Carbon Accumulation and the Possibility of Carbon Losses by Vertical Movement of Dissolved Organic Carbon in Western Siberian Peatlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
- Typical ryam (pine–dwarf shrub–peat moss community) is characterised by a low Scots pine layer (Pinus sylvestris f. litwiniwii, height 1.5–4 m), a well-developed dwarf shrub layer (Ledum palustre, Chamaedaphne calyculata), and a moss layer dominated by Sphagnum fuscum with a minor admixture of S. angustifolium and S. divinum;
- Tall ryam, which is found on shallower peat near the outer edges of the peatland, is similar to the typical ryam, except that it has tall pine trees (Pinus sylvestris f. uliginosa, height 6–10 m) and Sphagnum angustifolium dominates the moss layer;
- The ridge–hollow complex features ridges, which are elongated perpendicular to the water flowlines; they are occupied by typical ryam communities, alternating with waterlogged sedge–peat moss hollows (Carex limosa, Scheuchzeria palustris, Eriophorum russeolum, Sphagnum balticum, S. majus, S. jensenii);
- Treeless throughflow fens, as well as Sphagnum lawns with hollow vegetation and occasional scattered hummocks, which are located within limited areas in the lower reaches of the peatland water catchment [41].
2.2. Field Sampling
2.3. Identification of Peat Types
2.4. Bulk Density, Carbon, and Ash Content
2.5. Separation of DOC and POC
2.6. AMS C Analysis
2.7. Calculation of Accumulation Rates
2.8. Calculation of DOC Downward Velocity
3. Results
3.1. Stratigraphy
3.2. Peat Ages and Accumulation Rates
3.3. Bulk Density and Ash Content
3.4. Carbon Accumulation Rate
3.5. POC and DOC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemtsov, A.A.; Mezentsev, A.V.; Inisheva, L.I. Bolota Zapadnoj Sibiri: Ih rol’ v Biosfere (Mires of Western Siberia: Their Role in the Bbiosphere), 3rd ed.; OOO Tomskiy CNTI: Tomsk, Russia, 2000; p. 72. [Google Scholar]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Yu, Z.; Charman, D.; Beilman, D.W.; Brovkin, V.; Large, D.J. Carbon in peat on Earth through time (C-PEAt). Past Glob. Chang. Mag. 2014, 22, 99. [Google Scholar] [CrossRef]
- Sheng, Y.; Smith, L.C.; MacDonald, G.M.; Kremenetski, K.V.; Frey, K.E.; Velichko, A.A.; Lee, M.; Beilman, D. Dubinin, P. A high resolution GIS based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cycles 2004, 18, 1–14. [Google Scholar] [CrossRef]
- Peregon, A.; Maksyutov, S.; Kosykh, N.P.; Mironycheva-Tokareva, N.P. Map-based inventory of wetland biomass and net primary production in western Siberia. J. Geophys. Res. Biogeosci. 2008, 113, G01007. [Google Scholar] [CrossRef]
- Bleuten, W.; Lapshina, E.D. Carbon Storage and Atmospheric Exchange by West Siberian Peatlands, 1st ed.; Physical Geography; Utrecht University: Utrecht, The Netherlands; Tomsk State University: Tomsk Oblast, Russia, 2001; p. 116. [Google Scholar]
- Kremenetski, K.V.; Velichko, A.A.; Borisova, O.K.; MacDonald, G.M.; Smith, L.C.; Frey, K.E.; Orlova, L.A. Peatlands of the Western Siberian lowlands: Current knowledge on zonation, carbon content and Late Quaternary history. Quat. Sci. Rev. 2003, 22, 703–723. [Google Scholar] [CrossRef]
- Smith, L.C.; MacDonald, G.M.; Velichko, A.A.; Beilman, D.W.; Borisova, O.K.; Frey, K.E.; Kremenetski, K.V.; Sheng, Y. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 2004, 303, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Woodwell, G.M.; Mackenzie, F.T.; Houghton, R.A.; Apps, M.; Gorham, E.; Davidson, E. Biotic feedbacks in the warming of the earth. Clim. Chang. 1998, 40, 518. [Google Scholar] [CrossRef]
- Tsyganov, A.N.; Zarov, E.A.; Mazei, Y.A.; Kulkov, M.G.; Babeshko, K.V.; Yushkovets, S.Y.; Payne, R.J.; Ratcliffe, J.L.; Fatyunina, Y.A.; Zazovskaya, E.P.; et al. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene. Ambio 2021, 50, 1–14. [Google Scholar] [CrossRef]
- Turunen, J.; Tahvanainen, T.; Tolonen, K.; Pitkanen, A. Carbon accumulation in West Siberian mires, Russia. Glob. Biogeochem. Cycles 2001, 15, 285–296. [Google Scholar] [CrossRef]
- Clymo, R.S.; Turunen, J.; Tolonen, K. Carbon accumulation in peatland. Oikos 1998, 81, 368–388. [Google Scholar] [CrossRef]
- Feurdean, A.; Gałka, M.; Florescu, G.; Diaconu, A.C.; Tanţău, I.; Kirpotin, S.; Hutchinson, S.M. 2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large-scale atmospheric circulation: A multi-proxy peat record. Quat. Sci. Rev. 2019, 226, 105948. [Google Scholar] [CrossRef]
- Beilman, D.W.; MacDonald, G.M.; Smith, L.C.; Reimer, P.J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Glob. Biogeochem. Cycles 2009, 23, GB1012. [Google Scholar] [CrossRef]
- Aravena, R.; Warner, B.G.; Charman, D.J.; Belyea, L.R.; Mathur, S.P.; Dinel, H. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario. Radiocarbon 1993, 35, 271–276. [Google Scholar] [CrossRef]
- Bleuten, W.; Zarov, E.; Schmitz, O. A high-resolution transient 3-dimensional hydrological model of an extensive undisturbed bog complex in West Siberia. Mires Peat 2020, 26, 1–25. [Google Scholar] [CrossRef]
- Charman, D.J.; Aravena, R.; Warner, B.G. Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. J. Ecol. 1994, 82, 55–62. [Google Scholar] [CrossRef]
- Charman, D.J.; Aravena, R.; Bryant, C.L.; Harkness, D.D. Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, Southwest England. Geology 1999, 27, 539–542. [Google Scholar] [CrossRef]
- Chasar, L.S.; Chanton, J.P.; Glaser, P.H.; Siegel, D.I.; Rivers, J.S. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Glob. Biogeochem. Cycles 2000, 14, 1095–1108. [Google Scholar] [CrossRef]
- Clymo, R.S.; Bryant, C.L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 2008, 72, 2048–2066. [Google Scholar] [CrossRef]
- Schulze, E.D.; Lapshina, E.; Filippov, I.; Kuhlmann, I.; Mollicone, D. Carbon dynamics in boreal peatlands of the Yenisey region, Western Siberia. Biogeosciences 2015, 12, 7057–7070. [Google Scholar] [CrossRef]
- Kolka, R.; Weishampel, P.; Fröberg, M. Measurement and importance of dissolved organic carbon. In Field Measurements for Forest Carbon Monitoring; Hoover, C.M., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 32–58. [Google Scholar] [CrossRef]
- Lim, A.G.; Loiko, S.V.; Kuzmina, D.M.; Krickov, I.V.; Shirokova, L.S.; Kulizhsky, S.P.; Vorobyev, S.N.; Pokrovsky, O.S. Dispersed ground ice of permafrost peatlands: Potential unaccounted carbon, nutrient and metal sources. Chemosphere 2021, 266, 128953. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Sleep, D.; Hughes, S.; Hudson, J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef]
- Frey, K.E.; Smith, L.C. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett. 2005, 32, L09401. [Google Scholar] [CrossRef]
- Schulze, W.X. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us—A perspective. Biogeosciences 2005, 2, 75–86. [Google Scholar] [CrossRef]
- Billett, M.F.; Garnett, M.H.; Harvey, F. UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Raymond, P.A.; Bauer, J.E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Org. Geochem. 2001, 32, 469–485. [Google Scholar] [CrossRef]
- Waddington, J.M.; Roulet, N.T. TGroundwater flow and dissolved carbon movement in a boreal peatland. J. Hydrol. 1997, 191, 122–138. [Google Scholar] [CrossRef]
- Aravena, R.; Wassenaar, L.I. Dissolved organic carbon and methane in a regional confined aquifer, southern Ontario, Canada: Carbon isotope evidence for associated subsurface sources. Appl. Geochem. 1993, 8, 483–493. [Google Scholar] [CrossRef]
- Chanton, J.P.; Bauer, J.E.; Glaser, P.A.; Siegel, D.I.; Kelley, C.A.; Tyler, S.C.; Romanowicz, E.H.; Lazrus, A. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim. Cosmochim. Acta 1995, 59, 3663–3668. [Google Scholar] [CrossRef]
- Kołaczek, P.; Gałka, M.; Lamentowicz, M.; Marcisz, K.; Kajukało-Drygalska, K.; Karpińska-Kołaczek, M. Increased radiocarbon dating resolution of ombrotrophic peat profiles reveals periods of disturbance which were previously undetected. Quat. Geochronol. 2019, 52, 21–28. [Google Scholar] [CrossRef]
- Lamentowicz, M.; Słowiński, M.; Marcisz, K.; Zielińska, M.; Kaliszan, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Fiałkiewicz-Kozieł, B.; Jassey, V.E.J.; et al. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quat. Res. 2015, 84, 312–325. [Google Scholar] [CrossRef]
- Glaser, P.H.; Volin, J.H.; Givnish, T.J.; Hansen, B.C.S.; Stricker, C.A. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: Rates, drivers, and sources of error. J. Geophys. Res. Biogeosci. 2012, 117, G03026. [Google Scholar] [CrossRef]
- Jaworski, T.; Niewiarowski, W. Frost peat mounds on Hermansenøya (Oscar II Land, NW Svalbard)—Their genesis, age and terminology. Boreas 2012, 41, 660–672. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Donahue, W.; Benscoter, B.W. Experimental drying intensifies burning and carbon losses in a northern peatland. Nat. Commun. 2011, 2, 1–5. [Google Scholar] [CrossRef]
- Väliranta, M.; Oinonen, M.; Seppä, H.; Korkonen, S.; Juutinen, S.; Tuittila, E.S. Unexpected problems in AMS 14C dating of fen peat. Radiocarbon 2014, 56, 95–108. [Google Scholar] [CrossRef]
- Gvozdetskii, N.A.; Krivolutskii, A.E.; Makunina, A.A. Fiziko-Geograficheskoe Rajonirovanie Tyumenskoj Oblasti (Physical and Geographical Zoning of the Tyumen Region); Moscow State University Publishing House: Moscow, Russia, 1973; pp. 9–28. (In Russian) [Google Scholar]
- Ivanov, K.E.; Novikov, S.M. Bolota Zapadnoj Sibiri ih Stroenie i Gidrologicheskij Rezhim (Peatlands of Western Siberia, Their Structure and Hydrological Regime); Gidrometeoizdat: Leningrad, Russia, 1976; 447p. [Google Scholar]
- Dyukarev, E.; Filippova, N.; Karpov, D.; Shnyrev, N.; Zarov, E.; Filippov, I.; Voropay, N.; Avilov, V.; Artamonov, A.; Lapshina, E. Hydrometeorological dataset of West Siberian boreal peatland: A 10-year record from the Mukhrino Field Station. Earth Syst. Sci. Data 2021, 13, 2595–2605. [Google Scholar] [CrossRef]
- Filippov, I.V.; Lapshina, E.D. Peatland unit types of lake-bog systems in the Middle Priob’ie (Western Siberia). Dyn. Environ. Glob. Clim. Chang. 2008, 1, 115–124. [Google Scholar] [CrossRef]
- Mauquoy, D.; Hughes, P.D.M.; Van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat 2010, 7, 1–5. Available online: https://hdl.handle.net/11245/1.345803 (accessed on 26 November 2023).
- Mauquoy, D.; Van Geel, B. Plant macrofossil methods and studies: Mire and peat macros. Encycl. Quat. Sci. 2013, 113, 637–656. [Google Scholar] [CrossRef]
- Matukhin, R.G.; Matukhina, V.G.; Vasiliev, I.P.; Mikhantieva, L.S.; Popova, G.I.; Markov, D.V.; Ospennikova, L.A.; Skobeeva, E.I. Klassifikatsiya Torfov i Torfyanykh Zalezhey Zapadnoy Sibiri (Classification of Peat Types and Peat Deposits of West Siberia), 1st ed.; NITS OIGGM: Novosibirsk, Russia, 2000; p. 90. [Google Scholar]
- Steinhof, A. Accelerator Mass Spectrometry of Radiocarbon. In Radiocarbon and Climate Change; Schuur, E.A., Druffel, E.R., Trumbore, S.E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 253–278. [Google Scholar]
- Steinhof, A.; Altenburg, M.; Machts, H. Sample preparation at the Jena 14C laboratory. Radiocarbon 2017, 59, 815–830. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Hua, Q.; Barbetti, M.; Rakowski, Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef]
- Blaauw, M. Clam: Classical Age-Depth Modelling of Cores from Deposits. R Package. Available online: https://cran.r-project.org/web/packages/clam/index.html (accessed on 22 September 2023).
- Blaauw, M.; Christen, J.A.; Aquino, M.A. Rbacon: Age-Depth Modelling Using Bayesian Statistics. R Package Version 2.4.2. Available online: https://cran.r-project.org/web/packages/rbacon/index.html (accessed on 22 September 2023).
- Turunen, J.; Tomppo, E.; Tolonen, K.; Reinikainen, A. Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 2002, 12, 69–80. [Google Scholar] [CrossRef]
- Łopatka, A.; Siebielec, G.; Kaczyński, R.; Stuczyński, T. Analysis of Soil Carbon Stock Dynamics by Machine Learning—Polish Case Study. Land 2023, 12, 1587. [Google Scholar] [CrossRef]
- Borren, W.; Bleuten, W.; Lapshina, E.D. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quat. Res. 2004, 61, 42–51. [Google Scholar] [CrossRef]
- Fraser, C.J.D.; Roulet, N.T.; Moore, T.R. Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol. Process. 2001, 15, 3151–3166. [Google Scholar] [CrossRef]
- Shaniova, V.S. Approaches to determinig the content of dissolved organic carbon in peat (Podkhody k opredeleniu soderzhaniya rastvorennogo organicheskogo ugleroda v torfe). Bizn.-Transform. Upr. Uluchsheniyami 2023, 1, 31–37. [Google Scholar]
- Lapshina, E.D.; Pologova, N.N.; Muldiyarov, E.Y. Pattern of development and carbon accumulation in homogenous Sphagnum fuscum peat deposit on the south of West Siberia. In Proceedings of the International Field Symposium West Siberian Peatlands and Carbon Cycle: Past and Present, Noyabrsk, Russia, 18–22 August 2001; pp. 101–104. [Google Scholar]
- Loisel, J.; Yu, Z.; Beilman, D.W.; Camill, P.; Alm, J.; Amesbury, M.J.; Matthew, J.; Anderson, S.; Bochicchio, C.; Barber, K.; et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 2014, 24, 1028–1042. [Google Scholar] [CrossRef]
- Lapshina, E.D. Peat grow dynamic on the bogs of taiga zone of West Siberia. In Proceedings of the West Siberian Peatlands and Carbon Cycle: Past and Present Conference, Novosibirsk, Russia, 7–27 June 2011; pp. 38–39. [Google Scholar]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Prim. 2021, 1, 62. [Google Scholar] [CrossRef]
- Zarov, E.A.; Meshcheryakova, A.V.; Shanyova, V.S.; Khoroshavin, V.Y. Water table and dissolved organic carbon seasonal dynamic at the different ecosystems of the ombrotrophic bog (Mukhrino, West Siberia). Smart Sustain. Cities Conf. 2022, 169–180. [Google Scholar]
- Terentieva, I.E.; Glagolev, M.V.; Lapshina, E.D.; Sabrekov, A.F.; Maksyutov, S. Mapping of West Siberian taiga wetland complexes using Landsat imagery: Implications for methane emissions. Biogeosciences 2016, 13, 4615–4626. [Google Scholar] [CrossRef]
- Liss, O.L.; Abramova, L.I.; Avetov, N.A.; Berezina, N.A.; Inisheva, L.I.; Kurnishkova, T.V.; Sluka, Z.A.; Tolpysheva, T.Y.; Shvedchikova, N.K. Bolotnye Sistemy Zapadnoj Sibiri i ih Prirodoohrannoe Znachenie (Mire Systems of Western Siberia and Their Nature Conservation Value, 1st ed.; Grif i Ko: Tula, Russia, 2001; 584p. [Google Scholar]
- Chambers, F.; Beilman, D.; Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 2010, 7, 1–10. [Google Scholar]
- Pologova, N.N.; Lapshina, E.D. Nakoplenie ugleroda v torfyanyh zalezhah Bol’shogo Vasyuganskogo bolota (Carbon accumulation in peat deposits of the Great Vasyugan mire). In IV Sobranie po Klimatoekologicheskomu Monitoringu (The Fourth Climate-Ecological Monitoring Meeting); Dyukarev, A.G., Ed.; Publishing House: Tomsk, Russia, 2001; pp. 72–73. [Google Scholar]
- Yu, Z.; Campbell, I.D.; Vitt, D.H.; Apps, M.J. Modelling long-term peatland dynamics. I. Concepts, review, and proposed design. Ecol. Model. 2001, 145, 197–210. [Google Scholar] [CrossRef]
- Fiałkiewicz-Kozieł, B.; Kołaczek, P.; Piotrowska, N.; Michczyński, A.; Łokas, E.; Wachniew, P.; Woszczyk, M.; Sensuła, B. High-resolution age-depth model of a peat bog in Poland as an important basis for paleoenvironmental studies. Radiocarbon 2014, 56, 109–125. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, B.C. Paleoecological and Carbon Accumulation Dynamics of a Fen Peatland in the Hudson Bay Lowlands, Northern Ontario, from the Mid-Holocene to Present. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2011. Volume 113. 132p. [Google Scholar]
- Thormann, M.N.; Szumigalski, A.R.; Bayley, S.E. Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 1999, 19, 305–317. [Google Scholar] [CrossRef]
- Lapshina, E.D.; Pologova, N.N. Spatial dynamics of peat grows and carbon accumulation in Sphagnum bogs (boreal West Siberia). In Proceedings of the West Siberian Peatlands and Carbon Cycle: Past and Present Conference, Novosibirsk, Russia, 7–27 June 2011; Vomperskiy, S.E., Ed.; pp. 96–98. [Google Scholar]
- Pologova, N.N.; Lapshina, E.D. Nakoplenie ugleroda v torfyanyh zalezhah Bol’shogo Vasyuganskogo bolota (Carbon accumulation in peat deposits of the Great Vasyugan mire). In Bolshoe Vasyuganskoe Boloto. Sovremennoe Sostoyanie i Processy Razvitiya (Great Vasyugan Mire. Actual Statement and Development Processes); Kabanov, M.V., Ed.; ISA SO RAN: Tomsk, Russia, 2002; pp. 174–179. [Google Scholar]
- Frolking, S.; Roulet, N.T.; Moore, T.R.; Richard, P.J.; Lavoie, M.; Müller, S.D. Modeling northern peatland decomposition and peat accumulation. Ecosystems 2001, 4, 479–498. [Google Scholar] [CrossRef]
- Van Bellen, S.; Garneau, M.; Booth, R.K. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohydrological change. Holocene 2011, 21, 1217–1231. [Google Scholar] [CrossRef]
- Hikouei, I.S.; Eshleman, K.N.; Saharjo, B.H.; Graham, L.L.; Applegate, G.; Cochrane, M.A. Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands. Sci. Total Environ. 2023, 857, 159701. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Buzek, F.; Novak, M.; Cejkova, B.; Jackova, I.; Curik, J.; Veselovsky, F.; Stpanova, M.; Bohdalkova, L. Assessing DOC export from a Sphagnum dominated peatland using σ13C and σ18O–H2O stable isotopes. Hydrol. Process. 2019, 33, 2792–2803. [Google Scholar] [CrossRef]
- Freeman, C.; Evans, C.D.; Monteith, D.T.; Reynolds, B.; Fenner, N. Export of organic carbon from peat soils. Nature 2001, 412, 785. [Google Scholar] [CrossRef]
- Coduto, D.P. Geotechnical Engineering: Principles and Practices, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999; p. 800. [Google Scholar]
- Kiselev, M.V.; Dyukarev, E.A.; Voropay, N.N. Features of seasonal temperature variations in peat soils of oligotrophic bogs in south taiga of Western Siberia. IOP Conf. Ser. Earth Environ. Sci. 2018, 138, 012006. [Google Scholar] [CrossRef]
- Campeau, A.; Vachon, D.; Bishop, K.; Nilsson, M.B.; Wallin, M.B. Autumn destabilization of deep porewater CO2 store in a northern peatland driven by turbulent diffusion. Nat. Commun. 2021, 12, 6857. [Google Scholar] [CrossRef]
- Kraev, G.; Schulze, E.D.; Yurova, A.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 2017, 8, 105. [Google Scholar] [CrossRef]
- Cole, L.; Bardgett, R.D.; Ineson, P.; Adamson, J.K. Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England. Soil Biol. Biochem. 2002, 34, 599–607. [Google Scholar] [CrossRef]
- Beckwith, C.W.; Baird, A.J.; Heathwaite, A.L. Anisotropy and depth related heterogeneity of hydraulic conductivity in a bog peat. I: Laboratory measurements. Hydrol. Process. 2003, 17, 89–101. [Google Scholar] [CrossRef]
- Chason, D.B.; Siegel, D.I. Hydraulic conductivity and related physical properties of peat, Lost River Peatland, northern Minnesota. Soil Sci. 1986, 142, 91–99. [Google Scholar] [CrossRef]
- Levy, Z.F.; Siegel, D.I.; Dasgupta, S.S.; Glaser, P.H.; Welker, J.M. Stable isotopes of water show deep seasonal recharge in northern bogs and fens. Hydrol. Process. 2014, 28, 4938–4952. [Google Scholar] [CrossRef]
- Dyukarev, E.A.; Godovnikov, E.A.; Karpov, D.V.; Kurakov, S.A.; Lapshina, E.D.; Filippov, I.V.; Filippova, N.V.; Zarov, E.A. Net ecosystem exchange, gross primary production and ecosystem respiration in ridge-hollow complex at Mukhrino bog. Geogr. Environ. Sustain. 2021, 12, 227–244. [Google Scholar] [CrossRef]
Core | Habitat Description | WT Depth (cm) | Peat Depth (cm) |
---|---|---|---|
2 | Typical transition from ryam to dry peatland; covered by pine trees up to 3 m tall, dwarf shrubs (Ericaceae), and Sphagnum fuscum. | 20–30 | 530 |
5, 19 | Ridge in ridge–hollow complex; covered by low pine (up to 2 m tall), dwarf shrubs (Ericaceae), and Sphagnum fuscum. | 15–20 | 390, 400 |
5-5 | Ecotone between ridge and hollow; covered by mixed species from both habitats: cottongrass, Sphagnum mosses (S. fuscum, S. balticum), dwarf shrubs (Ericaceae). | 5–10 | 310 |
18 | Floating Sphagnum mat close to the lake; covered by Scheuchzeria, sedges (Carex limosa), and Sphagnum mosses (S. papillosum, S. balticum). | 2–5 | 480 |
27 | Ridge in ridge–pool complex; treeless ridge with dwarf shrubs and Sphagnum mosses. | 10–15 | 400 |
31 | Hollow in ridge–hollow complex; covered by sedges (Carex limosa) and Sphagnum balticum. | 5–10 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarov, E.A.; Lapshina, E.D.; Kuhlmann, I.; Schulze, E.-D. Carbon Accumulation and the Possibility of Carbon Losses by Vertical Movement of Dissolved Organic Carbon in Western Siberian Peatlands. Forests 2023, 14, 2393. https://doi.org/10.3390/f14122393
Zarov EA, Lapshina ED, Kuhlmann I, Schulze E-D. Carbon Accumulation and the Possibility of Carbon Losses by Vertical Movement of Dissolved Organic Carbon in Western Siberian Peatlands. Forests. 2023; 14(12):2393. https://doi.org/10.3390/f14122393
Chicago/Turabian StyleZarov, Evgeny A., Elena D. Lapshina, Iris Kuhlmann, and Ernst-Detlef Schulze. 2023. "Carbon Accumulation and the Possibility of Carbon Losses by Vertical Movement of Dissolved Organic Carbon in Western Siberian Peatlands" Forests 14, no. 12: 2393. https://doi.org/10.3390/f14122393