream temperatures in small streams: Substrate effects and a shading experiment. Can. J. Fish. Aquat. Sci. 2004, 61, 913–923. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Change 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Steel, E.A.; Sowder, C.; Peterson, E.E. Spatial and temporal variation of water temperature regimes on the Snoqualmie river network. J. Am. Water Resour. Assoc. 2016, 52, 769–787. [Google Scholar] [CrossRef]
- Lee, S.; Klein, A.; Over, T. Effects of the El Nino~–southern oscillation on temperature, precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basin. Hydrol. Process. 2004, 18, 1053–1071. [Google Scholar] [CrossRef]
- Novikmec, M.; Svitok, M.; Kočický, D.; Šporka, F.; Bitušík, P. Surface water temperature and ice cover of Tatra mountains lakes depend on altitude, topographic shading, and bathymetry. Arct. Antarct. Alp. Res. 2013, 45, 77–87. [Google Scholar] [CrossRef]
- Pletterbauer, F.; Melcher, A.; Graf, W. Climate change impacts in riverine ecosystem. Riverine Ecosyst. Manag. 2018, 8, 203–223. [Google Scholar]
- Oware, E.K.; Peterson, E.W. Storm driven seasonal variation in the thermal response of the streambed water of a low-gradient stream. Water 2020, 12, 2498. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Hibbert, A.R. Factors affecting the response of small watersheds to precipitation in humid regions. In Forest Hydrology; Sopper, W.E., Lull, H.W., Eds.; Pergamon Press: Oxford, UK, 1967; pp. 275–290. [Google Scholar]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Streamflow generation in steep headwaters: A linked hydro-geomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Roads, J.O.; Willmott, C.J. Uncertainties in precipitation and their impacts on runoff estimates. J. Clim. 2004, 17, 294–304. [Google Scholar] [CrossRef]
- Voisin, N.; Wood, A.W.; Lettenmaier, D.P. Evaluation of precipitation products for global hydrological prediction. J. Hydrometeorol. 2008, 9, 388–407. [Google Scholar] [CrossRef]
- Biemans, H.; Hutjes, R.W.A.; Kabat, P.; Strengers, B.J.; Gerten, D.; Rost, S. Effects of precipitation uncertainty on discharge calculations for main river basins. J. Hydrometeorol. 2009, 10, 1011–1025. [Google Scholar] [CrossRef]
- Burrel, B.C.; Davar, K.; Hughes, R. A review of flood management considering the impacts of climate change. Water Int. 2007, 32, 342–359. [Google Scholar] [CrossRef]
- Hynes, H.B.N. The stream and its valley. Proc. Int. Assoc. Theor. Appl. Limnol. 1975, 19, 1–15. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, W.G.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Sidle, R.C.; Pearce, A.J.; O’Loughin, C.L. Hillslope Stability and Landuse; American Geophysical Union: Washington, DC, USA, 1985; p. 40. [Google Scholar]
- Dieterich, M.; Anderson, N.H. The invertebrate fauna of summer-dry streams in western Oregon. Archiv Hydrobiol. 2000, 147, 273–295. [Google Scholar] [CrossRef]
- Benda, L.; Dunne, T. Stochastic forcing of sediment routing and storage in channel networks. Water Resour. Res. 1997, 33, 2865–2880. [Google Scholar] [CrossRef]
- Rice, S.P.; Greenwood, M.T.; Joyce, C.B. Tributaries, sediment sources, and longitudinal organization of macroinvertebrate fauna along river systems. Can. J. Fish. Aquat. Sci. 2001, 58, 824–840. [Google Scholar] [CrossRef]
- Detty, J.M.; McGuire, K.J. Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour. Res. 2010, 46, W07525. [Google Scholar] [CrossRef]
TF = LR | TF > LR | ||||
---|---|---|---|---|---|
FC≤100 | FC>100 | FC≤100 | FC>100 | ||
TA (h) | TF | 2.4 ± 2.8 (0.2–12.7) | 5.8 ± 4.8 (0.2–20.2) | 3.5 ± 3.8 (0.2–16.2) | 5.2 ± 5.3 (0.2–23.3) |
LR | 5.0 ± 4.5 (0.3–19.7) | 6.5 ± 5.6 (0.3–24.3) | |||
PT (mm) | TF | 14.0 ± 19.4 (0.5–83.5) | 33.7 ± 29.6 (0.5–110.5) | 19.1 ± 27.8 (0.4–213.5) | 19.2 ± 23.7 (0.5–146.5) |
LR | 25.1 ± 33.3 (1.0–241.0) | 23.2 ± 25.7 (0.5–154.5) | |||
WT (°C) | Tmax | 17.5 ± 1.9 (14.6–21.7) | 16.6 ± 2.3 (11.2–21.7) | 16.8 ± 2.3 (8.8–22.4) | 17.4 ± 2.5 (10.0–22.5) |
Tmin | 17.1 ± 1.7 (14.3–21.5) | 16.0 ± 2.2 (10.3–21.0) | 16.4 ± 2.2 (8.7–22.3) | 17.0 ± 2.5 (9.9–21.9) | |
TF | −0.4 ± 0.5 (−1.9–−0.1) | −0.6 ± 0.6 (−2.4–−0.1) | −0.3 ± 0.5 (−2.3–−0.1) | −0.4 ± 0.5 (−3.1–−0.1) | |
WL (m) | Lmin | 0.1 ± 0.1 (0.03–0.4) | 0.1 ± 0.1 (0.01–0.5) | 0.2 ± 0.2 (0.01–1.2) | 0.1 ± 0.1 (0.01–0.6) |
Lmax | 0.2 ± 0.2 (0.03–0.9) | 0.3 ± 0.2 (0.03–0.8) | 0.3 ± 0.3 (0.01–1.3) | 0.3 ± 0.2 (0.01–1.1) | |
LR | 0.1 ± 0.2 (0.001–0.7) | 0.2 ± 0.2 (0.001–0.7) | 0.1 ± 0.1 (0.002–0.9) | 0.1 ± 0.1 (0.001–0.7) |
TF = LR | TF > LR | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Factor 1 | Factor 2 | Factor 3 | Parameter | Factor 1 | Factor 2 | Factor 3 | |
FC≤100 (C1–C10) | TA | 0.802 | 0.312 | 0.439 | TTF | 0.264 | 0.870 | 0.337 |
TLR | 0.276 | 0.931 | 0.091 | |||||
PT | 0.939 | 0.232 | 0.173 | PTF | 0.827 | 0.324 | 0.380 | |
PLR | 0.911 | 0.308 | 0.225 | |||||
TF | −0.305 | −0.876 | −0.373 | TF | −0.317 | −0.242 | −0.910 | |
LR | 0.335 | 0.498 | 0.792 | LR | 0.930 | 0.195 | 0.166 | |
FC>100 (C11–C22) | TA | 0.302 | 0.333 | 0.890 | TTF | 0.904 | 0.268 | 0.298 |
TLR | 0.914 | 0.274 | 0.253 | |||||
PT | 0.907 | 0.215 | 0.294 | PTF | 0.406 | 0.619 | 0.595 | |
PLR | 0.356 | 0.732 | 0.502 | |||||
TF | −0.249 | −0.876 | −0.357 | TF | −0.320 | −0.327 | −0.859 | |
LR | 0.679 | 0.623 | 0.211 | LR | 0.233 | 0.907 | 0.226 |
TF = LR | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TA | PT | TF | TA | PT | TF | ||||||||
FC≤100 (n = 25) | PT | 0.85 | FC>100 (n = 50) | PT | 0.59 | ||||||||
TF | −0.69 | −0.55 | TF | −0.67 | −0.56 | ||||||||
LR | 0.74 | 0.59 | −0.83 | LR | 0.63 | 0.74 | −0.72 | ||||||
TF > LR | |||||||||||||
TTF | TLR | PTF | PLR | TF | TTF | TLR | PTF | PLR | TF | ||||
FC≤100 (n = 113) | TLR | 0.86 | FC>100 (n = 158) | TLR | 0.95 | ||||||||
PTF | 0.65 | 0.54 | PTF | 0.72 | 0.66 | ||||||||
PLR | 0.57 | 0.56 | 0.95 | PLR | 0.65 | 0.66 | 0.93 | ||||||
TF | −0.58 | −0.42 | −0.66 | −0.57 | TF | −0.63 | −0.61 | −0.78 | −0.74 | ||||
LR | 0.47 | 0.46 | 0.84 | 0.91 | −0.51 | LR | 0.53 | 0.53 | 0.73 | 0.79 | −0.63 |
Equation | R2 | n | F | p | ||
---|---|---|---|---|---|---|
TF = LR | FC≤100 | LR = −0.278(TF) − 0.021 | 0.69 | 25 | 51.60 | <0.001 |
FC>100 | LR = −0.259(TF) + 0.024 | 0.52 | 50 | 52.24 | <0.001 | |
TF > LR | FC≤100 | LR = −0.162(TF) + 0.051 | 0.26 | 113 | 38.98 | <0.001 |
FC>100 | LR = −0.199(TF) + 0.035 | 0.39 | 158 | 100.09 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Lim, H.; Choi, B.; Li, Q.; Moon, H.; Choi, H.T. Responses of Stream Water Temperature to Water Levels in Forested Catchments of South Korea. Forests 2023, 14, 2085. https://doi.org/10.3390/f14102085
Nam S, Lim H, Choi B, Li Q, Moon H, Choi HT. Responses of Stream Water Temperature to Water Levels in Forested Catchments of South Korea. Forests. 2023; 14(10):2085. https://doi.org/10.3390/f14102085
Chicago/Turabian StyleNam, Sooyoun, Honggeun Lim, Byoungki Choi, Qiwen Li, Haewon Moon, and Hyung Tae Choi. 2023. "Responses of Stream Water Temperature to Water Levels in Forested Catchments of South Korea" Forests 14, no. 10: 2085. https://doi.org/10.3390/f14102085