Effect of Gap Position on the Heavy Metal Contents of Epiphytic Mosses and Lichens on the Fallen Logs and Standing Trees in an Alpine Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Chemical Analysis
2.4. Calculations
2.5. Statistical Analyses
3. Results
3.1. Moss and Lichen Biomass
3.2. Heavy Metal Concentrations in Mosses and Lichens
3.3. Heavy Metal Storage in Mosses and Lichens
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harmon, M.; Franklin, J.; Swanson, F.; Sollins, P.; Gregory, S. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- Mežaka, A.; Brūmelis, G.; Piterāns, A. Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodivers. Conserv. 2012, 21, 3221–3241. [Google Scholar] [CrossRef]
- Humphrey, J.W.; Davey, S.; Peace, A.J.; Ferris, R.; Harding, K. Lichens and bryophyte communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and deadwood. Biol. Conserv. 2002, 107, 165–180. [Google Scholar] [CrossRef]
- Wang, B.; Wu, F.; Xiao, S.; Yang, W.; Justine, M.F.; He, J.; Tan, B. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River. Hydrol. Process. 2016, 30, 692–703. [Google Scholar] [CrossRef]
- Lambert, R.; Lang, G.; Reiners, W. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 1980, 61, 1460–1473. [Google Scholar] [CrossRef]
- Laiho, R.; Prescott, C.E. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Can. J. For. Res. 2004, 34, 763–777. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Pócs, T. The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Reprod. Fert. Dev. 1980, 26, 570–577. [Google Scholar]
- Király, I.; Nascimbene, J.; Tinya, F.; Ódor, P. Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodives. Conserv. 2013, 22, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Liu, W.; Nadkarni, N.M. Response of non-vascular epiphytes to simulated climate change in a montane moist evergreen broad-leaved forest in southwest China. Biol. Conserv. 2012, 152, 127–135. [Google Scholar] [CrossRef]
- Batke, S.P.; Murphy, B.R.; Hill, N.; Kelly, D.L. Can air humidity and temperature regimes within cloud forest canopies be predicted from bryophyte and lichen cover? Ecol. Indic. 2015, 56, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Boquete, M.T.; Fernandez, J.A.; Carballeira, A.; Aboal, J.R. Relationship between trace metal concentrations in the terrestrial moss Pseudoscleropodium purum and in bulk deposition. Environ. Pollut. 2015, 201, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Coskun, M.; Steinnes, E.; Coskun, M.; Cayir, A. Comparison of Epigeic Moss (Hypnum cupressiforme) and Lichen (Cladonia rangiformis) as Biomonitor Species of Atmospheric Metal Deposition. Bull. Environ. Contam. Toxicol. 2009, 82, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Berryman, S.; Mccune, B. Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data. J. Veg. Sci. 2006, 17, 157–170. [Google Scholar] [CrossRef]
- Boquete, M.T.; Fernández, J.A.; Aboal, J.R.; Real, C.; Carballeira, A. Spatial structure of trace elements in extensive biomonitoring surveys with terrestrial mosses. Sci. Total Environ. 2009, 408, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Salemaa, M.; Derome, J.; Helmisaari, H.; Nieminen, T.; Vannamajamaa, I. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci. Total Environ. 2004, 324, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Van Stan, J.T.; Pypker, T.G. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci. Total Environ. 2015, 536, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Clinton, B.D. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. For. Ecol. Manag. 2003, 186, 243–255. [Google Scholar] [CrossRef]
- Čeburnis, D.; Steinnes, E. Conifer needles as biomonitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Huth, F.; Wagner, S. Gap structure and establishment of Silver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.). For. Ecol. Manag. 2006, 229, 314–324. [Google Scholar] [CrossRef]
- Kelemen, K.; Mihók, B.; Gálhidy, L.; Kelemen, T.S.; Gálhidy, B. Dynamic response of herbaceous vegetation to gap opening in a central European beech stand. Silva Fenn. 2012, 46, 53–65. [Google Scholar] [CrossRef]
- Caners, R.T.; Macdonald, S.E.; Belland, R.J. Bryophyte assemblage structure after partial harvesting in boreal mixedwood forest depends on residual canopy abundance and composition. For. Ecol. Manag. 2013, 289, 489–500. [Google Scholar] [CrossRef]
- Medina, N.; Albertos, B.; Lara, F.; Mazimpaka, V.; Garilleti, R. Species richness of epiphytic bryophytes: Drivers across scales on the edge of the Mediterranean. Ecography 2014, 37, 80–93. [Google Scholar] [CrossRef]
- Hylander, K.; Nemomissa, S.; Enkosa, W. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia. Pol. Botan. J. 2013, 58, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Aragón, G.; Abuja, L.; Belinchón, R.; Martínez, I. Edge type determines the intensity of forest edge effect on epiphytic communities. Eur. J. For. Res. 2015, 134, 443–451. [Google Scholar] [CrossRef]
- Ceburnis, D.; Steinnes, E.; Kvietkus, K. Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere 1999, 38, 445–455. [Google Scholar] [CrossRef]
- Becker, D.F.P.; Linden, R.; Schmitt, J.L. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient. Sci. Total Environ. 2017, 584–585, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Dezzeo, N.; Chacón, N. Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. For. Ecol. Manag. 2006, 234, 218–226. [Google Scholar] [CrossRef]
- Levia, D.F.; Van Stan, J.T.; Siegert, C.M.; Inamdar, S.P.; Mitchell, M.J.; Mage, S.M.; McHale, P.J. Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos. Environ. 2011, 45, 3046–3054. [Google Scholar] [CrossRef]
- Dittrich, S.; Jacob, M.; Bade, C.; Leuschner, C.; Hauck, M. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 2014, 215, 1123–1137. [Google Scholar] [CrossRef]
- Király, I.; Ódor, P. The effect of stand structure and tree species composition on epiphytic bryophytes in mixed deciduous–coniferous forests of Western Hungary. Biol. Conserv. 2010, 143, 2063–2069. [Google Scholar] [CrossRef]
- Yang, W. Litter Dynamics of Three Subalpine Forests in Western Sichuan. Pedosphere 2005, 15, 653–659. [Google Scholar]
- Xiao, S.; Wu, F.; Yang, Q.; Chang, C.; Li, J.; Wang, B.; Cao, Y. Woody debris storage and its distribution in a dark coniferous forest in the alpine-gorge area. Acta Ecol. Sin. 2016, 36, 1352–1359, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chang, C.; Wu, F.; Yang, W.; Tan, B.; Xiao, S.; Li, J. Changes in log quality at different decay stages in an alpine forest. Chin. J. Plant Ecol. 2015, 39, 14–22, (In Chinese with English abstract). [Google Scholar]
- Wu, Q.; Wu, F.; Yang, W.; Tan, B.; Yang, Y.; Ni, X.; He, J. Characteristics of gaps and disturbance regimes of the alpine fir forest in Western Sichuan. Chin. J. Appl. Environ. Biol. 2013, 19, 922–928, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Botting, R.S.; DeLong, C. Macrolichen and bryophyte responses to coarse woody debris characteristics in sub-boreal spruce forest. For. Ecol. Manag. 2009, 258, 85S–94S. [Google Scholar] [CrossRef]
- McCune, B. Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western oregon and Washington. Bryologist 1993, 96, 405–411. [Google Scholar] [CrossRef]
- Fantozzi, F.; Monaci, F.; Blanusa, T.; Bargagli, R. Holm Oak (Quercus ilex L.) canopy as interceptor of airborne trace elements and their accumulation in the litter and topsoil. Environ. Pollut. 2013, 183, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Aboal, J.R.; Fernández, J.A.; Boquete, T.; Carballeira, A. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci. Total Environ. 2010, 408, 6291–6297. [Google Scholar] [CrossRef] [PubMed]
- Boquete, M.T.; Bermúdez-Crespo, J.; Aboal, J.R.; Carballeira, A.; Fernández, J.Á. Assessing the effects of heavy metal contamination on the proteome of the moss Pseudoscleropodium purum cross-transplanted between different areas. Environ. Sci. Pollut. Res. 2014, 21, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Mccune, D.; Boyce, R. Precipitation and the transfer of water, nutrients and pollutants in tree canopies. Trends Ecol. Evol. 1992, 7, 4–7. [Google Scholar] [CrossRef]
- Cesa, M.; Bizzatto, A.; Ferraro, C.; Fumagalli, F.; Luiginimis, P. Oven-dried mosses as tools for trace element detection in polluted waters: A preliminary study under laboratory conditions. J. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 832–840. [Google Scholar] [CrossRef]
- Økland, T.; Økland, R.H.; Steinnes, E. Element concentrations in the boreal forest moss Hylocomium splendens: Variation related to gradients in vegetation and local environmental factors. Plant Soil 1999, 209, 71–83. [Google Scholar] [CrossRef]
- Beckett, R.P.; Brown, D.H. The Control of Cadmium Uptake in the Lichen Genus Peltigera. J. Exp. Bot. 1984, 35, 1071–1082. [Google Scholar] [CrossRef]
- Pakarinen, P.; Rinne, R. Growth rates and heavy metal concentrations of five moss species in paludified spruce forests. Lindbergia 1979, 5, 77–83. [Google Scholar]
- Fernández, J.Á.; Pérez-Llamazares, A.; Carballeira, A.; Aboal, J.R. Temporal variability of metal uptake in different cell compartments in mosses. Water Air Soil Pollut. 2013, 224, 1481. [Google Scholar] [CrossRef]
- Koz, B.; Cevik, U. Lead adsorption capacity of some moss species used for heavy metal analysis. Ecol. Indic. 2014, 36, 491–494. [Google Scholar] [CrossRef]
Gap Position | No. of Substrates | No. of Epiphytic Species | Shannon-Wiener Index | Simpson Index | Species Evenness | Dominant Moss Species | Dominant Lichen Genera | ||
---|---|---|---|---|---|---|---|---|---|
Mosses | Lichens | ||||||||
Gap Center | FL | 18 | 9 | 5 | 2.32 | 0.82 | 0.84 | Actinothuidium hookeri, Dicranum scoparium, Entodon cladorrhizans, Hylocomium splendens, Hygrohypnum smithii, Leucodon sciuroides, Neckera pennata, Barbella enervis | Peltigera (Pers.), Parmelia (Ach.), Everniastrum, Lobaria (Schreb) |
ST | 21 | 8 | 4 | 2.07 | 0.82 | 0.78 | |||
Gap Edge | FL | 22 | 10 | 4 | 2.14 | 0.81 | 0.76 | ||
ST | 29 | 11 | 4 | 2.52 | 0.89 | 0.87 | |||
Closed Canopy | FL | 18 | 10 | 5 | 1.99 | 0.74 | 0.69 | ||
ST | 41 | 11 | 4 | 2.40 | 0.86 | 0.81 |
Gap Center | Gap Edge | Closed Canopy | ||||
---|---|---|---|---|---|---|
Biomass (g m−2) | Ratio (%) | Biomass (g m−2) | Ratio (%) | Biomass (g m−2) | Ratio (%) | |
Fallen logs | ||||||
Mosses | 599.3 | 82.1 | 1235.7 | 88.7 | 1217.9 | 94.1 |
Lichens | 85.7 | 11.8 | 110.9 | 7.9 | 40.0 | 3.1 |
Ferns | 1.9 | 0.2 | 3.6 | 0.2 | 1.9 | 0.1 |
Herbs | 42.7 | 5.9 | 43.3 | 0.3 | 35.9 | 2.7 |
Total | 729.6 | 100.0 | 1393.5 | 100.0 | 1295.7 | 100.0 |
Standing trees | ||||||
Mosses | 689.9 | 95.1 | 800.4 | 83.6 | 350.9 | 89.7 |
Lichens | 36.2 | 4.9 | 156.7 | 16.3 | 29.9 | 7.6 |
Ferns | - | - | - | - | 2.6 | 0.6 |
Herbs | - | - | - | - | 7.4 | 1.8 |
Total | 726.1 | 100.0 | 957.1 | 100.0 | 390.8 | 100.1 |
Source Variance | df | F-Value | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Pb | Cu | Zn | Cd | Pb | Cu | Zn | ||
Gap position (G) | 2 | 61.922 | 294.544 | 355.286 | 10.114 | <0.001 ** | <0.001 ** | <0.001 ** | 0.001 ** |
Substrate (S) | 1 | 12.618 | 0.001 | 95.685 | 0.023 | 0.002 ** | 0.971 | <0.001 ** | 0.882 |
categories (C) | 1 | 12.058 | 0.01 | 43.216 | 3.483 | 0.002 ** | 0.922 | <0.001 ** | 0.074 |
G × S | 2 | 3.955 | 3.476 | 105.848 | 7.997 | 0.003 * | 0.047 * | <0.001 ** | 0.002 ** |
G × C | 2 | 24.765 | 26.201 | 24.837 | 10.579 | <0.001 ** | <0.001 ** | <0.001 ** | 0.001 ** |
S × C | 1 | 0.002 | 16.611 | 6.896 | 0.96 | 0.968 | <0.001 ** | 0.015 | 0.337 |
G × S × C | 2 | 3.322 | 46.457 | 36.185 | 2.668 | 0.053 | <0.001 ** | <0.001 ** | 0.09 |
Source Variance | df | F-Value | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Pb | Cu | Zn | Cd | Pb | Cu | Zn | ||
Gap position (G) | 2 | 119.720 | 66.648 | 84.401 | 11.540 | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Substrate (S) | 1 | 0.004 | 7.221 | 25.446 | 61.483 | 0.952 | 0.013 * | <0.001 ** | <0.001 ** |
categories (C) | 1 | 404.133 | 239.213 | 341.470 | 314.549 | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
G × S | 2 | 12.769 | 5.553 | 117.384 | 46.752 | <0.001 ** | 0.01 ** | <0.001 ** | <0.001 ** |
G × C | 2 | 101.484 | 22.317 | 53.907 | 28.819 | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
S × C | 1 | 0.298 | 10.212 | 27.297 | 68.095 | 0.590 | 0.004 ** | <0.001 ** | <0.001 ** |
G × S × C | 2 | 22.564 | 14.228 | 156.704 | 38.892 | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, F.; Yang, W.; Tan, B.; Chang, C.; Wang, Q.; Cao, R.; Tang, G. Effect of Gap Position on the Heavy Metal Contents of Epiphytic Mosses and Lichens on the Fallen Logs and Standing Trees in an Alpine Forest. Forests 2018, 9, 383. https://doi.org/10.3390/f9070383
Wang Z, Wu F, Yang W, Tan B, Chang C, Wang Q, Cao R, Tang G. Effect of Gap Position on the Heavy Metal Contents of Epiphytic Mosses and Lichens on the Fallen Logs and Standing Trees in an Alpine Forest. Forests. 2018; 9(7):383. https://doi.org/10.3390/f9070383
Chicago/Turabian StyleWang, Zhuang, Fuzhong Wu, Wanqin Yang, Bo Tan, Chenhui Chang, Qin Wang, Rui Cao, and Guoqing Tang. 2018. "Effect of Gap Position on the Heavy Metal Contents of Epiphytic Mosses and Lichens on the Fallen Logs and Standing Trees in an Alpine Forest" Forests 9, no. 7: 383. https://doi.org/10.3390/f9070383
APA StyleWang, Z., Wu, F., Yang, W., Tan, B., Chang, C., Wang, Q., Cao, R., & Tang, G. (2018). Effect of Gap Position on the Heavy Metal Contents of Epiphytic Mosses and Lichens on the Fallen Logs and Standing Trees in an Alpine Forest. Forests, 9(7), 383. https://doi.org/10.3390/f9070383