Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Environmental Zones and Treatments
- Conventional farming (CONV) practice constitutes mono-cropping, ploughing to 20–30 cm depth to prepare the land for sowing and crop residue removal
- No-tillage is a practice of directly sowing in the stubble, by cutting narrow slots for seeding
- Reduced tillage, whereby near-surface soil (5–10 cm) is physically disturbed with discs, chisels or field cultivar, resulting in loose topsoil. A significant proportion of crop residues are retained on the soil surface equivalent to 30–60% soil coverage by residue.
- Crop rotation which involves growing different crops in sequence in a field in 4–5 year crop rotation including cover/catch crops depending upon the environmental zone
- Residue retention is a practice, where crop stubble, straw or other crop debris is left on the field, and is then incorporated when the field is tilled or left on the soil surface
- CA is a combination of (i) no-tillage, (ii) crop rotation and (iii) residue retention
- Primary Productivity: The productive capacity of a soil to produce plant biomass for human use, providing food, feed, fibre and fuel within natural or managed ecosystem boundaries
- Carbon sequestration and regulation: The capacity of a soil to store carbon in a non-labile form with the aim to mitigate increases in atmospheric CO2 concentrations
- Water regulation and purification: The capacity of a soil to receive, store and conduct water for subsequent use and the prevention of both prolonged droughts, flooding and erosion. Water purification is the capacity of a soil to remove harmful compounds (e.g., volatile organic compounds and heavy metals) from the water that it holds
- Nutrient cycling and provision: The capacity of the soil to receive and retain nutrients, to make and to keep nutrients available for crop uptake and to facilitate recovery of plant-available nutrients over these nutrients into harvested crops
- Habitat for functional and intrinsic biodiversity: The multitude of soil organisms and processes, interacting in an ecosystem, making up a significant part of the soil’s natural capital, providing society with a wide range of cultural services and unknown services.
- Experiment period was a minimum of 2 years prior to the date of response variable (e.g., grain yield) measurement
- At least two treatment levels were included in the trial design (e.g., minimum tillage vs. conventional tillage or residue retention vs removal)
- Experiments were conducted in any of the selected environmental zones in Europe [19]
- Only annual cereal crops (wheat, barley, oat etc.) production systems were taken into account.
- Other field crops were only considered within the crop rotation such as associated companion undersown grass, maize, rapeseed, legumes, root crops (potato and beets) and catch/cover crops
- A minimum of three replicates per treatments were required.
2.2. Soil Function Scoring by the Subject Matter Experts
2.3. Statistical Analysis
3. Results
3.1. Effects of CA and CONV Practices on Five Soil Functions in Atlantic North Environmental Zone
3.2. Effects of CA and CONV Practices on Five Soil Functions in Pannonian Environmental Zone
3.3. Effects of CA and CONV Practices on Five Soil Functions in Mediterranean North Environmental Zone
3.4. Effects of CA and CONV Practices on Five Soil Functions in Continental Zone
3.5. Comparison of CA and CONV Practices on Five Soil Functions in Atlantic North, Pannonian, Mediterranean North and Continental Environmental Zones
4. Discussion
4.1. Integration of Soil Function Scoring Data
4.2. CA and CONV Treatment Effects on Soil Functions
4.3. Research Gaps on CONV and CA Practices
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schulte, R.P.O.; Bampa, F.; Bardy, M.; Coyle, C.; Creamer, R.E.; Fealy, R.; Gardi, C.; Ghaley, B.B.; Jordan, P.; Laudon, H.; et al. Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Front. Environ. Sci. 2015, 3, 81. [Google Scholar] [CrossRef]
- Ghaley, B.; Vesterdal, L.; Porter, J.R. Quantification and valuation of ecosystem services in diverse production systems for informed decision-making. Environ. Sci. Policy 2014, 39, 139–149. [Google Scholar] [CrossRef]
- Ghaley, B.; Porter, J.; Sandhu, H.S. Soil-based ecosystem services: A synthesis of nutrient cycling and carbon sequestration assessment methods. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 177–186. [Google Scholar] [CrossRef]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P. A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Lemanceau, P.; Creamer, R.; Griffiths, B.S. Soil biodiversity and ecosystem functions across Europe: A transect covering variations in bio-geographical zones, land use and soil properties. Appl. Soil Ecol. 2016, 97, 1–2. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Conservation Agriculture. Available online: http://www.fao.org/publications/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/ (accessed on 20 December 2017).
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Kertész, A.; Madarász, B. Conservation Agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef]
- Fereres, E.; Orgaz, F.; Gonzalez-Dugo, V.; Testi, L.; Villalobos, F.J. Balancing crop yield and water productivity tradeoffs in herbaceous and woody crops. Funct. Plant Biol. 2014, 41, 1009–1018. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture – a panacea to improve soil physical health. Curr. Sci. 2017, 112. [Google Scholar] [CrossRef]
- Derpsch, R.; Lange, D.; Birbaumer, G.; Moriya, K. Why do medium- and large-scale farmers succeed practicing CA and small-scale farmers often do not?—Experiences from Paraguay. Int. J. Agric. Sustain. 2016, 14, 269–281. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sa, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- LANDMARK Land Management Assessment Research Knowledge Base (EU H2020 Project). Available online: http://landmark2020.eu/ (accessed on 12 March 2017).
- Jongman, R.H.G.; Sciences, L. Descriptions of the European Environmental Zones and Strata; Wageningen University & Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Schröder, J.J.; Schulte, R.P.O.; Lehtinen, T.; Creamer, R.E.; van Leeuwen, J.; Rutgers, M.; Delgado, A.; Bampa, F.; Madena, K.; Jones, A. Glossary of Terms for Use in LANDMARK. Available online: http://landmark2020.eu/landmark-glossary/ (accessed on 12 March 2018).
- Hartley, J. Some thoughts on Likert-type scales. Int. J. Clin. Health Psychol. 2014, 14, 83–86. [Google Scholar] [CrossRef]
- Stavi, I.; Bel, G.; Zaady, E. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 32. [Google Scholar] [CrossRef]
- Turner, J.L. The non-parametric kruskal-wallis and friedman’s test statistics. In Using Statistics in Small-Scale Language Education Research: Focus on Non-Parametric Data; ESL & Applied Linguistics Professional Series; Routledge: Abingdon, UK, 2014; pp. 243–272. ISBN 978-0-415-81994-7. [Google Scholar]
- Vargha, A.; Delaney, H.D. The Kruskal-Wallis Test and Stochastic Homogeneity. J. Educ. Behav. Stat. 1998, 23, 170–192. [Google Scholar] [CrossRef]
- Abdollahi, L.; Schjonning, P.; Elmholt, S.; Munkholm, L.J. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Tillage Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Barberi, P.; Fliessbach, A.; Peigne, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef]
- Hansen, E.M.; Munkholm, L.J.; Olesen, J.E.; Melander, B. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention. J. Environ. Qual. 2015, 44, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, B.P. The tillage effect in sustaining soil functions. J. Plant Nutr. Soil Sci. 2001, 164, 345–350. [Google Scholar] [CrossRef]
- Chatskikh, D.; Olesen, J.E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil Tillage Res. 2007, 97, 5–18. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Schjonning, P.; Rasmussen, K.J. Non-inversion tillage effects on soil 770 mechanical properties of a humid sandy loam. Soil Tillage Res. 2001, 62, 1–14. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Newton, A.C.; Guy, D.C.; Bengough, A.G.; Gordon, D.C.; McKenzie, B.M.; Sun, B.; Valentine, T.A.; Hallett, P.D. Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Res. 2012, 128, 91–100. [Google Scholar] [CrossRef]
- Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Abdollahi, L.; Hansen, E.M.; Rickson, R.J.; Munkhohn, L.J. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage. Soil Tillage Res. 2015, 145, 29–36. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Melander, B.; Strassemeyer, J.; Christen, O. Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: A case-study of two long-term field experiments in Germany and Denmark. Eur. J. Agron. 2008, 29, 191–199. [Google Scholar] [CrossRef]
- Petersen, S.O.; Ambus, P.; Elsgaard, L.; Schjonning, P.; Olesen, J.E. Long-term effects of cropping system on N2O emission potential. Soil Biol. Biochem. 2013, 57, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Getahun, G.T.; Munkholm, L.J.; Schjonning, P. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Geoderma 2016, 264, 94–102. [Google Scholar] [CrossRef]
- Hansen, E.M.; Munkholm, L.J.; Melander, B.; Olesen, J.E. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations? Soil Tillage Res. 2010, 109, 1–8. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Bauer, T.; Strauss, P.; Grims, M.; Kamptner, E.; Mansberger, R.; Spiegel, H. Long-term agricultural management effects on surface roughness and consolidation of soils. Soil Tillage Res. 2015, 151, 28–38. [Google Scholar] [CrossRef]
- Cociu, A.I. Soil Properties, Winter Wheat Yield, Its Components and Economic Efficiency When Different Tillage Systems Are Applied. Romanian Agric. Res. 2011, 28, 121–130. [Google Scholar]
- Kandeler, E.; Tscherko, D.; Spiegel, H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. Biol. Fertil. Soils 1999, 28, 343–351. [Google Scholar] [CrossRef]
- Šimanský, V.; Tobiašová, E.; Chlpík, J. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil Tillage Res. 2008, 100, 125–132. [Google Scholar] [CrossRef]
- Spiegel, H.; Dersch, G.; Baumgarten, A. Long term field experiments—A basis to evaluate parameters of soil fertility. In Proceedings of the Symposium New challenges in Field Crop Production, Rogaška Slatina, Slovenia, 2–3 December 2010. [Google Scholar]
- Spiegel, H.; Dersch, G.; Hösch, J.; Baumgarten, A. Tillage effects on soil organic carbon and nutrient availability in a long-term field experiment in Austria. Die Bodenkultur 2007, 58, 47–58. [Google Scholar]
- Tatzber, M.; Schlatter, N.; Baumgarten, A.; Dersch, G.; Körner, R.; Lehtinen, T.; Unger, G.; Mifek, E.; Spiegel, H. KMnO4 determination of active carbon for laboratory routines: Three long-term field experiments in Austria. Soil Res. 2015, 53, 190–204. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Gerzabek, M.H. Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment—An application of three different spectroscopic methods. Sci. Total Environ. 2008, 406, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Birkás, M.; Jolánkai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Franko, U.; Spiegel, H. Modeling soil organic carbon dynamics in an Austrian long-term tillage field experiment. Soil Tillage Res. 2016, 156, 83–90. [Google Scholar] [CrossRef]
- Field, R.H.; Benke, S.; Bádonyi, K.; Bradbury, R.B. Influence of conservation tillage on winter bird use of arable fields in Hungary. Agric. Ecosyst. Environ. 2007, 120, 399–404. [Google Scholar] [CrossRef]
- Rinnofner, T.; Friedel, J.K.; de Kruijff, R.; Pietsch, G.; Freyer, B. Effect of catch crops on N dynamics and following crops in organic farming. Agron. Sustain. Dev. 2008, 28, 551–558. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Zehetner, F.; Haberhauer, G.; Garcia-Garcia, E.; Gerzabek, M.H. Spectroscopic behaviour of 14C-labeled humic acids in a long-term field experiment with three cropping systems. Aust. J. Soil Res. 2009, 47, 459–469. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Zehetner, F.; Haberhauer, G.; Roth, K.; Garcia-Garcia, E.; Gerzabek, M.H. Decomposition of Carbon-14-Labeled Organic Amendments and Humic Acids in a Long-Term Field Experiment. Soil Biol. Biochem. 2009, 73, 744–750. [Google Scholar] [CrossRef]
- Kismányoky, T.; Tóth, Z. Effect of mineral and organic fertilization on soil fertility as well as on the biomass production and N utilization of winter wheat (Triticum aestivum L.) in a long-term cereal crop rotation experiment (IOSDV). Arch. Agron. Soil Sci. 2010, 56, 473–479. [Google Scholar] [CrossRef]
- Tamás, K.; Zoltán, T. Effect of mineral and organic fertilization on soil organic carbon content as well as on grain production of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely, Hungary. Arch. Agron. Soil Sci. 2013, 59, 1121–1131. [Google Scholar] [CrossRef]
- Spiegel, H.; Dersch, G.; Baumgarten, A.; Hösch, J. The International Organic Nitrogen Long-term Fertilisation Experiment (IOSDV) at Vienna after 21 years. Arch. Agron. Soil Sci. 2010, 56, 405–420. [Google Scholar] [CrossRef]
- Bravo, C.A.; Giráldez, J.V.; Ordóñez, R.; González, P.; Torres, F.P. Long-Term Influence of Conservation Tillage on Chemical Properties of Surface Horizon and Legume Crops Yield in a Vertisol of Southern Spain. Soil Sci. 2007, 172, 141–148. [Google Scholar] [CrossRef]
- Lampurlanés, J.; Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 2016, 189, 59–67. [Google Scholar] [CrossRef]
- López-Garrido, R.; Deurer, M.; Madejón, E.; Murillo, J.M.; Moreno, F. Tillage influence on biophysical soil properties: The example of a long-term tillage experiment under Mediterranean rainfed conditions in South Spain. Soil Tillage Res. 2012, 118, 52–60. [Google Scholar] [CrossRef]
- Madejón, E.; Moreno, F.; Murillo, J.M.; Pelegrín, F. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Tillage Res. 2007, 94, 346–352. [Google Scholar] [CrossRef]
- Madejón, E.; Murillo, J.M.; Moreno, F.; López, M.V.; Arrue, J.L.; Alvaro-Fuentes, J.; Cantero, C. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 2009, 105, 55–62. [Google Scholar] [CrossRef]
- Melero, S.; Vanderlinden, K.; Ruiz, J.C.; Madejon, E. Long-term effect on soil biochemical status of a Vertisol under conservation tillage system in semi-arid Mediterranean conditions. Eur. J. Soil Biol. 2008, 44, 437–442. [Google Scholar] [CrossRef]
- Melero, S.; López-Garrido, R.; Madejón, E.; Murillo, J.M.; Vanderlinden, K.; Ordóñez, R.; Moreno, F. Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain. Agric. Ecosyst. Environ. 2009, 133, 68–74. [Google Scholar] [CrossRef]
- Moreno, F.; Murillo, J.M.; Pelegrín, F.; Girón, I.F. Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Tillage Res. 2006, 85, 86–93. [Google Scholar] [CrossRef]
- Ordóñez Fernández, R.; González Fernández, P.; Giráldez Cervera, J.V.; Perea Torres, F. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Res. 2007, 94, 47–54. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Cantero-Martínez, C.; Viñas, P.; Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 2013, 193–194, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, C.; Velasco, J.; Pajuelo, P.; Perea, F.; Delgado, A. Effects of tillage on phosphorus release potential in a Spanish vertisol. Soil Sci. Soc. Am. J. 2007, 71, 56–63. [Google Scholar] [CrossRef]
- Melero, S.; Vanderlinden, K.; Ruiz, J.C.; Madejón, E. Soil biochemical response after 23 years of direct drilling under a dryland agriculture system in southwest Spain. J. Agric. Sci. 2009, 147, 9. [Google Scholar] [CrossRef]
- Melero, S.; López-Bellido, R.J.; López-Bellido, L.; Muñoz-Romero, V.; Moreno, F.; Murillo, J.M. Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil Tillage Res. 2011, 114, 97–107. [Google Scholar] [CrossRef]
- Birkás, M. Report on Yield of Winter Wheat, 2015 at the Soil Quality-Climate Experiment (Hatvan-Józsefmajor); Scientific Report, Project Number: AGRÁRKLÍMA.2 VKSZ_12-1-2013-0034; Szent István University: Gödöllő, Hungary, 2015. (In Hungarian) [Google Scholar]
- Birkas, M.; Kisic, I.; Bottlik, L.; Jolankai, M.; Mesic, M.; Kalmar, T. Subsoil Compaction as a Climate Damage Indicator. Agric. Conspec. Sci. 2009, 74, 91–97. [Google Scholar]
- Rusu, T.; Bogdan, I.; Marin, D.I.; Moraru, P.I.; Pop, A.I.; Duda, B.M. Effect of Conservation Agriculture on Yield and Protecting Environmental Resources. Agrolife Sci. J. 2015, 4, 141–145. [Google Scholar]
- Rusu, T.; Gus, P.; Bogdan, I.; Oroian, I.; Paulette, L. Influence of minimum tillage systems on physical and chemical properties of soil. J. Food Agric. Environ. 2006, 4, 262–265. [Google Scholar]
- Gal, A.; Vyn, T.J.; Micheli, E.; Kladivko, E.J.; McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res. 2007, 96, 42–51. [Google Scholar] [CrossRef]
- Micheli, E.; Madari, B.; Tombacz, E.J.C. Tillage—Soil organic matter relationships in long-term experiments in Hungary and Indiana. In Agricultural Practices and Policies for Carbon Sequestration in Soil; Kimble, J.M., Lal, R.F.R., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 99–106. [Google Scholar]
- Rusu, T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. Int. Soil Water Conserv. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef]
- Birkás, M.; Takács, T. Importance of Soil Quality in Environment Protection. Agric. Conspec. Sci. 2007, 72, 21–26. [Google Scholar]
- Chetan, C.; Rusu, T.; Bogdan, I.; Chetan, F.; Simon, A. Weed control in soybean cultivated in minimum tillage system and the production obtained at ards turda. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2014, 71. [Google Scholar] [CrossRef]
- Kisić, I.; Bašić, F.; Birkas, M.; Jurišić, A.; Bićanić, V. Crop yield and plant density under different tillage systems. Agric. Conspec. Sci. 2010, 75, 1–7. [Google Scholar]
- Rusu, T.; Gus, P.; Bogdan, I.; Moraru, P.I.; Pop, A.I.; Clapa, D.; Marin, D.I.; Oroian, I.; Pop, L.I. Implications of minimum tillage systems on sustainability of agricultural production and soil conservation. J. Food Agric. Environ. 2009, 7, 335–338. [Google Scholar]
- Rusu, T.; Bogdan, I.; Moraru, P.; Pop, A.; Oroian, I.; Marin, D.; Ranta, O.; Stanila, S.; Gheres, M.; Duda, M.; et al. Influence of minimum tillage systems on the control of Convolvulus arvensis L. on wheat, maize and soybean. J. Food Agric. Environ. 2013, 11, 563–566. [Google Scholar]
- Birkas, M.; Bencsik, K.; Stingli, A.; Percze, A. Correlation between moisture and organic matter conservation in soil tillage. Cereal Res. Commun. 2005, 33, 25–28. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. The role of minimum tillage in protecting environmental resources of the Transylvanian plain, Romania. Romanian Agric. Res. 2015, 32, 127–135. [Google Scholar]
- Stingli, A.; Bokor, A.; Kondor-Jakab, M. Influence of conservation tillage and nutrient rate on the internal fusarium infection of winter wheat. Cereal Res. Commun. 2007, 35, 1101–1104. [Google Scholar] [CrossRef]
- Lothar, M.; Uwe, S.; Wilfried, M.; Graham, T.S.; Bruce, C.B.; Katharina, H.; Jutta, R.; Frank, E.; Hubert, W. Review article Assessing the productivity function of soils. A review. Agron. Sustain. Dev. 2010, 30, 601–614. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Galieni, A.; Stagnari, F.; Visioli, G.; Marmiroli, N.; Speca, S.; Angelozzi, G.; D’Egidio, S.; Pisante, M. Nitrogen fertilisation of durum wheat: A case of study in mediterranean area during transition to conservation agriculture. Ital. J. Agron. 2016, 11, 12–23. [Google Scholar] [CrossRef]
- Visioli, G.; Galieni, A.; Stagnari, F.; Bonas, U.; Speca, S.; Faccini, A.; Pisante, M.; Marmiroli, N. Proteomics of durum wheat grain during transition to conservation agriculture. PLoS ONE 2016, 11, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.F.; Wander, M.M. A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 523–530. [Google Scholar] [CrossRef]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Krüger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
Soil Function Indicators | Primary Productivity | Carbon Sequestration and Climate Regulation | Water Regulation and Purification | Nutrient Cycling and Provision | Habitat for Functional and Intrinsic Biodiversity |
---|---|---|---|---|---|
1. | Increase in grain yield | Increase in stable soil organic matter (humus) | Increase in the water holding capacity of soil | Reduction of soil erosion | Increase of above ground biodiversity |
2. | Improvement in grain quality (e.g., protein content) | Increase in reactive soil organic matter | Enhance water infiltration into soil matrix | Reduction of NO3 leaching | Increase of soil biodiversity |
3. | Increase in biomass yield (grain + aboveground biomass) | Incorporation of plant residues | Reduce groundwater contaimination | Reduction of phosphorus leaching | Increase earthworm count |
Directional Change | Value Range | Positive Re-Assignment | Normalized Scores |
---|---|---|---|
High positive effect | 2 | 5 | 1 |
Low positive effect | 1 | 4 | 0.8 |
No effect | 0 | 3 | 0.6 |
Low negative effect | −1 | 2 | 0.4 |
High negative effect | −2 | 1 | 0.2 |
Soil Functions/Treatments | Primary Productivity | Carbon Sequestration and Climate Regulation | Water Regulation and Purification | Nutrient Cycling and Provision | Habitat for Functional and Intrinsic Biodiversity | Median | References |
---|---|---|---|---|---|---|---|
Atlantic North—Studies (no) | (6) | (4) | (3) | (5) | (2) | ||
Conventionl farming | 0.87 | 0.33 | 0.20 | 0.20 | 0.35 | a 0.33 (0.20,0.87) | [27,28,29,30] |
No-tillage | 0.47 | 1.00 | 1.00 | 1.00 | 0.95 | b 1.00 (0,47,1.0) | [7,28,31,32,33] (expert opinion) |
Reduced tillage | 0.73 | 0.80 | 0.80 | 0.80 | 0.80 | c 0.80 (0.73,0.80) | [31,34,35] |
Crop rotation | 0.93 | 0.73 | 0.87 | 1.00 | 0.90 | d 0.90 (0.73,1.0) | [36,37,38] (expert opinion) |
Residue retention | 0.47 | 0.73 | 1.00 | 0.87 | 0.80 | c 0.80 (0.47,1.0) | [24,39,40] (expert opinion) |
Conservation agriculture | 0.73 | 1.00 | 0.93 | 0.87 | 0.85 | d 0.87 (0.73,1.0) | [6,7,33,41] (expert opinion) |
Pannonian | (8) | (13) | (4) | (8) | (3) | ||
Conventional farming | 0.60 | 0.53 | 0.67 | 0.53 | 0.40 | a 0.53 (0.40,0.67) | [42,43,44,45,46,47,48,49,50,51,52,53] (expert opinion) |
No-tillage | 0.60 | 0.87 | 0.67 | 0.73 | 0.93 | b 0.73 (0.60,0.93) | [43,44,46,47,48,49,50,51,52] (expert opinion) |
Reduced tillage | 0.60 | 0.67 | 0.67 | 0.60 | 0.80 | c 0.67 (0.60,0.80) | [42,47,48,49] (expert opinion) |
Crop rotation | 0.80 | 0.80 | 0.73 | 0.80 | 0.80 | e 0.80 (0.73,0.80) | [48,53,54,55] (expert opinion) |
Residue retention | 0.67 | 0.80 | 0.80 | 0.80 | 0.80 | bde 0.80 (0.67,0.80) | [46,56,57,58] (expert opinion) |
Conservation agriculture | 0.47 | 1.00 | 0.73 | 0.80 | 0.80 | bd 0.80 (0.47,1.0) | (expert opinion) |
Mediterranean North | (3) | (9) | (3) | (8) | (5) | ||
Conventional farming | 0.73 | 0.53 | 0.33 | 0.67 | 0.20 | a 0.53 (0.20,0.73) | [59,60,61,62,63,64,65,66,67,68,69] (expert opinion) |
No-tillage | 0.87 | 0.87 | 0.93 | 0.87 | 1.00 | b 0.87 (0.87,1.0) | [59,60,61,62,63,64,66,67,68,69,70] (expert opinion) |
Reduced tillage | 0.73 | 0.80 | 0.80 | 0.80 | 0.80 | c 0.80 (0.73,0.80) | [60,63,66] |
Crop rotation | 0.80 | 0.80 | 0.73 | 0.80 | 0.80 | c 0.80 (0.73,0.80) | [59,67,71] |
Residue retention | 0.47 | 0.93 | 1.00 | 0.93 | 0.93 | bd 0.93 (0.47,1.0) | [62,65] (expert opinion) |
Conservation agriculture | 0.73 | 1.00 | 0.73 | 0.87 | 1.00 | d 0.87 (0.73,1.0) | [60,63,66] |
Continental | (5) | (5) | (4) | (5) | (1) | ||
Conventional farming | 0.40 | 0.60 | 0.40 | 0.60 | 0.47 | a 0.47 (0.40,0.60) | [50,72,73,74] |
No-tillage | 0.80 | 0.87 | 0.93 | 0.80 | 0.73 | bd 0.80 (0.73,0.93) | [72,75,76,77,78] |
Reduced tillage | 0.80 | 0.80 | 0.93 | 0.80 | 0.73 | b 0.80 (0.73,0.93) | [78,79,80,81] (expert opinion) |
Crop rotation | 0.93 | 0.87 | 0.80 | 0.87 | 0.87 | e 0.87 (0.80,0.93) | [78,82] (expert opinion) |
Residue retention | 0.80 | 0.87 | 0.93 | 0.80 | 0.73 | bd 0.80 (0.73,0.93) | [83] (expert opinion) |
Conservation agriculture | 0.93 | 0.87 | 0.80 | 0.80 | 0.80 | cd 0.80 (0.80,0.93) | [83,84,85,86] (expert opinion) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability 2018, 10, 794. https://doi.org/10.3390/su10030794
Ghaley BB, Rusu T, Sandén T, Spiegel H, Menta C, Visioli G, O’Sullivan L, Gattin IT, Delgado A, Liebig MA, et al. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability. 2018; 10(3):794. https://doi.org/10.3390/su10030794
Chicago/Turabian StyleGhaley, Bhim Bahadur, Teodor Rusu, Taru Sandén, Heide Spiegel, Cristina Menta, Giovanna Visioli, Lilian O’Sullivan, Isabelle Trinsoutrot Gattin, Antonio Delgado, Mark A. Liebig, and et al. 2018. "Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe" Sustainability 10, no. 3: 794. https://doi.org/10.3390/su10030794
APA StyleGhaley, B. B., Rusu, T., Sandén, T., Spiegel, H., Menta, C., Visioli, G., O’Sullivan, L., Gattin, I. T., Delgado, A., Liebig, M. A., Vrebos, D., Szegi, T., Michéli, E., Cacovean, H., & Henriksen, C. B. (2018). Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability, 10(3), 794. https://doi.org/10.3390/su10030794