Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Assessing the State of the Soil in the Nakasongola District
2.2.1. Quantification of Bare Ground Coverage
2.2.2. Data Sources/Analysis
2.2.3. Soil Physicochemical Analysis
2.2.4. Statistical Analysis
2.3. Sustainable Agricultural Production
2.3.1. Field Design
2.3.2. Seeding Rates
2.4. Statistical Analysis
3. Results and Discussion
3.1. Assessment of the State of the Soil in the Nakasongola District
Quantification of Bare Ground Coverage
3.2. Sustainable Agricultural Production
3.2.1. Bean Grain Yield Response to Tillage Practices and Fertilizer
3.2.2. Potential versus Actual Bean Grain Yield
3.2.3. Maize Grain Yield Response to Tillage Practices and Fertilizer
3.2.4. Potential versus Actual Maize Grain Yield
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO. World Soils Report. No. 90. 2000. Available online: www.fao.org/soils-portal/resources/world-soil-resources-reports/en (accessed on 13 December 2016).
- Magunda, M.K.; Tenwya, M.M. Soil and water conservation. In Agriculture in Uganda; Mukiibi, J.K., Ed.; Uganda National Agricultural Research Organization (NARO): Entebbe, Uganda, 2001; Volume I, pp. 145–168. [Google Scholar]
- Nakileza, B.; Nsubuga, E.N.B. Rethinking Natural Resource Degradation in Semiarid Sub-Saharan Africa: A Review of Soil and Water Conservation Research and Practice in Uganda, with Particular Emphasis on the Semiarid Areas; Overseas Development Institute: Kampala, Uganda, 1999. [Google Scholar]
- Nkonya, E.; Pender, J.; Jagger, P.; Sserunkuma, D.; Kaizzi, C.K.; Ssali, H. Strategies for Sustainable Land Management and Poverty Reduction in Uganda; Research Report 133; IFPRI: Washington, DC, USA, 2004. [Google Scholar]
- Government of Uganda (GOU). Climate Change: Uganda National Adaptation Programmes of Action; Environmental Alert, GEF, UNEP, Ministry of Water and Environment: Kampala, Uganda, 2007.
- National Environment Management Authority (NEMA). State of the Environment Report for Uganda 2006/2007; NEMA: Kampala, Uganda, 2007. [Google Scholar]
- Uganda Bureau of Statistics (UBOS). Statistical Abstract. 2015. Available online: http://www.ubos.org (accessed on 11 February 2016).
- Otunge, D.; Muchiri, N.; Wachoro, G.; Anguzu, R.; Wamboga-Mugirya, P. Enhancing Maize Productivity in Uganda Through the WEMA Project; A Policy Brief; National Agricultural Research Organisation of Uganda (NARO)/African Agricultural Technology Foundation (AATF): Entebbe, Uganda, 2010. [Google Scholar]
- Semaana, H.R. Crop Production Handbook for Good Quality Cereals, Pulses and Tuber Crops; Ministry of Agriculture Animal Industry and Fisheries/Sasakawa Africa Association (SAA): Entebbe, Uganda, 2010.
- Regional Agricultural Expansion Support (RATES). Maize Market Assessment and Baseline Study for Uganda; Regional Agricultural Expansion Support Program: Nairobi, Kenya, 2003. [Google Scholar]
- Okoboi, G.; Muwanga, J.; Mwebaze, T. Use of improved inputs and its effects on maize yield and profit in Uganda. Afr. J. Food Agric. Nutr. Dev. 2012, 12, 6932–6944. [Google Scholar]
- Sebuwufu, G.; Mazur, R.; Westgate, M.; Ugen, M. Improving the Yield and Quality of Common Beans in Uganda. Available online: www.soc.iastate.edu/staff/.../CRSP (accessed on 9 September 2014).
- World Bank. Uganda Sustainable Land Management: Public Expenditure Review; Report No. 45781-UG AFTAR; Sustainable Development Department Country Department 1, Uganda Africa Region: Kampala, Uganda, 2008. [Google Scholar]
- Government of Uganda (GOU). Increasing Incomes through Exports: A Plan for Zonal Agricultural Production, Agro-Processing and Marketing for Uganda; MAAIF: Entebbe, Uganda, 2004.
- Magunda, M.; Majaliwa, M. Soil Erosion in Uganda: A Review; Nile Basin Initiative Issue Paper; NBI: Kampala, Uganda, 2006. [Google Scholar]
- Zake, J.; Magunda, M.; Nkwiine, C. Integrated soil management for sustainable agriculture and food security: The Uganda case. Presented at the FAO Workshop on Integrated Soil Management for Sustainable Agriculture and Food Security in Southern and Eastern Africa, Harare, Zimbabwe, 8–12 December 1997. [Google Scholar]
- Ewel, J.J. Nutrient Use Efficiency and the Management of Degraded Lands. In Ecology Today: An Anthology of Contemporary Ecological Research; Gopal, B., Pathak, P.S., Saxena, K.G., Eds.; International Scientific Publications: New Delhi, India, 1988; pp. 199–215. [Google Scholar]
- Fatondji, D.; Martius, C.; Bielders, C.L.; Vlek, P.L.G.; Bationo, A.; Gerard, B. Effect of planting technique and amendment type on pearl millet yield, nutrient uptake, and water use on degraded land in Niger. Nutr. Cycl. Agroecosyst. 2006, 76, 203. [Google Scholar] [CrossRef]
- Mubiru, D.N.; Komutunga, E.; Agona, A.; Apok, A.; Ngara, T. Characterising agrometeorological climate risks and uncertainties: Crop production in Uganda. S. Afr. J. Sci. 2012, 108. [Google Scholar] [CrossRef]
- Ogallo, L.A.; Boulahya, M.S.; Keane, T. Applications of seasonal to interannual climate prediction in agricultural planning and operations. Int. J. Agric. For. Met. 2002, 103, 159–166. [Google Scholar] [CrossRef]
- Jennings, S.; Magrath, J. What Happened to the Seasons? 2009. Available online: http://www.oxfam.org.uk/resources/policy/climate_change/ (accessed on 11 August 2014).
- National Environment Management Authority (NEMA). National State of the Environment Report for Uganda 2014; NEMA: Kampala, Uganda, 2016.
- United Nations Development Programme (UNDP). Uganda Strategic Investment Framework for Sustainable Land Management; UNDP: Kampala, Uganda, 2014. [Google Scholar]
- Okwi, P.O.; Hoogeveen, J.G.; Emwanu, T.; Linderhof, V.; Begumana, J. Welfare and environment in rural Uganda: Results from a small-area estimation approach. Afr. Stat. J. 2016, 3, 135–188. [Google Scholar] [CrossRef]
- Serrao-Neumann, S.; Turetta, A.P.; Prado, R.; Choy, D.L. Improving the management of climate change impacts to support resilient regional landscapes. In Proceedings of the Conference of the Ecosystem Services Partnership Local Action for the Common Good, San Jose, Costa Rica, 7–12 September 2014. [Google Scholar]
- Mupangwa, W.; Twomlow, S.; Walker, S. Conservation Tillage for Soil Water Management in the Semiarid Southern Zimbabwe. Available online: http://www.cgspace.cgiar.org/bitstream/handle/ (accessed on 10 December 2014).
- Haggblade, S.; Tembo, G. Early Evidence on Conservation Farming in Zambia. Presented at the International Workshop on Reconciling Rural Poverty and Resource Conservation: Identify Relationships and Remedies, Ithaca, NY, USA, 2–3 May 2003. [Google Scholar]
- Hove, L.; Twomlow, S. Is conservation agriculture an option for vulnerable households in Southern Africa? Presented at the Conservation Agriculture for Sustainable Land Management to Improve the Livelihood of People in Dry Areas Workshop, Damascus, Syria, 7–9 May 2007. [Google Scholar]
- Twomlow, S.; Urolov, J.; Oldrieve, J.C.; Jenrich, B. Lessons from the Field: Zimbabwe’s Conservation Agriculture Task Force. J. SAT Agric. Res. 2008, 6, 1–11. [Google Scholar]
- Mazvimavi, K.; Twomlow, S. Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. Agric. Syst. 2009, 101, 20–29. [Google Scholar] [CrossRef]
- Pedzisa, I.; Minde, I.; Twomlow, S. An evaluation of the use of participatory processes in wide-scale dissemination of research in micro dosing and conservation agriculture in Zimbabwe. Res. Eval. 2010, 19, 145–155. [Google Scholar] [CrossRef]
- Twomlow, S. Integrated Soil Fertility Management Case Study; SLM Technology, Precision Conservation Agriculture: Bulawayo, Zimbabwe, 2012. [Google Scholar]
- Soniia, D.; Sperling, L. Improving technology delivery mechanisms: Lessons from bean seed systems research in eastern and central Africa. Agric. Hum. Values 1999, 16, 381–388. [Google Scholar]
- National Agricultural Research Organization (NARO). Annual Report; NARO: Entebbe, Uganda, 2000.
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation; John Wiley & Sons: New York, NY, USA, 1987; p. 669. [Google Scholar]
- Okalebo, J.R.; Gathau, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual; TSBF-CIAT and SACRED Africa: Nairobi, Kenya, 2002. [Google Scholar]
- Foster, H.L. Rapid routine soil and plant analysis without automatic equipment: I. Routine soil analysis. E. Afr. Agric. For. J. 1971, 37, 160–170. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1; SSSA Book Series 5; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1; SSSA Book Series 5; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- National Sustainable Agriculture Coalition. Available online: http://sustainableagriculture.net/about-us/what-is-sustainable-ag/ (accessed on 31 May 2017).
- Union of Concerned Scientists. Science for a Healthy Planet and Safer World. Available online: http://www.ucsusa.org/food-agriculture/advance-sustainable-agriculture/what-is-sustainable-agriculture#.WS6WkpKGPIU (accessed on 31 May 2017).
- UWestern SARE. Sustainable Agricultural Research and Education. Available online: http://www.westernsare.org/About-Us/What-is-Sustainable-Agriculture (accessed on 31 May 2017).
- Grace Communications Foundation. Available online: http://www.sustaianble.org/246/sustainable-agriculture-the-basics (accessed on 31 May 2017).
- UCDAVIS Agricultural Sustainability Institute. Available online: http://asi.ucdavis.edu/programs/sarep/about/what-is-sustainable-agriculture (accessed on 31 May 2017).
- Musiitwa, F.; Komutunga, E. Agricultural systems. In Agriculture in Uganda; Mukiibi, J.K., Ed.; Uganda National Agricultural Research Organization (NARO): Entebbe, Uganda, 2001; Volume I, pp. 220–230. [Google Scholar]
- Nelson, L.B.; Muckenhirn, R.J. Field percolation rates of four Wisconsin soils having different drainage characteristics. J. Am. Soc. Agron. 1941, 33, 1028–1036. [Google Scholar] [CrossRef]
- Fritton, D.D.; Olson, G.W. Bulk density of a fragipan soil in natural and disturbed profiles. Soil Sci. Soc. Am. Proc. 1972, 36, 686–689. [Google Scholar] [CrossRef]
- Dawud, A.Y.; Gray, F. Establishment of the lower boundary of the sola of weakly developed soils that occur in Oklahoma. Soil Sci. Soc. Am. J. 1979, 43, 1201–1207. [Google Scholar] [CrossRef]
- Larson, W.E.; Gupta, S.C.; Useche, R.A. Compression of agricultural soils from eight soil orders. Soil Sci. Soc. Am. J. 1980, 44, 450–457. [Google Scholar] [CrossRef]
- Yule, D.F.; Ritchie, J.T. Soil shrinkage relationships of Texas Vertisols: I. Small cores. Soil Sci. Soc. Am. J. 1980, 44, 1285–1291. [Google Scholar] [CrossRef]
- Ssali, H. Soil fertility. In Agriculture in Uganda; Mukiibi, J.K., Ed.; Uganda National Agricultural Research Organization (NARO): Entebbe, Uganda, 2001; Volume I, pp. 104–135. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Reults: What do the Numbers Mean? CSIRO: Collingwood, Australia, 2010. [Google Scholar]
- Namugwanya, M.; Tenywa, J.S.; Etabbong, E.; Mubiru, D.N.; Basamba, T.A. Development of common bean (Phaseolous Vulgaris L.) production under low soil phosphorus and drought in sub Saharan Africa: A review. J. Sustain. Dev. 2014, 7, 128–139. [Google Scholar]
- Goettsch, L.H.; Lenssen, A.W.; Yost, R.S.; Luvaga, E.S.; Semalulu, O.; Tenywa, M.; Mazur, R.E. Improved production systems for common bean on Phaeozem soil in south-central Uganda. Afr. J. Agric. Sci. 2016, 11, 4797–4809. [Google Scholar]
- Kalyebara, R. The Impact of Improved Bush Bean Varieties in Uganda; Network on Bean Research in Africa, Occasional Publication Series 43; Chartered Institute of Architectural Technologists (CIAT): Kampala, Uganda, 2008. [Google Scholar]
- Sibiko, K.W.; Ayuya, O.I.; Gido, E.O.; Mwangi, J.K. An analysis of economic efficiency in bean production: Evidence from eastern Uganda. J. Econ. Sustain. Dev. 2013, 4. Available online: www.iiste.org (accessed on 2 May 2017).
- Ghaffarzadeh, M.; Garcia, F.; Cruse, R.M. Grain yield response of corn, soybean, and oat grown in strip intercropping system. Am. J. Altern. Agric. 1994, 9, 171–177. [Google Scholar] [CrossRef]
- Ghaffarzadeh, M.; Garcia, F.; Cruse, R.M. Tillage effect on soil water content and corn yield in a strip intercropping system. Agron. J. 1997, 89, 893–899. [Google Scholar] [CrossRef]
- Shaw, R.H.; Felch, R.E.; Duncan, E.R. Soil Moisture Available for Crop Growth; Special Report; Iowa State University: Ames, IA, USA, 1972. [Google Scholar]
- Hulugalle, N.R.; Willatt, S.T. Seasonal variation in the water uptake and leaf water potential of intercropped and monocropped chillies. Exp. Agric. 1987, 23, 273–282. [Google Scholar] [CrossRef]
- Francis, C.A.; Jones, A.; Crookston, K.; Wittler, K.; Goodman, S. Strip cropping corn and grain legumes: A review. Am. J. Altern. Agric. 1986, 1, 59–164. [Google Scholar]
- Hulugalle, N.R.; Lal, R. Soil water balance in intercropped maize and cowpea in a tropical hydromorphic soil in western Nigeria. Agron. J. 1986, 77, 86–90. [Google Scholar] [CrossRef]
- Fortin, M.C.; Culley, J.; Edwards, M. Soil water, plant growth, and yield of strip-intercropped corn. J. Prod. Agric. 1994, 7, 63–69. [Google Scholar] [CrossRef]
- Mazvimavi, K.; Ndlovu, P.V.; Nyathi, P.; Minde, I.J. Conservation agriculture practices and adoption by smallholder farmers in Zimbabwe. Presented at the 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa, 19–23 September 2010. [Google Scholar]
Class | Area (km2) | % Cover | |
---|---|---|---|
1 | Open water | 233 | 7.9 |
2 | Vegetated | 1527 | 51.7 |
3 | Bare ground | 187 | 6.3 |
4 | Seasonal wetland | 915 | 31.0 |
5 | Cloud cover | 48 | 1.6 |
6 | Permanent wetland | 46 | 1.6 |
Total | 2956 | 100 |
pH | OM ¥ | N | P | K | Ca | Mg | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|---|---|---|
OM | 0.27 * | |||||||||
N | 0.28 * | 0.97 *** | ||||||||
P | 0.57 *** | 0.19 | 0.20 | |||||||
K | 0.42 *** | −0.05 | -0.03 | 0.30 * | ||||||
Ca | 0.82 *** | 0.33 ** | 0.31 ** | 0.40 *** | 0.26 | |||||
Mg | 0.79 *** | 0.31 ** | 0.30 * | 0.36 ** | 0.38 ** | 0.97 *** | ||||
Sand | −0.14 | −0.48 *** | −0.49 *** | −0.07 | −0.13 | −0.26 | −0.29 * | |||
Silt | 0.50 *** | 0.53 *** | 0.52 *** | 0.14 | 0.03 | 0.60 *** | 0.55 *** | −0.45 *** | ||
Clay | −0.07 | 0.30 * | 0.32 ** | 0.01 | 0.13 | 0.03 | 0.08 | −0.92 *** | 0.05 | |
BD † | 0.23 | −0.18 | −0.16 | 0.19 | 0.03 | 0.16 | 0.13 | 0.48 *** | 0.01 | −0.54 *** |
Soil Layer | BD † | pH | OM * | N | P | K | Ca | Mg | Sand | Clay | Silt |
---|---|---|---|---|---|---|---|---|---|---|---|
(g/cc) | (%) | (ppm) | (%) | ||||||||
Topsoil ¥ | 1.4 | 4.4 | 2.2 | 0.2 | 6.3 | 98.8 | 459 | 283 | 51 | 41 | 8 |
Subsoil ¥ | - | 4.6 | 2.1 | 0.1 | 3.1 | 45.4 | 571 | 217 | 50 | 42 | 8 |
Critical levels | 5.6 | 3.0 | 0.2 | 35.5 | 72.5 | 1640 | 87 |
Sub-County | Soil Property 1 | ||
---|---|---|---|
Bulk Density (g/cc) | Clay (%) | Sand (%) | |
Kalungi | 1.58a | 42bc | 51ab |
Kalongo | 1.57ab | 38c | 57a |
Lwampanga | 1.56ab | 40c | 50ab |
Rwabyata | 1.49bc | 38c | 53a |
Nakitoma | 1.47c | 37c | 56a |
Nabisweera | 1.44c | 37c | 54a |
Wabinyonyi | 1.34d | 47ab | 44b |
Kakooge | 1.33d | 50a | 44b |
SE | 0.04 | 3 | 4 |
Tillage Practice | Bean Yield | Maize Yield | ||
---|---|---|---|---|
(kg ha−1) | SE | (kg ha−1) | SE | |
Conventional | 359c | ±138 | 1536b | ±879 |
Conventional + fertilizer | 560abc | ±138 | 2481ab | ±879 |
PPB | 512abc | ±138 | 3328ab | ±918 |
PPB + fertilizer | 784ab | ±138 | 4963a | ±918 |
Rip line | 438bc | ±148 | 2086b | ±963 |
Rip line + fertilizer | 884a | ±148 | 3921ab | ±963 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubiru, D.N.; Namakula, J.; Lwasa, J.; Otim, G.A.; Kashagama, J.; Nakafeero, M.; Nanyeenya, W.; Coyne, M.S. Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils. Sustainability 2017, 9, 1084. https://doi.org/10.3390/su9071084
Mubiru DN, Namakula J, Lwasa J, Otim GA, Kashagama J, Nakafeero M, Nanyeenya W, Coyne MS. Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils. Sustainability. 2017; 9(7):1084. https://doi.org/10.3390/su9071084
Chicago/Turabian StyleMubiru, Drake N., Jalia Namakula, James Lwasa, Godfrey A. Otim, Joselyn Kashagama, Milly Nakafeero, William Nanyeenya, and Mark S. Coyne. 2017. "Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils" Sustainability 9, no. 7: 1084. https://doi.org/10.3390/su9071084
APA StyleMubiru, D. N., Namakula, J., Lwasa, J., Otim, G. A., Kashagama, J., Nakafeero, M., Nanyeenya, W., & Coyne, M. S. (2017). Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils. Sustainability, 9(7), 1084. https://doi.org/10.3390/su9071084