Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collect Earth Inputs
2.1.1. Data Collection Form
2.1.2. Sampling Design
2.1.3. Area Attributes
2.1.4. Plot File
2.1.5. Project Properties
2.2. Data Collection Framework for Augmented Visual Interpretation
2.3. Data Management Framework
2.4. Data Analysis and Reporting
2.4.1. Saiku Analytics
2.4.2. Uncertainty Analysis
3. Application Example
3.1. Data Collection Form
3.2. Sampling Design and Project Properties
3.3. Augmented Visual Interpretation
3.4. Data Analysis and Visualization Using the Built-In Saiku Analytics
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Romijn, E.; Lantican, C.B.; Herold, M.; Lindquist, E.; Ochieng, R.; Wijaya, A.; Murdiyarso, D.; Verchot, L. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manag. 2015, 352, 109–123. [Google Scholar] [CrossRef]
- Martino, L.; Fritz, M. New Insight into Land Cover and Land Use in Europe. Available online: http://ec.europa.eu/eurostat/documents/3433488/5582088/KS-SF-08-033-EN.PDF/fc262221-5c2e-4dcf-9e7b-0c6731b3f3a4 (accessed on 31 May 2016).
- Tomppo, E.; Katila, M.; Mäkisara, K.; Peräsaari, J. The Multi-Source National Forest Inventory of Finland—Methods and Results 2011. Measurement 2011, 319, 1–224. [Google Scholar]
- Tabacchi, G.; de Natale, F.; Floris, A.; Gagliano, C.; Gasparini, P.; Scrinzi, G.; Tosi, V. Italian National Forest Inventory: Methods, state of the project, and future developments. In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Portland, ME, USA, 3–6 October 2005.
- Ploton, P.; Pélissier, R.; Proisy, C.; Flavenot, T.; Barbier, N.; Rai, S.N.; Couteron, P. Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol. Appl. 2012, 22, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Montesano, P.M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K.J. MODIS tree cover validation for the circumpolar taiga-tundra transition zone. Remote Sens. Environ. 2009, 113, 2130–2141. [Google Scholar] [CrossRef]
- Schepaschenko, D.; See, L.; Lesiv, M.; McCallum, I.; Fritz, S.; Salk, C.; Moltchanova, E.; Perger, C.; Shchepashchenko, M.; Shvidenko, A.; et al. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sens. Environ. 2015, 162, 208–220. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Brotton, J. A History of the World in 12 Maps; Kindle ed.; Penguin: London, UK, 2014; pp. 405–406. [Google Scholar]
- Official Google Blog. Google Earth Downloaded More than One Billion Times. Available online: https://maps.googleblog.com/2011/10/google-earth-downloaded-more-than-one.html (accessed on 9 March 2016).
- Number of Internet Users Worldwide from 2005 to 2015. Available online: http://www.statista.com/statistics/273018/number-of-internet-users-worldwide/ (accessed on 29 May 2016).
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Feng, M.; Huang, C.; Sexton, J.O.; Channan, S.; Narasimhan, R.; Townshend, J.R. An approach for quickly labeling land cover types for multiple epochs at globally selected locations. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6203–6206.
- See, L.; Perger, C.; Hofer, M.; Weichselbaumb, J.; Dresel, C.; Fritz, S. LACO-Wiki: An open access online portal for land cover validation. In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information, Sciences, Proceedings of the ISPRS Geospatial Week, La Grande Motte, France, 28 September–3 October 2015; Volume II-3/W5.
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2012, 114, 2911–2924. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M. Virtual interpretation of earth web-interface tool (VIEW-IT) for collecting land-use/land-cover reference data. Remote Sens. 2011, 3, 601–620. [Google Scholar] [CrossRef]
- Skytruth: Mountaintop Removal Mining. Available online: http://blog.skytruth.org/2009/12/measuring-mountaintop-removal-mining-in.html (accessed on 29 May 2016).
- Tomnod: Nepal Earthquake Data Portal. Available online: http://blog.tomnod.com/Nepal-Earthquake-Data-Portal (accessed on 29 May 2016).
- Pengra, B.; Long, J.; Dahal, D.; Stehman, S.V.; Loveland, T.R. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens. Environ. 2015, 165, 234–248. [Google Scholar] [CrossRef]
- Ryan, R.; Baldridge, B.; Schowengerdt, R.A.; Choi, T.; Helder, D.L.; Blonski, D.L. IKONOS spatial resolution and image interpretability characterization. Remote Sens. Environ. 2016, 88, 37–52. [Google Scholar] [CrossRef]
- Asner, G.P.; Warner, A.S. Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Remote Sens. Environ. 2003, 87, 521–533. [Google Scholar] [CrossRef]
- Barbier, N.; Proisy, C.; Véga, C.; Sabatier, D.; Couteron, P. Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations. Remote Sens. Environ. 2011, 115, 167–179. [Google Scholar] [CrossRef]
- Bastin, J.F.; Barbier, N.; Couteron, P.; Adams, B.; Shapiro, A.; Bogaert, J.; De Cannière, C. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecol. Appl. 2014, 24, 1984–2001. [Google Scholar] [CrossRef]
- Whitehead, T. Google Earth Imagery Suppliers. Available online: http://www.gearthblog.com/blog/archives/2015/09/google-earth-imagery-suppliers.html (accessed on 1 June 2016).
- Bing Maps Unveils Exclusive High Res Imagery with Global Ortho Project, 27 June 2011. Available online: http://blogs.bing.com/maps/2011/06/27/bing-maps-unveils-exclusive-high-res-imagery-with-global-ortho-project/ (accessed on 30 May 2016).
- Google Earth Engine Datasets. Available online: https://earthengine.google.com/datasets/ (accessed on 1 June 2016).
- Elements of Visual Interpretation. Available online: http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9291 (accessed on 23 April 2016).
- Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. Int. Soc. Photogramm. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Open Foris Collect Earth. Available online: http://www.openforis.org/tools/collect-earth.html (accessed on 28 March 2016).
- Sánchez-Paus Díaz, A. Open Foris Collect Earth Code Repository. Available online: https://github.com/ openforis/collect-earth (accessed on 28 March 2016).
- Google Earth. Available online: https://www.google.com/earth/ (accessed on 23 April 2016).
- Google Chrome. Available online: https://www.google.com/chrome/ (accessed on 23 April 2016).
- Mozilla Firefox. Available online: https://www.mozilla.org/en-US/firefox/new/ (accessed on 23 April 2016).
- Open Foris Collect. Available online: http://www.openforis.org/tools/collect.html (accessed on 23 April 2016).
- Stehman, S.V. Comparing estimators of gross change derived from complete coverage mapping versus statistical sampling of remotely sensed data. Remote Sens. Environ. 2005, 96, 466–474. [Google Scholar] [CrossRef]
- Olofson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Bey, A.; Sánchez-Paus Díaz, A.; Pekkarinen, A.; Patriarca, C.; Maniatis, D.; Weil, D.; Mollicone, D.; Marchi, G.; Niskala, J.; Rezende, M.; et al. Collect Earth User Manual, 1st ed. Available online: http://openforis.org/fileadmin/user_upload/Collect_Earth_Tutorials/Collect_Earth_User_Manual_20150618_highres_full.pdf (accessed on 29 May 2016).
- IPCC. Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Google Earth Engine: A Planetary-Scale Platform for Earth Science Data & Analysis. Available online: https://earthengine.google.com/ (accessed on 30 May 2016).
- Whitehead, T. Google Earth Imagery Update Mid-January 2016. Available online: http://www.gearthblog.com/ blog/archives/2016/01/google-earth-imagery-update-mid-january-2016.html (accessed on 28 March 2016).
- Zhang, Q.; Li, B.; Thau, D.; Moore, R. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery. Remote Sens. 2015, 7, 11887–11913. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies: Kanagawa, Japan, 2003. [Google Scholar]
- Google Panoramio. Available online: http://www.panoramio.com (accessed on 29 May 2016).
- Food and Agriculture Organization of the United Nations. Forest Resources Assessment 1990; Tropical Countries, FAO Forestry Paper 112; FAO: Rome, Italy, 1993. [Google Scholar]
- Achard, F.; Beuchle, R.; Mayaux, P.; Stibig, H.J.; Bodart, C.; Brink, A.; Carboni, S.; Desclée, B.; Donnay, F.; Eva, H.D.; et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang. Biol. 2014, 20, 2540–2554. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Gerrand, A.M.; Lindquist, E.J.; Pittman, K.; Turubanova, S.; Løyche Wilkie, M. The global Landsat imagery database for the FAO FRA remote sensing survey. Int. J. Digit. Earth 2011, 4, 2–21. [Google Scholar] [CrossRef]
- Mayaux, P.; Holmgren, P.; Achard, F.; Eva, H.; Stibig, H.-J.; Branthomme, A. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS Vegetation Continuous Fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Böttcher, H.; Eisbrenner, K.; Fritz, S.; Kindermann, G.; Kraxner, F.; McCallum, I.; Obersteiner, M. An assessment of monitoring requirements and costs of Reduced Emissions from Deforestation and Degradation. Carbon Balance Manag. 2009, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Trees, Forests and Land Use in Drylands: The First Global Assessment, 2016. Available online: http://www.fao.org/publications/card/en/c/01382d82-6356-478e-9f42-d85ccdfd7a7d/ (accessed on 5 August 2016).
- Collect Earth Installation File for Windows Operating Systems; Collect Earth Installation File for Mac Operating Systems; Collect Earth-Papua New Guinea Customization (CEP) File. Available online: http://www.openforis.org/tools/collect-earth.html (accessed on 27 September 2016).
Attributes | Purpose | Type | Main Satellite Imagery Archives | ||||||||||||||
LULC (Static) Assessment | LULC Change Assessment | Map Validation | Assessment of Other Land Characteristics | Browser-Based | Desktop Client | Google Maps | Google Street View | Google Earth (GE) | Bing Maps | Digital Globe | GE Engine | ||||||
Software | Collect Earth | X | X | X | X | X | X | X | X | X | X | ||||||
GeoWiki [14] | X | X | X | X | |||||||||||||
GLFC LT [15] | X | X | X | X | X | ||||||||||||
Laco-Wiki [16] | X | X | X | X | |||||||||||||
SkyTruth [19] | X | X | X | ||||||||||||||
TimeSync [17] | X | X | X | X | X | ||||||||||||
Tomnod [20] | X | X | X | ||||||||||||||
VIEW-IT [18] | X | X | X | X | |||||||||||||
Attributes | Options for Accessing Supplementary Imagery Archives | Land Assessment and Map Validation Methods and Tools | Flexibility | ||||||||||||||
GE Web Mapping Service | Other Spatial Data Import | ArcGIS Server Data Import | Visual Interpretation of Satellite Imagery | Visual Interpretation of Vegetation Indices | Visual Interpretation of Ground-Based Photos | Spatial Reference Data Accessible | Error or Uncertainty Estimation Tools | User-Generated Sampling Design | User-Generated Data Collection Form | ||||||||
Software | Collect Earth | X | X | X | X | X | X | X | X | X | |||||||
GeoWiki [14] | X | X | X | X | |||||||||||||
GLFC LT [15] | X | X | X | X | X | X | X | X | |||||||||
Laco-Wiki [16] | X | X | X | X | X | X | X | X | |||||||||
SkyTruth [19] | X | ||||||||||||||||
TimeSync [17] | X | X | X | X | X | X | X | ||||||||||
Tomnod [20] | X | ||||||||||||||||
VIEW-IT [18] | X | X | X | X | X | X | X | X |
Collect Earth Application | Scale | User | Language | Sample Output Data | Purpose | |
---|---|---|---|---|---|---|
1. | Land use, land use change and forestry | National; sub-national | Government forestry departments in 18 countries, with support 1 | English, Spanish, French, Thai, Lao, Russian | Land use composition, land use change matrix, deforestation metrics | REDD+, land use planning, activity data for greenhouse gas inventory, UNFCCC reporting |
2. | Drylands assessment | Global | Governments, non-governmental organizations, academics and students in 12 countries 2 | English, Spanish, French | Forest area and tree presence by aridity zone, percentage of vegetation cover, desertification vs. greening trend | Sustainable land management planning, forest and landscape restoration, UNCCD reporting |
3. | Forest resources assessment | National | Tunisia | French | Forest area and other forest attributes as defined by FAO FRA 2015 | Reporting to FAO’s Forest Resources Assessment |
4. | National forest inventory | National | Papua New Guinea Forest Authority 3 | English | Forest extent, area of forest strata, accessibility of potential field plots | National forest inventory, field work planning, forest reference level |
5. | Validation of land cover maps | National | Zambia Environmental Management Agency | English | Land cover data assessed with high resolution imagery | Validating land cover maps generated with coarser resolution data |
6. | Land cover mapping | National, sub-national | Zambia, Ethiopia | English | Land cover quantified at each plot | Training data for a supervised classification |
7. | Earthquake response mapping | Sub-national | FAO/Nepal | English | Identifying and quantifying damaged structures and infrastructure | Supporting disaster assessment and the logistics of humanitarian relief work |
8. | Cropland irrigation monitoring | Sub-national | World Bank/India | English | Assessment of single and multiple cropping systems, number of harvests/year | Project monitoring and evaluation, agricultural development |
9. | Pastures and grazing | National | Government rangeland departments in Central Asia 4 | Russian | Grassland productivity and land use conversions | Livestock and rangeland management |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. https://doi.org/10.3390/rs8100807
Bey A, Sánchez-Paus Díaz A, Maniatis D, Marchi G, Mollicone D, Ricci S, Bastin J-F, Moore R, Federici S, Rezende M, et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing. 2016; 8(10):807. https://doi.org/10.3390/rs8100807
Chicago/Turabian StyleBey, Adia, Alfonso Sánchez-Paus Díaz, Danae Maniatis, Giulio Marchi, Danilo Mollicone, Stefano Ricci, Jean-François Bastin, Rebecca Moore, Sandro Federici, Marcelo Rezende, and et al. 2016. "Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation" Remote Sensing 8, no. 10: 807. https://doi.org/10.3390/rs8100807
APA StyleBey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J. -F., Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., & Miceli, G. (2016). Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing, 8(10), 807. https://doi.org/10.3390/rs8100807