Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan
Abstract
:1. Introduction
2. Air Quality Plans: The European State of the Art
3. The Air Quality Plan for the Lombardy Region (PRIA)
- 26 measures for road and off-road transports;
- 27 measures for point emission and energy efficiency;
- 13 measures for forestry and agriculture.
- road transport and mobility (excluding highways and high-speed infrastructures)—investments: €2.725 M;
- stationary sources and smart use of energy: €63.84 M;
- forestry and agricultural activities: €64.79 M.
- Ai is an estimate of the presence of an activity i at point x, y, z of the domain (usually measured in terms of energy consumption);
- efip is the “unabated” emission factor of pollutant p by activity i, i.e., the emission for a unit activity when none of the abatement measures is applied;
- rip(u) represents the fraction of reduced emission of pollutant p by activity i determined by decision u.
- End-of-pipe measures, which reduce the pollutant emission (almost) without changing the correspondent activity level, i.e., they increase rip by increasing the penetration of the abatement measure in activity i. This means in turn that rip can, in theory have two limit values: a lower bound value, typically zero, if the technology is not applied), and an upper bound value, the reduction efficiency itself, when the measure is applied to the maximum possible extent (100%). End-of-pipe measures consequently do not modify GHG emissions.
- Non-technical measures (including “energy efficiency” strategies), which affect emissions by varying the energy consumption of activity i through changes in production values or processes. This means that a few components of the decision array u modify the value of Ai. Such changes may correspond to a more efficient (and thus reduced) use of fuels or to a radical modification of the activity, such as substituting car transport with cycling. All these entail a reduction in GHG emissions.
- Scenario measures cannot be applied gradually, so, emission reductions can only be zero or fixed, i.e., the shutdown of an activity, or its relocation. These decisions are also part of u and generally also involve a change in GHG emissions.
4. The Evaluation Scheme
4.1. Methodology
4.2. The Evaluation Tool
- chemical regimes and meteorology, through domain specific surrogate models;
- precursor emissions (NOx, VOC, NH3, SO2, and primary PM10) including sources outside the domain area;
- emission abatement measures detailed per activity sector including information on emission removal efficiency, costs, and application rates;
- is one (or a combination of) selected AQI depending on the decision variables u (several different AQIs involving PM, NOx, and ozone are available in the system);
- is the internal cost for the implementation of abatement measures;
- constrains the decision variables in a feasible set, considering application feasibility, mutual exclusion of measures, and conservation of the mass (see [6], for details).
5. Application to the Lombardy Plan
5.1. Measure Implementation
5.2. Surrogate Model Development
6. Results
6.1. Air Quality of the Region
6.2. Examples of Individual Measures
6.3. Cost–Benefit Analysis
6.4. Sensitivity Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Åstrom, S.; Yaramenka, K.; Mawdsley, I.; Danielsson, H.; Grennfelt, P.; Gerner, A.; Ekvall, T.; Ahlgren, E.O. The impact of Swedish SO2 policy instruments on SO2 emissions 1990–2012. Environ. Sci. Policy 2017, 77, 32–39. [Google Scholar] [CrossRef]
- EU, Commission and Parliament. Directive 2008/50/ec of the european parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 29, 169–212. [Google Scholar]
- Guariso, G.; Volta, M. Air Quality in Europe: Today and Tomorrow. In Air Quality Integrated Assessment: A European Perspective; Guariso, G., Volta, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–8. [Google Scholar]
- Thunis, P.; Miranda, A.; Baldasano, J.M.; Blond, N.; Douros, J.; Graff, A.; Janssen, S. Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU. Environ. Sci. Policy 2016, 65, 13–21. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Pisoni, E.; Thunis, P.; et al. Exploring trade-offs between air pollutants through an Integrated Assessment Model. Sci. Total Environ. 2014, 481, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Thunis, P.; White, L.; Triacchini, G. An integrated assessment tool to define effective air quality policies at regional scale. Environ. Model. Softw. 2012, 38, 306–315. [Google Scholar] [CrossRef]
- Guariso, G.; Maione, M.; Volta, M. A decision framework for Integrated Assessment Modelling of air quality at regional and local scale. Environ. Sci. Policy 2016, 65, 3–12. [Google Scholar] [CrossRef]
- Viaene, P.; Belis, C.A.; Blond, N.; Bouland, C.; Juda-Rezler, K.; Karvosenoja, N. Air quality integrated assessment modelling in the context of EU policy: A way forward. Environ. Sci. Policy 2016, 65, 22–28. [Google Scholar] [CrossRef]
- Cecchel, S.; Chindamo, D.; Turrini, E.; Carnevale, C.; Cornacchia, G.; Gadola, M.; Panvini, A.; Volta, M. Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs. Sci. Total Environ. 2018, 613–614, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A.I. Evaluating strategies to reduce urban air pollution. Atmos. Environ. 2016, 127, 196–204. [Google Scholar] [CrossRef]
- Vautard, R.; Builtjes, P.H.J.; Thunis, P.; Cuvelier, C.; Bedogni, M. Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ. 2010, 41, 173–188. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Moussiopoulos, N.; Banias, G. Multicriteria methodological approach to manage urban air pollution. Atmos. Environ. 2011, 45, 4160–4169. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, H.-N.; Wang, H. A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China. Sustainability 2017, 9, 911. [Google Scholar] [CrossRef]
- Relvas, H.; Miranda, A.I.; Carnevale, C.; Maffeis, G.; Turrini, E.; Volta, M. Optimal air quality policies and health: A multi-objective nonlinear approach. Environ. Sci. Pollut. Res. 2017, 24, 13687–13699. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, E.; Carnevale, C.; Volta, M. Multi-criteria analysis for PM10 planning. Atmos. Environ. 2009, 43, 4833–4842. [Google Scholar] [CrossRef]
- Carnevale, C.; Pisoni, E.; Volta, M. Selecting effective ozone exposure control policies solving a two-objective problem. Ecol. Model. 2007, 204, 93–103. [Google Scholar] [CrossRef]
- Guariso, G.; Pirovano, G.; Volta, M. Multi-objective analysis of ground-level ozone concentration control. J. Environ. Manag. 2004, 71, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Moussiopoulos, N.; Douros, J.; Reis, R.F. Merlin: The study of urban air quality in 20 European cities. In Proceedings of the Ninth International Conference on Environmental Science and Technology, Rhodes, Greece, 1–3 September 2005; pp. 1044–1049. [Google Scholar]
- Vlachokostas, C.; Achillas, C.; Moussiopoulos, Ν.; Hourdakis, E.; Tsilingiridis, G.; Ntziachristos, L.; Banias, G.; Stavrakakis, N.; Sidiropoulos, C. Decision support system for the evaluation of urban air pollution control options: Application for particulate pollution in Thessaloniki, Greece. Sci. Total Environ. 2009, 407, 5937–5948. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Hoeglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Mediavilla-Sahagún, A.; ApSimon, H.M. Urban scale integrated assessment of options to reduce PM 10 in London towards attainment of air quality objectives. Atmos. Environ. 2003, 37, 4597–4721. [Google Scholar] [CrossRef]
- Carlson, D.A.; Haurie, A.; Vial, J.; Zachary, D.S. Large-scale convex optimization methods for air quality policy assessment. Automatica 2004, 40, 385–395. [Google Scholar] [CrossRef]
- Miranda, A.I.; Relvas, H.; Viaene, P.; Janssen, S.; Brasseur, O.; Carnevale, C.; Declerck, P.; Maffeis, G.; Turrini, E.; Volta, M. Applying integrated assessment methodologies to air quality plans: Two European cases. Environ. Sci. Policy 2016, 65, 29–38. [Google Scholar] [CrossRef]
- Lefebvre, W.; Vercauteren, J.; Schrooten, L.; Janssen, S.; Degraeuwe, B.; Maenhaut, W.; de Vlieger, I.; Vankerkom, J.; Cosemans, G.; Mensink, C.; et al. Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders. Atmos. Environ. 2011, 45, 6705–6713. [Google Scholar] [CrossRef]
- Mensink, C.; De Vlieger, I.; Nys, J. An urban transport emission model for the Antwerp area. Atmos. Environ. 2000, 34, 4595–4602. [Google Scholar] [CrossRef]
- Lefebvre, W.; Schillemans, L.; Op’t Eyndt, T.; Vandersickel, M.; Poncelet, P.; Neuteleer, C.; Dumez, J.; Janssen, S.; Vankerkom, J.; Maiheu, B.; et al. Voorstel van Maatregelen om de Luchtkwaliteit te Verbeteren en de Geluidshinder te Beheersen in de Stad Antwerpen (Dutch Report for the City of Antwerp). 2011. Available online: https://anzdoc.com/voorstel-van-maatregelen-om-de-luchtkwaliteit-te-verbeteren-.html (accessed on 25 September 2018).
- Berkowicz, R.; Ketzel, M.; Jensen, S.S.; Hvidberg, M.; Raaschou-Nielsen, O. Evaluation and application of OSPM for traffic pollution assessment for a large number of street locations. Environ. Model. Softw. 2008, 23, 296–303. [Google Scholar] [CrossRef]
- Roy, B. The outranking approach and the foundations of Electre methods. Theory Decis. 1991, 31, 49–63. [Google Scholar] [CrossRef]
- Borrego, C.; Sá, E.; Carvalho, A.; Sousa, S.; Miranda, A.I. Plans and Programmes to improve air quality over Portugal: A numerical modelling approach. Int. J. Environ. Pollut. 2012, 48, 60–68. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Xue, B.; Ma, J.; Chen, X.; Lu, C. Economic Growth and Pollution Emission in China: Structural Path Analysis. Sustainability 2018, 10, 2569. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y. Urbanization, Economic Development and Environmental Change. Sustainability 2014, 6, 5143–5161. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yuan, Z.; Liu, X.; Xia, X.; Huang, X.; Dong, Z. Improving air pollution control policy in China—A perspective based on cost–benefit analysis. Sci. Total Environ. 2016, 543, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; Park, J. Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area. Sci. Total Environ. 2011, 39, 5296–5308. [Google Scholar] [CrossRef]
- Regione Lombardia. Piano Regionale degli Interventi per la qualità dell’Aria (PRIA). 2013. Available online: http://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/istituzione /direzioni-generali/direzione-generale-ambiente-energia-e-sviluppo-sostenibile/piano-regionale-interventi-qualita-aria-pria/piano-regionale-interventi-qualita-aria-pria (accessed on 17 July 2018).
- Carnevale, C.; Guariso, G.; Ferrari, F.; Maffeis, G.; Turrini, E.; Volta, M. Incremental Selection of Regional Air Quality Measures. IFAC-PapersOnLine 2018, 51, 85–89. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Guariso, G.; Pisoni, E.; Volta, M. Surrogate models to compute optimal air quality planning policies at a regional scale. Environ. Model. Softw. 2012, 34, 44–50. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M. Lazy Learning based surrogate models for air quality planning. Environ. Model. Softw. 2016, 83, 47–57. [Google Scholar] [CrossRef]
- Hu, A.; Zhang, L.; Chen, D.; Pedrycz, W.; Yu, D. Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications. Int. J. Approx. Reason. 2010, 51, 453–471. [Google Scholar] [CrossRef]
- ENEA. GAINS Italy Online. 2018. Available online: http://gains-it.bologna.enea.it/gains/IT/index.login (accessed on 17 July 2018).
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Rafaj, P.; Schöpp, W.; Wagner, F. Cost-Effective Emission Reductions to Improve Air Quality in Europe in 2020. 2011. Available online: https://www.unece.org/fileadmin/DAM/env/documents/2011/eb/wg5/WGSR49/Informal%20docs/Info.doc._8_Cost-effective_Emission_Reductions.pdf (accessed on 25 August 2018).
- Department of Energy, Politecnico di Milano. Costi di Produzione di Energia Elettrica da Fonti Rinnovabili; Internal Report; Department of Energy, Politecnico di Milano: Milano, Italy, 2013. (In Italian) [Google Scholar]
- Chiesa, M.; Perrone, M.G.; Cusumano, N.; Ballarin Denti, A.; Bolzacchini, E.; Lorenzoni, A. Integrated measures for air pollution reduction in the Province of Milan. In Abstracts of the Urban Environmental Pollution, UEP 2012; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gies, E. The real cost of energy. Nature 2017, 551, S145–S147. [Google Scholar]
- Hurley, W.F.; Hunt, A.; Cowie, H.; Holland, M.; Miller, B.; Pye, S.; Watkiss, P. Methodology for the Cost-Benefit analysis for CAFE:2:Health Impact Assessment; Report to the European Commission, DG Environment, AEAT/ED51014; AEA Technology Environment: Oxon, UK, 2005. [Google Scholar]
- Rabl, A.; Holland, M. Environmental Assessment Framework for Policy Applications: Life Cycle Assessment, External Costs and Multi-criteria Analysis. J. Environ. Plan. Manag. 2008, 51, 81–105. [Google Scholar] [CrossRef]
- Regione Lombardia. ESSIA, Effetti Effetti Sulla Salute Degli Inquinanti Aerodispersi in Regione Lombardia. 2012. Available online: http://www.regione.lombardia.it/wps/wcm/connect/63ef0b5d-ffcd-49a9-8f8e-5cd335276384/ESSIA_RelazioneFinale_WEB.pdf?MOD=AJPERES&CACHEID=63ef0b5d-ffcd-49a9-8f8e-5cd335276384 (accessed on 25 August 2018).
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-rohani, H.; Almazroa, M.A.; Amann, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Billionnet, C.; Sherrill, D.; Annesi-Maesano, I. GERIE Study, Estimating the Health Effects of Exposure to Multi-Pollutant Mixture. Ann. Epidemiol. 2012, 22, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. Int. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- ISTAT, Istituto Nazionale di Statistica (National Statistical Institute). 2018. Available online: https://www.istat (accessed on 25 August 2018).
- Carnevale, C.; Finzi, G.; Pederzoli, A.; Pisoni, E. Applying the delta tool to support the Air Quality Directive: Evaluation of the TCAM chemical transport model. Air Qual. Atmos. Health 2014, 7, 335–346. [Google Scholar] [CrossRef]
- Pernigotti, D.; Thunis, P.; Cuvelier, C.; Georgieva, E.; Gsella, A.; De Meij, A.; Pirovano, G.; Balzarini, A.; Riva, G.M.; Carnevale, C.; et al. POMI: A model inter-comparison exercise over the Po Valley. Air Qual. Atmos. Health 2013, 6, 701–715. [Google Scholar] [CrossRef]
- Sobol, I.M. Uniformly distributed sequences with an additional uniform property. USSR Comput. Math. Math. Phys. 1976, 16, 236–242. [Google Scholar] [CrossRef]
- Available online: https://markets.businessinsider.com (accessed on 25 August 2018).
Emissions [Ton/Year] | Min | Mean | Max |
---|---|---|---|
NH3 | 0.0 | 52.9 | 1566 |
NOx | 0.0 | 95.9 | 11,435 |
VOC | 0.0 | 148.9 | 7009 |
PM10 | 0.0 | 17.3 | 809 |
PM25 | 0.0 | 12.4 | 728 |
SO2 | 0.0 | 20.7 | 15,699 |
All Scenarios | PRIA | |||||
---|---|---|---|---|---|---|
AQI | min | mean | max | min | mean | max |
average PM10 [µg/m3] | 2.3 | 19.5 | 43.0 | 3.7 | 18.8 | 34.2 |
SOMO35 [µg/m3·d] | 1222.3 | 11,740.0 | 19,426.0 | 5752.0 | 14,965.0 | 21,368.7 |
average NO2 [µg/m3] | 0.5 | 21.7 | 108.3 | 1.21 | 10.0 | 60.7 |
2020 (M€/Year) | ||||
---|---|---|---|---|
Measure costs | Direct benefits | Health benefits PM10 | GHG (€20/tCO2) | |
Private transport | 208 | 966 | 57 | ~0 |
Public transport | 846 | 1454 | ~0 | 21 |
Electric energy | 2590 | 2058 | ~0 | 122 |
Thermal energy | 3781 | 8688 | 37 | 160 |
Total PRIA | 7425 | 13,166 | 80 | 303 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale, C.; Ferrari, F.; Guariso, G.; Maffeis, G.; Turrini, E.; Volta, M. Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan. Sustainability 2018, 10, 3568. https://doi.org/10.3390/su10103568
Carnevale C, Ferrari F, Guariso G, Maffeis G, Turrini E, Volta M. Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan. Sustainability. 2018; 10(10):3568. https://doi.org/10.3390/su10103568
Chicago/Turabian StyleCarnevale, Claudio, Fabrizio Ferrari, Giorgio Guariso, Giuseppe Maffeis, Enrico Turrini, and Marialuisa Volta. 2018. "Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan" Sustainability 10, no. 10: 3568. https://doi.org/10.3390/su10103568
APA StyleCarnevale, C., Ferrari, F., Guariso, G., Maffeis, G., Turrini, E., & Volta, M. (2018). Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan. Sustainability, 10(10), 3568. https://doi.org/10.3390/su10103568