Evaluation of Soundscape Perception in Urban Forests Using Acoustic Indices: A Case Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sound Collection and Processing
2.2. Subjective Evaluation
2.2.1. Participants
2.2.2. Questionnaire
2.2.3. Procedure
2.3. Objective Measure
2.4. Statistical Analysis
3. Results
3.1. Temporal Difference of Objective Acoustic Indices
3.2. Temporal Variation of Subjective Soundscape Evaluation
3.3. Relationship between Acoustic Indices and Perceptual Dimensions
4. Discussion
4.1. Effects of Soundscape Temporal Patterns on Perception
4.2. Ability of Acoustic Indices for Urban Forest Soundscape Evaluation
4.3. Applications and Practical Implications
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farina, A.; Gage, S.H. Ecoacoustics: The Ecological Role of Sound; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Pijanowski, B.C.; Villanueva-Rivera, L.J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.M.; Gage, S.H.; Pieretti, N. Soundscape Ecology: The Science of Sound in the Landscape. BioScience 2011, 61, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Aletta, F.; Oberman, T.; Kang, J. Associations between positive health-related effects and soundscapes perceptual constructs: A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francomano, D.; González, M.I.R.; Valenzuela, A.E.; Ma, Z.; Rey, A.N.R.; Anderson, C.B.; Pijanowski, B.C. Human-nature connection and soundscape perception: Insights from Tierra del Fuego, Argentina. J. Nat. Conserv. 2022, 65, 126110. [Google Scholar] [CrossRef]
- Moscoso, P.; Peck, M.; Eldridge, A. Systematic literature review on the association between soundscape and ecological/human wellbeing. PeerJ Prepr. 2018. [Google Scholar] [CrossRef]
- Szeremeta, B.; Zannin, P.H.T. Analysis and evaluation of soundscapes in public parks through interviews and measurement of noise. Sci. Total Environ. 2009, 407, 6143–6149. [Google Scholar] [CrossRef]
- Shannon, G.; McKenna, M.F.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.M.; Brown, E.; Warner, K.A.; Nelson, M.D.; White, C.; Briggs, J. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 2016, 91, 982–1005. [Google Scholar] [CrossRef]
- WHO. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- ISO/TS, 12913–1:2014; Acoustics—Soundscape—Part 1: Definition and Conceptual Framework. Technical Report; International Organization for Standardization: Geneva, Switzerland, 2014.
- Chen, Z.; Hermes, J.; Liu, J.; von Haaren, C. How to integrate the soundscape resource into landscape planning? A perspective from ecosystem services. Ecol. Indic. 2022, 141, 109156. [Google Scholar] [CrossRef]
- Levenhagen, M.J.; Miller, Z.D.; Petrelli, A.R.; Ferguson, L.A.; Shr, Y.H.; Gomes, D.G.E.; Taff, B.D.; White, C.; Fristrup, K.; Monz, C. Ecosystem services enhanced through soundscape management link people and wildlife. People Nat. 2020, 3, 176–189. [Google Scholar] [CrossRef]
- Kang, J.; Aletta, F. The impact and outreach of soundscape research. Environments 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Buxton, R.T.; Pearson, A.L.; Allou, C.; Fristrup, K.; Wittemyer, G. A synthesis of health benefits of natural sounds and their distribution in national parks. Proc. Natl. Acad. Sci. USA 2021, 118, e2013097118. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lam, B.; Ong, Z.-T.; Ooi, K.; Gan, W.-S.; Kang, J.; Yeong, S.; Lee, I.; Tan, S.-T. Effects of contexts in urban residential areas on the pleasantness and appropriateness of natural sounds. Sustain. Cities Soc. 2020, 63, 102475. [Google Scholar] [CrossRef]
- Fisher, J.C.; Irvine, K.N.; Bicknell, J.E.; Hayes, W.M.; Fernandes, D.; Mistry, J.; Davies, Z.G. Perceived biodiversity, sound, naturalness and safety enhance the restorative quality and wellbeing benefits of green and blue space in a neotropical city. Sci. Total Environ. 2021, 755, 143095. [Google Scholar] [CrossRef]
- Nwankwo, M.; Meng, Q.; Yang, D.; Liu, F. Effects of Forest on Birdsong and Human Acoustic Perception in Urban Parks: A Case Study in Nigeria. Forests 2022, 13, 994. [Google Scholar] [CrossRef]
- Xie, H.; Peng, Z.; Kang, J.; Liu, C.; Wu, H. Soundscape Evaluation Outside a Taoist Temple: A Case Study of Laojundong Temple in Chongqing, China. Int. J. Environ. Res. Public Health 2022, 19, 4571. [Google Scholar] [CrossRef]
- Li, H.; Xie, H.; Woodward, G. Soundscape components, perceptions, and EEG reactions in typical mountainous urban parks. Urban For. Urban Green. 2021, 64, 127269. [Google Scholar] [CrossRef]
- Han, X.; Sun, T.; Cao, T. Study on landscape quality assessment of urban forest parks: Take Nanjing Zijinshan National forest Park as an example. Ecol. Indic. 2021, 120, 106902. [Google Scholar] [CrossRef]
- Liu, W.-Y.; Lin, Y.-Z.; Hsieh, C.-M. Assessing the ecological value of an urban forest park: A case study of sinhua forest park in taiwan. Forests 2021, 12, 806. [Google Scholar] [CrossRef]
- Uebel, K.; Marselle, M.; Dean, A.J.; Rhodes, J.R.; Bonn, A. Urban green space soundscapes and their perceived restorativeness. People Nat. 2021, 3, 756–769. [Google Scholar] [CrossRef]
- Mancini, S.; Mascolo, A.; Graziuso, G.; Guarnaccia, C. Soundwalk, questionnaires and noise measurements in a university campus: A soundscape study. Sustainability 2021, 13, 841. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Su, H.; Cui, J. Characterization of soundscape perception of preschool children. Build. Environ. 2022, 214, 108921. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, H.; Kang, J.; Wang, C. The preservation value of urban soundscape and its determinant factors. Appl. Acoust. 2020, 168, 107430. [Google Scholar] [CrossRef]
- Fang, X.; Gao, T.; Hedblom, M.; Xu, N.; Xiang, Y.; Hu, M.; Chen, Y.; Qiu, L. Soundscape perceptions and preferences for different groups of users in urban recreational forest parks. Forests 2021, 12, 468. [Google Scholar] [CrossRef]
- Tokue, Y.; Koga, K.; Nakamura, A.; Osawa, K.; Seki, K.; Imamura, F.; Nishihiro, J. Effects of hearing diverse orthoptera sounds on human psychology. Urban For. Urban Green. 2022, 73, 127512. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Hellström, B.; Lundén, P. A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. Landsc. Urban Plan. 2014, 123, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.I.; Jeon, J.Y. Urban soundscape categorization based on individual recognition, perception, and assessment of sound environments. Landsc. Urban Plan. 2021, 216, 104241. [Google Scholar] [CrossRef]
- Hong, X.; Wang, G.; Liu, J.; Song, L.; Wu, E.T. Modeling the impact of soundscape drivers on perceived birdsongs in urban forests. J. Clean. Prod. 2021, 292, 125315. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H. Audio-visual interactions enhance soundscape perception in China’s protected areas. Urban For. Urban Green. 2021, 61, 127090. [Google Scholar] [CrossRef]
- Shao, Y.; Hao, Y.; Yin, Y.; Meng, Y.; Xue, Z. Improving soundscape comfort in urban green spaces based on aural-visual interaction attributes of landscape experience. Forests 2022, 13, 1262. [Google Scholar] [CrossRef]
- Gozalo, G.R.; Carmona, J.T.; Morillas, J.B.; Vílchez-Gómez, R.; Escobar, V.G. Relationship between objective acoustic indices and subjective assessments for the quality of soundscapes. Appl. Acoust. 2015, 97, 1–10. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Compatibility of quantitative and qualitative data-collection protocols for urban soundscape evaluation. Sustain. Cities Soc. 2021, 74, 103259. [Google Scholar] [CrossRef]
- Farina, A. Soundscape Ecology: Principles, Patterns, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hong, X.; Liu, J.; Wang, G.; Jiang, Y.; Wu, S.; Lan, S. Factors influencing the harmonious degree of soundscapes in urban forests: A comparison of broad-leaved and coniferous forests. Urban For. Urban Green. 2019, 39, 18–25. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Hornberg, J.; Haselhoff, T.; Sutcliffe, R.; Ahmed, S.; Moebus, S.; Gruehn, D. A widened array of metrics (WAM) approach to characterize the urban acoustic environment; a case comparison of urban mixed-use and forest. Appl. Acoust. 2022, 185, 108387. [Google Scholar] [CrossRef]
- Eldridge, A.; Guyot, P.; Moscoso, P.; Johnston, A.; Eyre-Walker, Y.; Peck, M. Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic. 2018, 95, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Buxton, R.T.; McKenna, M.F.; Clapp, M.; Meyer, E.; Stabenau, E.; Angeloni, L.M.; Crooks, K.; Wittemyer, G. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conserv. Biol. 2018, 32, 1174–1184. [Google Scholar] [CrossRef]
- Zhao, Y.; Sheppard, S.; Sun, Z.; Hao, Z.; Jin, J.; Bai, Z.; Bian, Q.; Wang, C. Soundscapes of urban parks: An innovative approach for ecosystem monitoring and adaptive management. Urban For. Urban Green. 2022, 71, 127555. [Google Scholar] [CrossRef]
- Bian, Q.; Wang, C.; Sun, Z.; Yin, L.; Jiang, S.; Cheng, H.; Zhao, Y. Research on spatiotemporal variation characteristics of soundscapes in a newly established suburban forest park. Urban For. Urban Green. 2022, 78, 127766. [Google Scholar] [CrossRef]
- Leslie, E.; Sugiyama, T.; Ierodiaconou, D.; Kremer, P. Perceived and objectively measured greenness of neighbourhoods: Are they measuring the same thing? Landsc. Urban Plan. 2010, 95, 28–33. [Google Scholar] [CrossRef]
- Dallimer, M.; Irvine, K.N.; Skinner, A.M.J.; Davies, Z.G.; Rouquette, J.R.; Maltby, L.L.; Warren, P.H.; Armsworth, P.R.; Gaston, K.J. Biodiversity and the Feel-Good Factor: Understanding Associations between Self-Reported Human Well-being and Species Richness. BioScience 2012, 62, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Votsi, N.-E.P.; Kallimanis, A.S.; Pantis, J.D. The distribution and importance of Quiet Areas in the EU. Appl. Acoust. 2017, 127, 207–214. [Google Scholar] [CrossRef]
- Zwerts, J.A.; Wiegers, J.N.; Sterck, E.H.M.; van Kuijk, M. Exploring spatio-temporal variation in soundscape saturation of an African tropical forest landscape. Ecol. Indic. 2022, 137, 108712. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J. Soundscape design in city parks: Exploring the relationships between soundscape composition parameters and physical and psychoacoustic parameters. J. Environ. Eng. Landsc. Manag. 2015, 23, 102–112. [Google Scholar] [CrossRef] [Green Version]
- ISO/TS, 12913–2:2018; Acoustics—Soundscape Part 2: Data Collection and Reporting Requirements. ISO: Geneva, Switzerland, 2018.
- Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef]
- ISO/TS, 12913–3:2019; Acoustics—Soundscape—Part 3: Data Analysis. ISO: Geneva, Switzerland, 2019.
- Pieretti, N.; Farina, A.; Morri, D. A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecol. Indic. 2011, 11, 868–873. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Bunnefeld, N.; Gardner, N.; Willis, S.G.; Dent, D.H. Rapid assessment of avian species richness and abundance using acoustic indices. Ecol. Indic. 2020, 115, 106400. [Google Scholar] [CrossRef]
- Villanueva-Rivera, L.J.; Pijanowski, B.C.; Doucette, J.; Pekin, B. A primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 2011, 26, 1233–1246. [Google Scholar] [CrossRef]
- Boelman, N.T.; Asner, G.P.; Hart, P.J.; Martin, R.E. Multi-trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecol. Appl. 2007, 17, 2137–2144. [Google Scholar] [CrossRef]
- Kasten, E.P.; Gage, S.H.; Fox, J.; Joo, W. The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecol. Inform. 2012, 12, 50–67. [Google Scholar] [CrossRef]
- Sueur, J.; Pavoine, S.; Hamerlynck, O.; Duvail, S. Rapid acoustic survey for biodiversity appraisal. PLoS ONE 2008, 3, e4065. [Google Scholar] [CrossRef] [Green Version]
- Ogle, D.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis, R Package Version 0.8.30; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Mitchell, A.; Aletta, F.; Kang, J. How to analyse and represent quantitative soundscape data. JASA Express Lett. 2022, 2, 037201. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, C.; Sun, Z.; van den Bosch, C.K.; Zhao, D.; Sun, B.; Xu, X.; Bian, Q.; Bai, Z.; Wei, K.; et al. Soundscape mapping for spatial-temporal estimate on bird activities in urban forests. Urban For. Urban Green. 2021, 57, 126822. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Zhu, X.; Ge, T. Effect of birdsong soundscape on perceived restorativeness in an urban park. Int. J. Environ. Res. Public Health 2020, 17, 5659. [Google Scholar] [CrossRef]
- Sánchez-Giraldo, C.; Correa Ayram, C.; Daza, J.M. Environmental sound as a mirror of landscape ecological integrity in monitoring programs. Perspect. Ecol. Conserv. 2021, 19, 319–328. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Gardner, N.; Bunnefeld, L.; Bunnefeld, N.; Willis, S.G.; Dent, D.H.; Zamora-Gutierrez, V. Guidelines for the use of acoustic indices in environmental research. Methods Ecol. Evol. 2019, 10, 1796–1807. [Google Scholar] [CrossRef]
- Pérez-Martínez, G.; Torija, A.J.; Ruiz, D.P. Soundscape assessment of a monumental place: A methodology based on the perception of dominant sounds. Landsc. Urban Plan. 2018, 169, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Associations with bird sounds: How do they relate to perceived restorative potential? J. Environ. Psychol. 2016, 47, 136–144. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, C.; Sun, Z.; Zhao, D.; Sun, B.; Wang, H.; van den Bosch, C.K. Vegetation structure and temporality influence the dominance, diversity, and composition of forest acoustic communities. For. Ecol. Manag. 2021, 482, 118871. [Google Scholar] [CrossRef]
- Bian, Q.; Wang, C.; Cheng, H.; Han, D.; Zhao, Y.; Yin, L. Exploring the application of acoustic indices in the assessment of bird diversity in urban forests. Biodivers. Sci. 2023, 31, 22080. [Google Scholar] [CrossRef]
- Machado, R.B.; Aguiar, L.; Jones, G. Do acoustic indices reflect the characteristics of bird communities in the savannas of Central Brazil? Landsc. Urban Plan. 2017, 162, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, L.; Sourdril, A.; Froidevaux, J.S.P.; Cauchoix, M.; Calatayud, F.; Deconchat, M.; Gasc, A. Linking acoustic diversity to compositional and configurational heterogeneity in mosaic landscapes. Landsc. Ecol. 2022, 37, 1125–1143. [Google Scholar] [CrossRef]
- Ratcliffe, E. Sound and soundscape in restorative natural environments: A narrative literature review. Front. Psychol. 2021, 12, 570563. [Google Scholar] [CrossRef]
- Fuller, S.; Axel, A.C.; Tucker, D.; Gage, S.H. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecol. Indic. 2015, 58, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Jorge, F.C.; Machado, C.G.; da Cunha Nogueira, S.S.; Nogueira-Filho, S.L.G. The effectiveness of acoustic indices for forest monitoring in Atlantic rainforest fragments. Ecol. Indic. 2018, 91, 71–76. [Google Scholar] [CrossRef]
- Mitchell, A.; Oberman, T.; Aletta, F.; Kachlicka, M.; Lionello, M.; Erfanian, M.; Kang, J. Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach. J. Acoust. Soc. Am. 2021, 150, 4474–4488. [Google Scholar] [CrossRef] [PubMed]
- Lionello, M.; Aletta, F.; Kang, J. A systematic review of prediction models for the experience of urban soundscapes. Appl. Acoust. 2020, 170, 107479. [Google Scholar] [CrossRef]
- Ricciardi, P.; Delaitre, P.; Lavandier, C.; Torchia, F.; Aumond, P. Sound quality indicators for urban places in Paris cross-validated by Milan data. J. Acoust. Soc. Am. 2015, 138, 2337–2348. [Google Scholar] [CrossRef]
Strongly Agree | Agree | Neither Agree, Nor Disagree | Disagree | Strongly Disagree | |
---|---|---|---|---|---|
Pleasant | □ | □ | □ | □ | □ |
Chaotic | □ | □ | □ | □ | □ |
Vibrant | □ | □ | □ | □ | □ |
Uneventful | □ | □ | □ | □ | □ |
Calm | □ | □ | □ | □ | □ |
Annoying | □ | □ | □ | □ | □ |
Eventful | □ | □ | □ | □ | □ |
Monotonous | □ | □ | □ | □ | □ |
Acoustic Indices | Description |
---|---|
Acoustic complexity index, (ACI) | This index is used to measure changes in amplitude between adjacent frequency bands, reflecting the variability and irregularity of sound intensity, especially bird calls. The index is relatively unaffected by a constant intensity of a sustained sound [51,52]. |
Acoustic diversity index, (ADI) | The spectrogram is divided into frequency bands (default 10), and the percentage of sounds in each band that exceed the threshold is calculated using the Shannon index [53]. |
Acoustic evenness index, (AEI) | The spectrogram is divided into bands (default 10), and the Gini index is used to calculate the proportion of sounds in each band that exceeded the threshold [53]. |
Bioacoustic index, (BIO) | The sound intensity in the specified frequency range is measured. The area of the above-threshold portion of the spectrum is related to the frequency range and sound intensity of most birds’ calls [54]. It is calculated for sounds between 2 and 11 kHz in this study. |
Normalized difference soundscape index, (NDSI) | NDSI is assessed by calculating the ratio of anthrophony (1–2 kHz) to biophony (2–11 kHz). The range is from −1 to 1, and the values closer to 1 indicate that biophony is more dominant [55]. |
Acoustic entropy index, (H) | The audio is divided into multiple frequency bands, and the Shannon index is used to calculate the temporal entropy (Ht) and spectral entropy (Hf), which are multiplied to obtain the acoustic entropy index, reflecting the complexity of the acoustic signal in the time and frequency domains [56]. |
Pleasant | Chaotic | Vibrant | Eventful | |||||
---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | χ2 | p | |
Season | 1.80 | 0.18 | 18.93 | <0.001 | 20.11 | <0.001 | 1.49 | 0.22 |
Day | 25.68 | <0.001 | 3.65 | 0.16 | 7.36 | 0.03 | 39.95 | <0.001 |
Uneventful | Calm | Annoying | Monotonous | |||||
χ2 | p | χ2 | p | χ2 | p | χ2 | p | |
Season | 0.02 | 0.89 | 5.39 | 0.02 | 3.54 | 0.06 | 1.44 | 0.23 |
Day | 39.02 | <0.001 | 15.61 | <0.001 | 18.76 | <0.001 | 45.75 | <0.001 |
Variables | Estimates | Std. Error | CI | p |
---|---|---|---|---|
Pleasantness | ||||
Intercept | −0.47 | 0.14 | −0.74–−0.21 | <0.001 |
H | −0.32 | 0.14 | −0.59–−0.04 | 0.024 |
ACI | 0.49 | 0.09 | 0.30–0.67 | <0.001 |
ADI | 0.24 | 0.11 | 0.03–0.46 | 0.029 |
BIO | −0.56 | 0.13 | −0.80–−0.31 | <0.001 |
NDSI | 0.51 | 0.11 | 0.28–0.73 | <0.001 |
Day [Evening] | 0.38 | 0.19 | 0.00–0.76 | 0.049 |
Day [Morning] | 0.97 | 0.21 | 0.57–1.38 | <0.001 |
Eventfulness | ||||
Intercept | −0.53 | 0.14 | −0.80–−0.25 | <0.001 |
H | 0.04 | 0.15 | −0.25–0.32 | 0.796 |
ACI | −0.08 | 0.10 | −0.28–0.11 | 0.389 |
ADI | −0.17 | 0.12 | −0.40–0.05 | 0.137 |
BIO | 0.59 | 0.13 | 0.33–0.84 | <0.001 |
NDSI | 0.01 | 0.12 | −0.22–0.25 | 0.92 |
Day [Evening] | 0.53 | 0.20 | 0.14–0.93 | 0.008 |
Day [Morning] | 1.00 | 0.22 | 0.58–1.43 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Q.; Zhang, C.; Wang, C.; Yin, L.; Han, W.; Zhang, S. Evaluation of Soundscape Perception in Urban Forests Using Acoustic Indices: A Case Study in Beijing. Forests 2023, 14, 1435. https://doi.org/10.3390/f14071435
Bian Q, Zhang C, Wang C, Yin L, Han W, Zhang S. Evaluation of Soundscape Perception in Urban Forests Using Acoustic Indices: A Case Study in Beijing. Forests. 2023; 14(7):1435. https://doi.org/10.3390/f14071435
Chicago/Turabian StyleBian, Qi, Chang Zhang, Cheng Wang, Luqin Yin, Wenjing Han, and Shujing Zhang. 2023. "Evaluation of Soundscape Perception in Urban Forests Using Acoustic Indices: A Case Study in Beijing" Forests 14, no. 7: 1435. https://doi.org/10.3390/f14071435