Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus
Abstract
:1. Introduction
1.1. Complexity at the Centralized Scale
1.2. Complexity at the Individual Scale
1.3. Complexity at the Interaction of Multiple Scales
2. Moving Toward Sustainable and Resilient Design of Water and Energy Systems at the Infrastructure-Human-Resource Nexus
3. A Modeling Framework to Address the Knowledge Gaps
3.1. Addressing Individual Complexity: Elicitation of Stakeholder Preferences and Development of Utility Functions via a CE Survey
3.2. Intermediate Complexity: Development of a Coupled Spatial Agent-Based and System Dynamics (ASD) Model and Evaluation of Multiple Scenarios
3.3. Aggregate Complexity: Development of Optimized Scenarios Using a Cross-Scale Spatial Optimization Model
4. Potential Applications of the Modeling Framework
Author Contributions
Acknowledgments
Conflicts of Interest
References
- JFW. Optimizing the Structure and Scale of Urban Water Infrastructure: Integrating Distributed Systems; The Johnson Foundation at Wingspread: Racine, WI, USA, 2014. [Google Scholar]
- Fthenakis, V.; Mason, J.E.; Zweibel, K. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the us. Energy Policy 2009, 37, 387–399. [Google Scholar] [CrossRef]
- Wirth, H.; Schneider, K. Recent Facts about Photovoltaics in Germany; Fraunhofer Institute for Solar Energy Systems: Freiburg, Germany, 2013. [Google Scholar]
- McGuire, M.J.; Beecher, J.A.; Hanna-Attisha, M.; Masten, S.J.; Rose, J.B. Roundtable—The flint crisis. J. Am. Water Works Assoc. 2016, 108, 26–34. [Google Scholar] [CrossRef]
- AWWA. Dawn of the Replacement ERA: Reinvesting in Drinking Water Infrastructure; American Water Works Association: Denver, CO, USA, 2011. [Google Scholar]
- ASCE. American Society of Civil Engineers, 2017 Report Card for America’s Infrastructure. Available online: http://www.infrastructurereportcard.org/ (accessed on 1 March 2018).
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Berger, T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agric. Econ. 2001, 25, 245–260. [Google Scholar] [CrossRef]
- Michelsen, C.C.; Madlener, R. Homeowners’ preferences for adopting innovative residential heating systems: A discrete choice analysis for germany. Energy Econ. 2012, 34, 1271–1283. [Google Scholar] [CrossRef]
- Faber, A.; Frenken, K. Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics. Technol. Forecast. Soc. Chang. 2009, 76, 462–470. [Google Scholar] [CrossRef]
- Kavvada, O.; Horvath, A.; Stokes-Draut, J.R.; Hendrickson, T.P.; Eisenstein, W.A.; Nelson, K.L. Assessing location and scale of urban nonpotable water reuse systems for life-cycle energy consumption and greenhouse gas emissions. Environ. Sci. Technol. 2016, 50, 13184–13194. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Zhang, Q. Modeling the influence of various water stressors on regional water supply infrastructures and their embodied energy. Environ. Res. Lett. 2016, 11, 064018. [Google Scholar] [CrossRef] [Green Version]
- Hiremath, R.; Shikha, S.; Ravindranath, N. Decentralized energy planning; modeling and application—A review. Renew. Sustain. Energy Rev. 2007, 11, 729–752. [Google Scholar] [CrossRef]
- Lu, Z.; Noonan, D.; Crittenden, J.; Jeong, H.; Wang, D. Use of impact fees to incentivize low-impact development and promote compact growth. Environ. Sci. Technol. 2013, 47, 10744–10752. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.; Inam, A.; Torng, G.-W. A choice-based rationale for land use and transportation alternatives evidence from boston and atlanta. J. Plan. Educ. Res. 2005, 24, 317–330. [Google Scholar] [CrossRef]
- Scarpa, R.; Willis, K. Willingness-to-pay for renewable energy: Primary and discretionary choice of british households’ for micro-generation technologies. Energy Econ. 2010, 32, 129–136. [Google Scholar] [CrossRef]
- Tapsuwan, S.; Burton, M.; Mankad, A.; Tucker, D.; Greenhill, M. Adapting to less water: Household willingness to pay for decentralised water systems in urban australia. Water Resour. Manag. 2014, 28, 1111–1125. [Google Scholar] [CrossRef]
- Grierson, S.; Strezov, V. Life cycle assessment of the microalgae biofuel value chain: A critical review of existing studies. In Proceedings of the Third International Conference on Bioenvironment, Biodiversity and Renewable Energies, BIONATURE 2012, St. Maarten, Netherlands Antilles, 25–30 March 2012; pp. 1–6. [Google Scholar]
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Hawkins, T.R. Life cycle assessment of domestic and agricultural rainwater harvesting systems. Environ. Sci. Technol. 2014, 48, 4069–4077. [Google Scholar] [CrossRef] [PubMed]
- Collinge, W.O.; Landis, A.E.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. Dynamic life cycle assessment: Framework and application to an institutional building. Int. J. Life Cycle Assess. 2013, 18, 538–552. [Google Scholar] [CrossRef]
- Van Vliet, M.T.; Vögele, S.; Rübbelke, D. Water constraints on european power supply under climate change: Impacts on electricity prices. Environ. Res. Lett. 2013, 8, 035010. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleick, P.H. Water and energy. Ann. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Berrittella, M.; Hoekstra, A.Y.; Rehdanz, K.; Roson, R.; Tol, R.S. The economic impact of restricted water supply: A computable general equilibrium analysis. Water Res. 2007, 41, 1799–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomoni, M.; Berglund, E. Complex adaptive modeling framework for evaluating adaptive demand management for urban water resources sustainability. J. Water Resour.Plan. Manag. 2015, 141, 04015024. [Google Scholar] [CrossRef]
- Giuliani, M.; Castelletti, A. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization. Water Resour. Res. 2013, 49, 3912–3926. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.E.; Cai, X.; Stipanović, D.M. A decentralized optimization algorithm for multiagent system—based watershed management. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- DOE. The Water-Energy Nexus: Challenges and Opportunities; US Department of Energy: Washington, DC, USA, 2014.
- Goldstein, R.; Smith, W. Water & Sustainability (Volume 4): Us Electricity Consumption for Water Supply & Treatment—The Next Half Century; Electric Power Research Institute: Palo Alto, CA, USA, 2002. [Google Scholar]
- Mo, W.; Wang, R.; Zimmerman, J.B. An energy-water nexus analysis of enhanced water supply scenarios: A regional comparison of tampa bay, florida and san diego, california. Environ. Sci. Technol. 2014, 48, 5883–5891. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wang, H.; Jacobs, J.M. Understanding the influence of climate change on the embodied energy of water supply. Water Res. 2016, 95, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Moysey, S.; Sharp, B.; Alfaro, J. A stochastic approach to model dynamic systems in life cycle assessment. J. Ind. Ecol. 2013, 17, 352–362. [Google Scholar] [CrossRef]
- Lu, Z.; Southworth, F.; Crittenden, J.; Dunhum-Jones, E. Market potential for smart growth neighbourhoods in the USA: A latent class analysis on heterogeneous preference and choice. Urban Stud. 2014, 52, 3001–3017. [Google Scholar] [CrossRef]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Dzombak, D. A berif update on sustainability and roundtable 2015 sessions on sustainability indicators and metrics. In Proceedings of the National Academics of Sciences, Engineering, and Medicine’s Workshop—Transition toward Sustainability after 15 Years: Where Do We Stand in Advancing the Scientific Foundation, Newport Beach, CA, USA, 14–15 January 2016. [Google Scholar]
- WERF. Water Environment Research Foundation, When to Consider Distributed Systems in an Urban and Suburban Context; WERF: Alexandria, VA, USA, 2014. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, W.; Lu, Z.; Dilkina, B.; Gardner, K.H.; Huang, J.-C.; Foreman, M.C. Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. Sustainability 2018, 10, 1845. https://doi.org/10.3390/su10061845
Mo W, Lu Z, Dilkina B, Gardner KH, Huang J-C, Foreman MC. Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. Sustainability. 2018; 10(6):1845. https://doi.org/10.3390/su10061845
Chicago/Turabian StyleMo, Weiwei, Zhongming Lu, Bistra Dilkina, Kevin H. Gardner, Ju-Chin Huang, and Maria Christina Foreman. 2018. "Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus" Sustainability 10, no. 6: 1845. https://doi.org/10.3390/su10061845
APA StyleMo, W., Lu, Z., Dilkina, B., Gardner, K. H., Huang, J. -C., & Foreman, M. C. (2018). Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. Sustainability, 10(6), 1845. https://doi.org/10.3390/su10061845