Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Vegetation
2.2. Forest Management and Disturbance History
2.3. Experimental Plots and Sampling Design
- ➢
- Class 1: H ≤ 50 cm;
- ➢
- Class 2: 50 cm < H ≤ 100 cm;
- ➢
- Class 3: 100 cm < H ≤ 200 cm;
- ➢
- Class 4: 200 cm < H ≤ 400 cm.
2.4. Statistical Analysis
3. Results
3.1. Dominant Pine Cover
3.2. Regeneration Layer
4. Discussion
4.1. Pine Management and Thinning
4.2. Regeneration Pattern in the Understory
4.3. Acacia Management
4.4. Renaturalization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheffer, E. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: Are they novel ecosystems? Ann. For. Sci. 2012, 69, 429–443. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bladé, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, J.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice—A review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Van der Meulen, F.; Salman, A.H.P.M. Management of Mediterranean coastal dunes. Ocean Coast. Manag. 1996, 30, 177–195. [Google Scholar] [CrossRef]
- Vallejo, R. Restoring Mediterranean Forests. In Forest Restoration in Landscapes; Mansourian, S., Vallauri, D., Dudley, N., Eds.; Springer-Verlag: New York, NY, USA, 2005; pp. 313–319. [Google Scholar]
- Bellot, J.; Maestre, F.T.; Chirino, E.; Hernández, N.; De Urbina, J.O. Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol. 2004, 25, 7–15. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, C.; Battipaglia, G.; Cherubini, P.; Delgado Huertas, A.; Querejeta, J.I. Pine afforestation decreases the long-term performance of understorey shrubs in a semi-arid Mediterranean ecosystem: A stable isotope approach. Funct. Ecol. 2015, 29, 15–25. [Google Scholar] [CrossRef]
- Pasta, S.; La Mantia, T.; Rühl, J. The impact of Pinus halepensis afforestation on Mediterranean spontaneous vegetation: Do soil treatment and canopy cover matter? J. For. Res. 2012, 23, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Aparicio, L.; Zavala, M.A.; Bonet, F.J.; Zamora, R. Are pine plantations valid tools for restoring Mediterranean forests? An assessment along gradients of climatic conditions, stand density and distance to seed sources. Ecol. Appl. 2009, 19, 2124–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osem, Y.; Zangy, E.; Bney-Moshe, E.; Moshe, Y.; Karni, N.; Nisan, Y. The potential of transforming simple structured pine plantations into mixed Mediterranean forests through natural regeneration along a rainfall gradient. For. Ecol. Manag. 2009, 259, 14–23. [Google Scholar] [CrossRef]
- Badalamenti, E.; La Mantia, T.; La Mantia, G.; Cairone, A.; La Mela Veca, D.S. Living and dead aboveground biomass in Mediterranean forests: Evidence of old-growth traits in a Quercus pubescens Willd. s.l. stand. Forests 2017, 8, 187. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pysek, P.; Rejmánek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- McGlone, C.M.; Springer, J.D.; Laughlin, D.C. Can pine forest restoration promote a diverse and abundant understory and simultaneously resist nonnative invasion? For. Ecol. Manag. 2009, 258, 2638–2646. [Google Scholar] [CrossRef]
- Radtke, A.; Ambraß, S.; Zerbe, S.; Tonon, G.; Fontana, V.; Ammer, C. Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For. Ecol. Manag. 2013, 291, 308–317. [Google Scholar] [CrossRef]
- Zhu, J.J.; Matsuzaki, T.; Lee, F.Q.; Gonda, Y. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. For. Ecol. Manag. 2003, 182, 339–354. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.-J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Crisóstomo, J.A.; Rodríguez-Echeverría, S.; Freitas, H. Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Appl. Soil Ecol. 2013, 64, 118–126. [Google Scholar] [CrossRef]
- Montesinos, D.; Castro, S.; Rodríguez-Echeverría, S. Two invasive acacia species secure generalist pollinators in invaded communities. Acta Oecol. 2016, 74, 46–55. [Google Scholar] [CrossRef]
- Corbin, J.D.; D’Antonio, C.M. Effects of exotic species on soil nitrogen cycling: Implications for restoration. Weed Technol. 2004, 18, 1464–1467. [Google Scholar] [CrossRef]
- Grove, S.; Parker, I.M.; Haubensak, K.A. Persistence of a soil legacy following removal of a nitrogen-fixing invader. Biol. Invasions 2015, 17, 2621–2631. [Google Scholar] [CrossRef]
- Badalamenti, E.; Gristina, L.; Laudicina, V.A.; Novara, A.; Pasta, S.; La Mantia, T. The impact of Carpobrotus cfr. acinaciformis (L.) L. Bolus on soil nutrients, microbial communities structure and native plant communities in Mediterranean ecosystems. Plant Soil 2016, 409, 19–34. [Google Scholar] [CrossRef]
- Badalamenti, E.; Gristina, L.; La Mantia, T.; Novara, A.; Pasta, S.; Lauteri, M.; Fernandes, P.; Correia, O.; Máguas, C. Relationship between recruitment and mother plant vitality in the alien species Acacia cyclops A. Cunn. ex G. Don. For. Ecol. Manag. 2014, 331, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.R.; Midgley, S.J.; Bush, D.; Cunningham, P.J.; Rinaudo, A.T. Global uses of Australian acacias-recent trends and future prospects. Divers. Distrib. 2011, 17, 837–847. [Google Scholar] [CrossRef]
- La Mantia, T. I rimboschimenti delle dune. In I Cambiamenti Nell’ecosistema della Riserva Naturale di Vendicari e Gli Effetti Sull’avifauna; Ientile, R., Rühl, J., La Mantia, T., Massa, B., Eds.; Danaus: Palermo, Italy, 2011; pp. 97–109. ISBN 978-88-904929-3-8. [Google Scholar]
- Souza-Alonso, P.; Rodríguez, J.; González, L.; Lorenzo, P. Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. Ann. For. Sci. 2017, 74, 1–20. [Google Scholar] [CrossRef]
- Quatrini, P.; Scaglione, G.; Incannella, G.; Badalucco, L.; Puglia, A.M.; La Mantia, T. Microbial inoculants on woody legumes to recover a municipal landfill site. Water Air Soil Pollut. Focus 2003, 3, 189–199. [Google Scholar] [CrossRef]
- Mostert, E.; Gaertner, M.; Holmes, P.M.; Rebelo, A.G.; Richardson, D.M. Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South Africa. South Afr. J. Bot. 2017, 108, 209–222. [Google Scholar] [CrossRef]
- Holmes, P.M.; Cowling, R.M. The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of South African fynbos shrublands. J. Appl. Ecol. 1997, 34, 317. [Google Scholar] [CrossRef]
- Del Vecchio, S.; Acosta, A.; Stanisci, A. The impact of Acacia saligna invasion on Italian coastal dune EC habitats. Comptes Rendus Biol. 2013, 336, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Manor, R.; Cohen, O.; Saltz, D. Community homogenization and the invasiveness of commensal species in Mediterranean afforested landscapes. Biol. Invasions 2008, 10, 507–515. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Italian Interpretation Manual of the 92/43/EEC Directive Habitats. Ministero dell’Ambiente e della Tutela del Territorio e del Mare. 2009. Available online: http://vnr. unipg.it/habitat/ (accessed on 10 April 2018).
- Terracciano, A. Osservazioni fenologiche. Boll. R. Orto Bot. Palermo 1898, 2, 66–88. [Google Scholar]
- Bazan, G.; Speciale, M. Processi di spontaneizzazione in Sicilia di Acacia saligna (Mimosaceae, Magnoliophyta). Quad. Bot. Ambient. Appl. 2002, 12, 99–100. [Google Scholar]
- Troìa, A.; Spallino, R.E. Conferma della presenza nella sicilia occidentale di Retama raetam (Forssk.) Webb subsp. gussonei (Webb) W. Greuter (Fabaceae Cytiseae), specie a rischio della flora italiana. Nat. Sicil. 2009, 33, 305–314. [Google Scholar]
- Sciandrello, S.; Tomaselli, G.; Minissale, P. The role of natural vegetation in the analysis of the spatio-temporal changes of coastal dune system: A case study in Sicily. J. Coast. Conserv. 2015, 19, 199–212. [Google Scholar] [CrossRef]
- Gutierres, F.; Gil, A.; Reis, E.; Lob, A.; Neto, C.; Calado, H.; Costa, J.C. Acacia saligna (Labill.) H. Wendl in the Sesimbra County: Invaded habitats and potential distribution modeling. J. Coast. Res. 2011, 403–407. [Google Scholar]
- Guarino, R.; Guglielmo, A.; Ronsisvalle, F.; Sciandrello, S. Il progetto ECONET-COHAST: Strategie per la conservazione degli habitat costieri di Torre Manfria (Sicilia merid.). Fitosociologia 2008, 44, 333–337. [Google Scholar]
- Pasta, S.; La Mantia, T. Le specie vegetali aliene in alcuni SIC siciliani: Analisi del grado di invasività e misure di controllo. Mem. Soc. It. Sci. nat. Museo civ. Stor. nat. Milano 2008, 36, 79. [Google Scholar]
- Del Favero, R. I Boschi delle Regioni meridionali E Insulari D’Italia; Cleup: Padova, Italy, 2008; ISBN 978-88-6129-176-8. [Google Scholar]
- Rivas-Martínez, S. Global Bioclimatics (Clasificación Bioclimática de la Tierra); Universidad Complutense: Madrid, Spain, 1994. [Google Scholar]
- Terrasi, R. Analisi dei processi evolutivi della vegetazione nella Riserva Naturale Orientata “Foce Del Fiume Platani”; Università degli Studi di Palermo: Palermo, Italy, 2002. [Google Scholar]
- Capuano, D.; Sammartano, G.; Palmeri, A.; Oieni, S.; Lopez, T.; Butera, S.; Giuliani, N.; Caputo, G.; Morello, S.; Cascio, A.; Leone, P.; Marguglio, T. Boschi di Sicilia; La Cartogr: Palermo, Italy, 1967. [Google Scholar]
- Maestre, F.T.; Cortina, J.; Bautista, S. Mechanisms underlying the interaction between Pinus halepensis and the native late-successional shrub Pistacia lentiscus in a semi-arid plantation. Ecography 2004, 27, 776–786. [Google Scholar] [CrossRef]
- Tartarino, P.; Galante, W.; Greco, R. Using the hart-becking spacing index in a study of the naturalisation of Pinus halepensis Miller plantation stands in the South-Eastern Salento peninsula. Option Méditerranéennes. Série A Semin. Méditerranéennes 2007, 75, 175–188. [Google Scholar]
- Bouachir, B.B.; Khorchani, A.; Guibal, F.; El Aouni, M.H.; Khaldi, A. Dendroecological study of Pinus halepensis and Pinus pinea in Northeast coastal dunes in Tunisia according to distance from the shoreline and dieback intensity. Dendrochronologia 2017, 45, 62–72. [Google Scholar] [CrossRef]
- InsideWood Database. Available online: http://insidewood.lib.ncsu.edu/search (accessed on 30 March 2018).
- El-Sahhar, K.F.; Nassar, D.M.; Amer, W.M.; Qasem, L.A. Morphological and anatomical studies of Acacia saligna the dominant plant species in Al-Ahrash protectorate-Rafah-North Sinai Egypt. Bull. Fac. Agric. 2009, 60, 43–60. [Google Scholar]
- Crivellaro, A.; Schweingruber, F.H. Atlas of Wood, Bark and Pith Anatomy of Eastern Mediterranean Trees and Shrubs; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-37234-6. [Google Scholar]
- Jama, B.; Nair, P.K.R.; Kurira, P.W. Comparative growth performance of some multipurpose trees and shrubs grown at Machakos, Kenya. Agrofor. Syst. 1989, 9, 17–27. [Google Scholar] [CrossRef]
- Bonari, G.; Acosta, A.T.R.; Angiolini, C. Mediterranean coastal pine forest stands: Understorey distinctiveness or not? For. Ecol. Manag. 2017, 391, 19–28. [Google Scholar] [CrossRef]
- Rascher, K.G.; Große-Stoltenberg, A.; Máguas, C.; Werner, C. Understory invasion by Acacia longifolia alters the water balance and carbon gain of a Mediterranean pine forest. Ecosystems 2011, 14, 904–919. [Google Scholar] [CrossRef]
- Otto, R.; García-del-Rey, E.; Méndez, J.; Fernández-Palacios, J.M. Effects of thinning on seed rain, regeneration and understory vegetation in a Pinus canariensis plantation (Tenerife, Canary Islands). For. Ecol. Manag. 2012, 280, 71–81. [Google Scholar] [CrossRef]
- Pérez-De-Lis, G.; García-González, I.; Rozas, V.; Arévalo, J.R. Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Ann. For. Sci. 2011, 68, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Cullotta, S.; Pizzurro, G.; Garfì, G.; La Mantia, T. Analisi dei processi di rinaturalizzazione nelle pinete mediterranee artificiali dei Monti di Palermo (Sicilia Nord-Occidentale). In III Congresso Nazionale S.I.S.E.F.—Atti 3—Alberi E Foreste Per Il Nuovo Millennio; SISEF—Società Italiana Selvicoltura Ecologia Forestale: Bologna, Italy, 2001; pp. 457–465. [Google Scholar]
- Pastorella, F. Analisi del microclima luminoso, in pinete artificiali a pino d’Aleppo, idoneo alla rinnovazione delle principali specie forestali dell’area del Mediterraneo. Dendronatura 2011, 2, 53–73. [Google Scholar]
- Lookingbill, T.R.; Zavala, M.A. Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J. Veg. Sci. 2000, 11, 607–612. [Google Scholar] [CrossRef]
- Navarro-González, I.; Pérez-Luque, A.J.; Bonet, F.J.; Zamora, R. The weight of the past: Land-use legacies and recolonization of pine plantations by oak trees. Ecol. Appl. 2013, 23, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Zeide, B. A relationship between size of trees and their number. For. Ecol. Manag. 1995, 72, 265–272. [Google Scholar] [CrossRef]
- Aslan, C.E. Implications of newly-formed seed-dispersal mutualisms between birds and introduced plants in northern California, USA. Biol. Invasions 2011, 13, 2829–2845. [Google Scholar] [CrossRef] [Green Version]
- Nahum, S.; Inbar, M.; Ne’eman, G.; Ben-Shlomo, R. Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genet. Genomes 2008, 4, 777–785. [Google Scholar] [CrossRef]
- Holmes, P.; Cowling, R. Diversity, composition and guild structure relationships between soil stored seed banks and mature vegetation in alien plant invaded South African shrublands. Plant Ecol. 1997, 133, 107–122. [Google Scholar] [CrossRef]
- Nsikani, M.M.; Novoa, A.; van Wilgen, B.W.; Keet, J.H.; Gaertner, M. Acacia saligna’s soil legacy effects persist up to 10 years after clearing: Implications for ecological restoration. Austral Ecol. 2017, 42, 880–889. [Google Scholar] [CrossRef]
- Pasta, S.; Badalamenti, E.; La Mantia, T. Acacia cyclops A. Cunn. ex G. Don (Leguminosae) in Italy: First cases of naturalization. Anal. Jard. Bot. Madrid 2012, 69, 193–200. [Google Scholar] [CrossRef]
- Richardson, D.M.; Kluge, R.L. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 161–177. [Google Scholar] [CrossRef]
- Milton, S.J.; Hall, A.V. Reproductive biology of Australian acacias in the Outh-Western Cape Province, South Africa. Trans. R. Soc. South Afr. 1981, 44, 465–487. [Google Scholar] [CrossRef]
- Holmes, P.M. Implications of alien Acacia seed bank viability and germination for clearing. South Afr. J. Bot. 1988, 54, 281–284. [Google Scholar] [CrossRef]
- Holmes, P.M.; Macdonald, I.A.W.; Juritz, J. Effects of clearing treatment on seed banks of the alien invasive shrubs Acacia saligna and Acacia cyclops in the Southern and South-Western Cape, South Africa. J. Appl. Ecol. 1987, 24, 1045–1051. [Google Scholar] [CrossRef]
- Strydom, M.; Veldtman, R.; Ngwenya, M.Z.; Esler, K.J. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents. PLoS ONE 2017, 12, e0181763. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, E.T.F. Growth and competition between seedlings of Protea repens (L.) L. and the alien invasive, Acacia saligna (Labill.) Wendl. in relation to nutrient availability. Funct. Ecol. 1991, 5, 101–110. [Google Scholar] [CrossRef]
- Badalamenti, E.; La Mantia, T.; Pasta, S. Primo caso di naturalizzazione di Pinus canariensis C. Sm. (Pinaceae) per la Sicilia e prima stazione di Acacia cyclops G. Don (Fabaceae) sull’isola maggiore. Nat. Sicil. 2013, 37, 497–503. [Google Scholar]
- Badalamenti, E.; Cusimano, D.; La Mantia, T.; Pasta, S.; Romano, S.; Troìa, A.; Ilardi, V. The ongoing naturalisation of Eucalyptus spp. in the Mediterranean Basin: New threats to native species and habitats. Austral. For. 2018, in press. [Google Scholar]
- Kuebbing, S.E.; Nuñez, M.A.; Simberloff, D. Current mismatch between research and conservation efforts: The need to study co-occurring invasive plant species. Biol. Conserv. 2013, 160, 121–129. [Google Scholar] [CrossRef]
- Zamora, R.; Hódar, J.A.; Matías, L.; Mendoza, I. Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecol. Appl. 2010, 20, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-T.; Lo, Y.-H.; Lin, Y.-C.; Guan, B.; Blanco, J.; You, C.-H. Bringing the natives back: Identifying and alleviating establishment limitations of native hardwood species in a conifer plantation. Forests 2018, 9, 3. [Google Scholar] [CrossRef]
- Gómez, J.M. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 2003, 26, 573–584. [Google Scholar] [CrossRef]
- La Mantia, T.; da Silveira Bueno, R. Colonization of Eurasian jay Garrulus glandarius and holm oaks Quercus ilex: The establishment of ecological interactions in urban areas. Avocetta 2016, 40, 85–87. [Google Scholar]
Plot | Dominant Tree Species | Density (N ha−1) | DBH (cm) | Height (m) | Basal Area (m2 ha−1) |
---|---|---|---|---|---|
1 | Pinus halepensis | 227 | 17.3 ± 6.6 | 5.5 ± 1.3 | 9.7 |
2 | Pinus halepensis | 317 | 21.3 ± 5.6 | 6.8 ± 0.4 | 12.0 |
3 | Pinus halepensis | 385 | 23.6 ± 7.0 | 6.8 ± 1.3 | 18.2 |
4 | Pinus pinea | 499 | 24.2 ± 1.8 | 9.1 ± 0.6 | 23.0 |
5 | Pinus pinea | 612 | 23.3 ± 3.7 | 10.3 ± 0.5 | 29.7 |
6 | Pinus pinea | 726 | 23.4 ± 3.9 | 9.2 ± 0.3 | 34.1 |
Woody Species | Height Class (%) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Acacia saligna | 39.8 ± 8.9 (21.9) | 22.3 ± 3.5 (20.3) | 18.6 ± 3.7 (92.3) | 19.3 ± 11.6 (90.9) |
Olea europaea | 60.9 ± 15.9 (68.4) | 38.7 ± 15.9 (72.0) | 0.2 ± 0.1 (2.4) | 0.2 ± 0.1 (1.4) |
Pistacia lentiscus | 61.3 ± 15.6 (9.7) | 29.3 ± 17.2 (7.7) | 3.7 ± 3.1 (5.3) | 5.7 ± 2.3 (7.8) |
Total | 54.5 | 33.0 | 6.1 | 6.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badalamenti, E.; Da Silveira Bueno, R.; Campo, O.; Gallo, M.; La Mela Veca, D.S.; Pasta, S.; Sala, G.; La Mantia, T. Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation. Forests 2018, 9, 359. https://doi.org/10.3390/f9060359
Badalamenti E, Da Silveira Bueno R, Campo O, Gallo M, La Mela Veca DS, Pasta S, Sala G, La Mantia T. Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation. Forests. 2018; 9(6):359. https://doi.org/10.3390/f9060359
Chicago/Turabian StyleBadalamenti, Emilio, Rafael Da Silveira Bueno, Olimpia Campo, Martina Gallo, Donato Salvatore La Mela Veca, Salvatore Pasta, Giovanna Sala, and Tommaso La Mantia. 2018. "Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation" Forests 9, no. 6: 359. https://doi.org/10.3390/f9060359
APA StyleBadalamenti, E., Da Silveira Bueno, R., Campo, O., Gallo, M., La Mela Veca, D. S., Pasta, S., Sala, G., & La Mantia, T. (2018). Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation. Forests, 9(6), 359. https://doi.org/10.3390/f9060359