Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Soil Sampling
2.3. Soil Nutrients Analysis
2.4. Soil Enzyme Analysis
2.5. Soil Aggregate Analysis
2.6. Statistical Analyses
3. Results
3.1. Soil Nutrients
3.2. Soil Enzyme Activity
3.3. Distribution of Soil Aggregate Fractions
3.4. Soil Aggregate Stability
3.5. Correlations between Soil Enzymes, Aggregate Stability, and Soil Nutrients
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ji, B.Y.; Hu, H.; Zhao, Y.L.; Mu, X.Y.; Liu, K.; Li, C.H. Effects of deep tillage and straw returning on soil microorganism and enzyme activities. Sci. World J. 2014, 2014, 451493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, T.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230–231, 41–49. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zhang, H.J.; Xu, G.S.; Zhang, Y.H.; Liu, C.P. Effect of returning corn straw into soil on soil fertility. J. Chin. Appl. Ecol. 2002, 5, 539–542. [Google Scholar]
- Pei, S.W.; Zhang, Y.Y.; Liu, J.F.; Mou, Y.J.; Lun, X.X. Greenhouse gas emission under the treatments of fertilization and wheat straw incorporation during the maize growing seasons. Environ. Chem. 2012, 31, 407–414. [Google Scholar]
- Christensen, B.T. Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J. Soil. Sci. 1986, 37, 125–135. [Google Scholar] [CrossRef]
- Tan, D.S.; Jin, J.Y.; Huang, S.W.; Li, S.T.; He, P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Agric. Sci. China 2007, 6, 200–207. [Google Scholar]
- Zhang, J.; Wen, X.X.; Liao, Y.C.; Liu, Y. Effects of different amount of maize straw incorporation on soil fertility and yield of winter wheat. Acta Metall. Sin. 2010, 16, 612–619. [Google Scholar]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Krüger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Dick, R.P.; Sandor, J.A.; Eash, N.S. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru. Agric. Ecosyst. Environ. 1994, 50, 123–131. [Google Scholar] [CrossRef]
- Balota, E.L.; Kanashiro, M.; Filho, A.C.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Pajares, S.; Gallardo, J.F.; Masciandaro, G.; Ceccanti, B.; Etchevers, J.D. Enzyme activity as an indicator of soil quality changes in degraded cultivated Acrisols in the Mexican Trans-volcanic Belt. Land Degrad. Dev. 2011, 22, 373–381. [Google Scholar] [CrossRef]
- Nayak, D.R.; Jagadeesh Babu, Y.; Adhya, T.K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol. Biochem. 2007, 39, 1897–1906. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Garg, S.; Bahl, G.S. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour. Technol. 2008, 99, 5773–5777. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Mezzalama, M.; Wall, P.C.; Chocobar, A.; Deckers, J.; Sayre, K.D. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems? In Advances in Soil Science: Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Amézketa, E. Soil Aggregate Stability: A Review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Lynch, M.; Bragg, E. Microorganisms and soil aggregate stability. Adv. Soil Sci. 1985, 2, 134–170. [Google Scholar]
- Roldan, A.; Garcia-Orenes, F.; Lax, A. An incubation experiment to determine factors involving aggregation changes in an arid soil receiving urban refuses. Soil Biol. Biochem. 1994, 26, 1699–1707. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Cui, R.; Li, R.; Han, Q.; Jia, Z.; Liang, L.; Wang, X.; Ma, X. Effects of different organic manure with fertilization on soil aggregates in dry farmland. J. Northwest Agric. For. Univ. 2011, 39, 124–132. [Google Scholar]
- Hadas, A.; Rawitz, E.; Etkin, H.; Margolin, M. Short-term variations of soil physical properties as a function of the amount and C/N ratio of decomposing cotton residues. I. Soil aggregation and aggregate tensile strength. Soil Tillage Res. 1994, 32, 183–198. [Google Scholar] [CrossRef]
- Arshad, M.A.; Coen, G.M. Characterization of soil quality: Physical and chemical criteria. Am. J. Altern. Agric. 1992, 7, 25–32. [Google Scholar] [CrossRef]
- Monaco, S.; Hatch, D.J.; Sacco, D.; Bertora, C.; Grignani, C. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol. Biochem. 2008, 40, 608–615. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.USDA, Natural Resource Conservation Services: Washington, DC, USA, 1998.
- Lu, R.K. Analytical Method of Soil Agro-Chemistry; Chinese Agriculture Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3; Chemical Methods ASA-SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Li, F.M. Analysis of soil enzyme activity. In Experimental Techniques in Agriculture Microbiology; Li, F.M., Yu, Z.N., He, S.D., Eds.; Chinese Agriculture Press: Beijing, China, 1996. [Google Scholar]
- Ge, G.F.; Li, Z.J.; Zhang, J.B.; Wang, J.K.; Xie, X.L.; Liang, Y.C. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex. 2009, 6, 421–431. [Google Scholar] [CrossRef]
- Xu, G.H.; Zheng, H.Y. Handbook of Soil Microbiology Analysis Method; Chinese Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J. Aggregation and soil organic matter accumulation in cultivated and native grass land soil. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef]
- Pu, Y.L.; Lin, C.W.; Xie, D.T.; Wei, C.F.; Ni, J.P. Composition and stability of soil aggregates in hedgerow-crop slope land. J. Chin. Appl. Ecol. 2013, 24, 122–128. [Google Scholar]
- Barral, M.T.; Arias, M.; Guerif, J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil Tillage Res. 1998, 46, 261–272. [Google Scholar] [CrossRef]
- Six, J.; Elliot, E.T.; Paustian, K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Syst. Anal. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Li, S.T.; Jin, J.Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Sci. Agric. Sin. 2011, 44, 4207–4229. [Google Scholar]
- Yadvinder-Singh, B.S.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar]
- Chivenge, P.; Murwira, H.; Giller, K.; Mapfumo, P.; Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil Tillage Res. 2007, 94, 328–337. [Google Scholar] [CrossRef]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Fernando, B.; Cornejo, P. Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.X.; Yang, B.P.; Nie, J.F.; Jia, Z.K.; Han, Q.F. Effects of Wheat Straw Incorporation on the Availability of Soil nutrents and enzymy activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar]
- Nan, X.X.; Tian, X.H.; Zhang, L.; You, D.H.; Wu, Y.H.; Cao, Y.H. Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents. Plant Nutr. Fertil. Sci. 2010, 16, 626–633. [Google Scholar]
- Ogunniyi, J.E.; Guo, C.H.; Tian, X.H.; Li, H.Y.; Zhou, Y.X. The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon. J. Integr. Agric. 2014, 13, 2768–2777. [Google Scholar]
- Xia, L.L.; Wang, S.W.; Yan, X.Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice–wheat cropping system in China. Agric. Ecosyst. Environ. 2014, 197, 118–127. [Google Scholar] [CrossRef]
- Gangaiah, B.; Prasad, R.; Prasad, R. Effect of wheat residue management practices and fertilizers on productivity, nutrient removal and soil fertility of rice-wheat sequence. J. Soils Crop. 1999, 9, 10–13. [Google Scholar]
- Lal, R. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. II: Soil chemical properties. Soil Tillage Res. 1997, 42, 161–174. [Google Scholar] [CrossRef]
- Kushwaha, C.P.; Tripathi, S.K.; Singh, K.P. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil Tillage Res. 2000, 56, 153–166. [Google Scholar] [CrossRef]
- Rukshana, F.; Butterly, C.R.; Baldock, J.A.; Xu, J.M.; Tang, C. Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralization. Soil Biol. Biochem. 2012, 51, 35–43. [Google Scholar] [CrossRef]
- Paul, K.I.; Black, A.S.; Conyers, M.K. Influence of fallow, wheat and subterranean clover on pH within an initially mixed surface soil in the field. Biol. Fertil. Soils 2001, 33, 41–52. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Kizilkaya, R.; Bayrakli, B. Effect of N enriched sewage sludge on soil enzyme activities. Appl. Soil Ecol. 2005, 30, 192–202. [Google Scholar] [CrossRef]
- Kandeler, E.; Palli, S.; Stemmer, M.; Gerzabek, M.H. Tillage changes microbial biomass and enzymes activities in particle size fractions of a Haplic Chernozem. Soil Biol. Biochem. 1999, 31, 1253–1264. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, L.J.; Sun, C.X.; Wu, Z.J.; Chen, Z.H.; Dong, G.H. Soil hydrolase activities and kinetic properties as affected by wheat cropping systems of northeastern china. Plant Soil Environ. 2010, 56, 526–532. [Google Scholar]
- Cao, C.Y.; Jiang, D.M.; Teng, X.H.; Jiang, Y.; Liang, W.J.; Cui, Z.B. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam.plantations in the Horqin sandy land of Northeast China. Appl. Soil Ecol. 2008, 40, 78–85. [Google Scholar] [CrossRef]
- Kujur, M.; Gartia, S.; Patel, A.K. Quantifying the contribution of different soil properties on enzyme activities in dry tropical ecosystems. J. Agric. Biol. Sci. 2012, 7, 763–772. [Google Scholar]
- López, R.; Burgos, P.; Hermoso, J.M.; Hormaza, J.I.; González-Fernández, J.J. Long term changed in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil Tillage Res. 2014, 143, 155–163. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.; Wang, L.; Tang, H.; Li, C.; Van Ranst, E. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agric. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Agric. Ecosyst. Environ. 2004, 79, 7–13. [Google Scholar] [CrossRef]
- Wright, S.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Edwards, A.; Bremner, J. Microaggregates in soils. J. Soil Sci. 1967, 18, 64–73. [Google Scholar] [CrossRef]
- Capriel, P. Hydrophobicity of organic matter in arable soils: Influence of management. Eur. J. Soil Sci. 1997, 48, 457–462. [Google Scholar] [CrossRef]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Poulton, P.R. Long-term management impacts on soil C, N and physical fertility physical fertility Part I: Broadbalk experiment. Soil Tillage Res. 2006, 91, 30–38. [Google Scholar] [CrossRef]
- Chenu, C. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
Treatment | pH | SOC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | AH-N (mg·kg−1) | POlsen (mg·kg−1) | EK (mg·kg−1) |
---|---|---|---|---|---|---|---|---|
CK | 6.04 a | 9.10 d | 0.70 c | 0.47 bc | 18.70 c | 55.29 d | 29.85 cd | 172.50 d |
M1 | 5.91 ab | 9.45 cd | 0.72 bc | 0.46 c | 19.33 bc | 60.82 cd | 26.75 d | 243.62 bc |
M2 | 5.82 b | 10.05 abc | 0.85 a | 0.55 a | 19.92 ab | 69.69 ab | 31.85 bc | 270.56 b |
M3 | 5.80 b | 11.10 a | 0.83 ab | 0.49 ab | 20.35 a | 75.83 a | 61.80 a | 314.35 a |
W1 | 5.98 a | 9.30 d | 0.73 bc | 0.46 c | 19.28 bc | 60.09 cd | 29.65 cd | 174.57 d |
W2 | 5.68 c | 9.78 bcd | 0.72 bc | 0.47 bc | 19.61 ab | 64.89 c | 32.45 bc | 189.73 cd |
W3 | 5.67 c | 10.62 ab | 0.86 a | 0.53 ab | 19.68 ab | 66.23 bc | 36.60 b | 213.3 c |
Treatment | Composition of Soil Aggregates (%) | |||||
---|---|---|---|---|---|---|
>2 mm | 2–1 mm | 1–0.5 mm | 0.5–0.25 mm | 0.25–0.106 mm | <0.106 mm | |
CK | 69.55 c | 13.37 a | 10.98 a | 2.88 a | 1.37 ab | 1.86 a |
M1 | 74.95 bc | 11.32 ab | 8.37 ab | 2.18 ab | 1.88 a | 1.30 ab |
M2 | 80.02 ab | 10.50 ab | 6.16 b | 1.25 b | 1.02 ab | 1.05 ab |
M3 | 86.06 a | 7.47 b | 4.17 bc | 0.95 bc | 0.86 ab | 0.49 c |
W1 | 76.67 b | 11.97 ab | 7.73 ab | 1.53 b | 1.19 ab | 0.90 b |
W2 | 77.93 b | 11.40 ab | 6.89 ab | 1.51 b | 1.31 ab | 0.96 b |
W3 | 83.83 ab | 10.49 ab | 3.49 c | 0.56 c | 0.66 b | 0.96 b |
Treatment | Composition of Soil Aggregates (%) | |||||
---|---|---|---|---|---|---|
>2 mm | 2–1 mm | 1–0.5 mm | 0.5–0.25 mm | 0.25–0.106 mm | <0.106 mm | |
CK | 5.70 c | 10.27 a | 28.34 a | 29.90 c | 11.53 b | 14.26 a |
M1 | 13.08 ab | 4.97 b | 16.31 b | 34.79 b | 17.08 ab | 13.77 ab |
M2 | 15.25 ab | 4.44 b | 25.34 ab | 32.25 bc | 10.67 b | 12.05 ab |
M3 | 18.82 a | 4.41 b | 25.47 ab | 26.13 c | 13.60 b | 11.57 ab |
W1 | 8.43 bc | 4.17 b | 15.46 b | 41.30 a | 15.20 b | 15.44 a |
W2 | 5.10 c | 3.74 b | 22.43 ab | 41.92 a | 11.33 b | 15.48 a |
W3 | 10.08 b | 5.54 b | 17.03 b | 39.08 ab | 19.18 a | 9.09 b |
Treatment | Dry Sieving | Wet Sieving | |||
---|---|---|---|---|---|
MWDd (mm) | GWDd (mm) | MWDw (mm) | GWDw (mm) | >0.25 mm (%) | |
CK | 1.69 c | 1.51 c | 0.63 bc | 0.44 ab | 74.21 ab |
M1 | 1.74 bc | 1.58 bc | 0.63 bc | 0.41 ab | 69.15 b |
M2 | 1.81 ab | 1.69 ab | 0.71 ab | 0.49 ab | 77.28 a |
M3 | 1.87 a | 1.78 a | 0.77 a | 0.51 a | 74.83 ab |
W1 | 1.78 ab | 1.65 ab | 0.55 bc | 0.37 b | 69.35 b |
W2 | 1.79 ab | 1.66 ab | 0.52 c | 0.38 b | 73.19 ab |
W3 | 1.86 a | 1.78 a | 0.60 bc | 0.42 ab | 71.73 ab |
Soil variables | pH | SOC | TN | TP | TK | AH-N | POlsen | EK |
---|---|---|---|---|---|---|---|---|
Sucrase | −0.50 | 0.91 ** | 0.15 | 0.17 | −0.64 | 0.95 ** | 0.39 | 0.54 |
Urease | −0.55 | 0.93 ** | 0.00 | −0.08 | −0.60 | 0.91 ** | 0.12 | 0.38 |
Phosphatase | −0.78 * | 0.89 ** | 0.33 | 0.16 | −0.45 | 0.60 | 0.80 * | 0.72 |
Catalase | 0.10 | −0.63 | −0.31 | −0.53 | −0.66 | −0.59 | −0.75 | −0.79 * |
MWDd | −0.75 | 0.93 ** | 0.85 * | 0.57 | 0.87 ** | 0.88 ** | 0.68 | 0.59 |
GMDd | −0.75 | 0.92 ** | 0.85 * | 0.58 | 0.85 * | 0.86 * | 0.68 | 0.56 |
MWDw | 0.04 | 0.58 | 0.58 | 0.45 | 0.58 | 0.64 | 0.65 | 0.88 ** |
GMDw | −0.06 | 0.61 | 0.63 | 0.56 | 0.59 | 0.66 | 0.66 | 0.82 * |
>0.25 mm | −0.20 | 0.38 | 0.47 | 0.63 | 0.44 | 0.50 | 0.37 | 0.44 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Bo, G.; Zhang, Z.; Kong, F.; Wang, Y.; Shen, G. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability 2016, 8, 710. https://doi.org/10.3390/su8080710
Zhang J, Bo G, Zhang Z, Kong F, Wang Y, Shen G. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability. 2016; 8(8):710. https://doi.org/10.3390/su8080710
Chicago/Turabian StyleZhang, Jiguang, Guodong Bo, Zhongfeng Zhang, Fanyu Kong, Yi Wang, and Guoming Shen. 2016. "Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China" Sustainability 8, no. 8: 710. https://doi.org/10.3390/su8080710
APA StyleZhang, J., Bo, G., Zhang, Z., Kong, F., Wang, Y., & Shen, G. (2016). Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability, 8(8), 710. https://doi.org/10.3390/su8080710