Risk of Metabolic Syndrome among Middle-Aged Koreans from Rural and Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Dietary Assessment
2.3. Definition of Metabolic Syndrome
2.4. Other Measurements
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Study Population
3.2. Nutrients Intake of Study Population
3.3. Urban-Rural Comparision of Metabolic Syndrom
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Yoon, J.W.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea. The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstorm, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.J.; Coyne, T.; McClinrock, C. Dietary patterns and metabolic syndrome-a review of epidemiologic evidence. Asia Pac. J. Clin. Nutr. 2006, 15, 134–142. [Google Scholar] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome. The Atherosclerosis risk in communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Moon, S.; Popkin, B.M. The nutrition transition in South Korea. Am. J. Clin. Nutr. 2000, 71, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, P.; Friel, S. Processed foods and the nutrition transition: evidence from Asia. Obes. Rev. 2014, 15, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A.; Drèze, J. Food and nutrition in India: facts and interpretations. Econ. Polit. Wkly. 2009, 44, 42–65. [Google Scholar]
- Lim, S.; Jang, H.C.; Lee, H.K.; Kimm, K.C.; Park, C.; Cho, N.H. A rural-urban comparison of the characteristics of the metabolic syndrome by gender in Korea: The Korean Health and Genome Study (KHGS). J. Endocrinol. Investig. 2006, 29, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Seo, S.; Kwon, O.; Cho, M.S. Comparison of dietary behavior, food intake, and satisfaction with food-related life between the elderly living in urban and rural areas. Korean J. Nutr. 2012, 45, 252–263. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G.; The KoGES Group. Cohort profile: The Korea genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; WHO Western Pacific Region: Geneva, Switzerland, 2000. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Lee, J.A.; Park, J.H.; Kim, M. Social and physical environments and self-rated health in urban and rural communities in Korea. Int. J. Environ. Res. Public Health 2015, 12, 14329–14341. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolism Syndrome. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html (accessed on 12 April 2018).
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hill, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systemic review. BMC Public Health 2017, 17, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Chapel, J.M.; Ritchey, M.D.; Zhang, D.; Wang, G. Prevalence of medical costs of chronic diseases among adult Medicaid beneficiaries. Am. J. Prev. Med. 2017, 53, S143–S154. [Google Scholar] [CrossRef] [PubMed]
- Shin, J. Amenable Mortality and Regional Distribution of Medical Expenditure. 2014. Available online: http://repository.kihasa.re.kr:8080/handle/201002/13128 (accessed on 15 June 2018).
- Li, W.; Song, F.; Wang, X.; Wang, L.; Wang, D.; Yin, X.; Cao, S.; Gong, Y.; Yue, W.; Yan, F.; et al. Prevalence of metabolic syndrome among middle-aged and elderly adults in China: current status and temporal trends. Ann. Med. 2018, 50, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Dallongeville, J.; Cottel, D.; Ferrières, J.; Arveiler, D.; Bingham, A.; Ruidavets, J.B.; Haas, B.; Ducimentière, P.; Amouyel, P. Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 2005, 28, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Wamala, S.P.; Lynch, J.; Horsten, M.; Mittleman, M.A.; Schenck-Gustafddon, K.; Orth-Gomér, K. Education and the metabolic syndrome in women. Diabetes Care 1999, 22, 1999–2003. [Google Scholar] [CrossRef] [PubMed]
- Wareham, N.J.; Hennings, S.J.; Byrne, C.D.; Hales, C.N.; Prentice, A.M.; Day, N.E. A quantitative analysis of the relationship between habitual energy expenditure, fitness and the metabolic cardiovascular syndrome. Br. J. Nutr. 1998, 80, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennie, K.L.; McCarthy, N.; Yazdgerdi, S.; Marmot, M.; Brunner, E. Assocication of the metabolic syndrome with both vigorous and moderate physical activity. Int. J. Epidemiol. 2003, 32, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Feskens, E.J.; Bowles, C.H.; Kromhout, D. Carbohydrate intake and body mass index in relation to the risk of glucose intolerance in an elderly population. Am. J. Clin. Nutr. 1991, 54, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Du, S.; Chen, Y.; Zhang, S.; Zhang, W.; Na, G.; Li, Y.; Sun, C. High carbohydrate intake from starchy foods is positively associated with metabolic disorders: A Cohort Study from a Chinese population. Sci. Rep. 2015, 5, 16919. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S.; Katan, M.B. Diet, nutrition and the prevention of hypertension and cardiovascular disease. Public Health Nutr. 2004, 7, 167–186. [Google Scholar] [CrossRef]
- Baudrand, R.; Campino, C.; Carvajal, C.A.; Olivier, O.; Guidi, G.; Faccini, G.; Vöhringer, P.A.; Cerda, J.; Owen, G.; Kaiergis, A.M.; et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin. Endocrinol. 2014, 80, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Kim, Y. A study on the characteristics of nutrient intake in metabolic syndrome subjects. Korean J. Nutr. 2008, 41, 510–517. [Google Scholar]
- Yon, M.; Lee, Y.; Kim, D.; Lee, J.; Koh, E.; Nam, E.; Shin, H.; Kang, B.; Kim, J.W.; Heo, S.; et al. Major sources of sodium intake of the Korean population at prepared dish level-based on the KNHANES 2008 & 2009. Korean J. Commun. Nutr. 2011, 16, 473–487. [Google Scholar]
- Song, Y.; Joung, H. A traditional Korean dietary pattern and metabolic syndrome abnormalities. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Liu, Y.; Ma, J.; Wang, W.; Yang, G.; Caballero, B. An urban-rural comparison of the prevalence of the metabolic syndrome in Eastern China. Public Health Nutr. 2007, 10, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, D.; Chaturvedi, V.; Shah, P.; Manhapra, A.; Jeemon, P.; Shah, B.; Reddy, K.S. Differences in the prevalence of metabolic syndrome in urban and rural India: a problem of urbanization. Chronic Ill 2007, 3, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Mohamud, W.N.; Ismail, A.A.; Khir, A.S.; Ismail, I.S.; Musa, K.I.; Kadir, K.A.; Kamaruddin, N.A.; Yaacob, N.A.; Mustafa, N.; Ali, O.; et al. Prevalence of metabolic syndrome and its risk factors in adult Malaysians: Results of a nationwide survey. Diabetes Res. Clin. Pract. 2012, 96, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Zyl, S.; Merwe, L.J.; Walsh, C.M.; Groenewald, A.J.; Rooyen, F.C. Risk-factor profiles for chronic diseases of lifestyle and metabolic syndrome in an urban and rural setting in South Africa. Afr. J. Prim. Health Care. Fam. Med. 2012, 4, 1–10. [Google Scholar]
- Khang, Y.H. Different longevity by village. In Chasing Health Inequality in Korea: A Report for Making It Social Issue; Lee, C.G., Ed.; Publishing Company Meem: Seoul, Korea, 2007; pp. 67–79. [Google Scholar]
Men (n = 53,704) | Women (n = 107,622) | Overall (n = 161,326) | |||||||
---|---|---|---|---|---|---|---|---|---|
Urban (n = 46,680) | Rural (n = 7024) | p-Value | Urban (n = 95,457) | Rural (n = 12,165) | p-Value | Urban (n = 142,137) | Rural (n = 19,189) | p-Value | |
Age (year) | 51.68 ± 0.03 | 54.53 ± 0.08 | <0.0001 | 51.17 ± 0.02 | 53.65 ± 0.06 | <0.0001 | 51.34 ± 0.02 | 53.95 ± 0.05 | <0.0001 |
40–49 | 18,568 (39.78) | 1749 (24.90) | <0.0001 | 39,806 (41.70) | 3612 (29.69) | <0.0001 | 58,374 (41.07) | 5361 (27.94) | <0.0001 |
50–64 | 28,112 (60.22 ) | 5275 (75.10 ) | <0.0001 | 55,651 (58.30) | 8553 (70.31) | <0.0001 | 83,763 (58.93) | 131,828 (72.06) | <0.0001 |
Education level | <0.0001 | <0.0001 | <0.0001 | ||||||
≤Elementary | 4051 (8.68) | 2493 (35.49) | 17,112 (17.93) | 6761 (55.58) | 21,163 (14.89) | 9254 (48.23) | |||
≤High school | 21,520 (46.10) | 3470 (49.40) | 54,381 (56.97) | 4616 (37.94) | 75,901 (53.40) | 8086 (42.14) | |||
≤University | 16,275 (34.87) | 822 (11.70) | 20,219 (21.18) | 697 (5.73) | 36,494 (25.68) | 1519 (7.92) | |||
>University | 4325 (9.27) | 216 (3.08) | 2613 (2.74) | 60 (0.49) | 6938 (4.88) | 276 (1.44) | |||
Unknown | 509 (1.09) | 23 (0.33) | 1132 (1.19) | 31 (0.25) | 1641 (1.15) | 54 (0.28) | |||
Income (USD/month) | <0.0001 | <0.0001 | <0.0001 | ||||||
<1000 | 2275 (4.87) | 1615 (22.99) | 8484 (8.89) | 3423 (28.14) | 10,759 (7.57) | 5038 (26.25) | |||
1000–2000 | 7074 (15.15) | 1495 (21.28) | 16,640 (17.43) | 145 (15.99) | 23,714 (16.68) | 3440 (17.93) | |||
2000–4000 | 19,177 (41.08) | 1180 (16.80) | 35,205 (36.88) | 1693 (13.92) | 54,382 (38.26) | 2873 (14.97) | |||
>4000 | 12,601 (26.99 ) | 365 (5.20) | 19,946 (20.90) | 507 (4.17) | 32,547 (22.90) | 872 (4.54) | |||
Unknown | 5553 (11.90) | 2369 (33.73) | 15,182 (15.90) | 4597 (37.79) | 20,735 (14.59) | 6966 (36.30) | |||
Marital status | 0.176 | <0.0001 | 0.657 | ||||||
Married | 41,802 (89.55) | 6299 (89.68) | 79,355 (83.13) | 10,061 (82.70) | 121,157 (85.24) | 16,360 (85.26) | |||
Others | 3043 (6.52) | 478(6.81) | 12,018 (12.59) | 1672 (13.74) | 15,061 (10.60) | 2150 (11.20) | |||
Unknown | 1835 (3.93) | 247(3.52) | 4084 (4.28) | 432 (3.55) | 5919 (4.16) | 679 (3.54) | |||
Smoking status | <0.0001 | <0.0001 | 0.104 | ||||||
Past/never | 30,757 (65.89) | 4447 (63.32) | 92,770 (97.19) | 11,919 (97.98) | 123,527 (86.91) | 16,366 (85.29) | |||
Current | 15,820 (33.89) | 2572 (36.62) | 2323 (2.43) | 227 (1.57) | 18,143 (12.76) | 2799 (14.59) | |||
Unknown | 103 (0.22 ) | 5(0.07) | 364 (0.38) | 19 (0.16) | 467 (0.33) | 24 (0.13) | |||
Alcohol intake | <0.0001 | <0.0001 | <0.0001 | ||||||
Past/never | 11,801 (25.28) | 2269 (32.30 ) | 63,785 (66.82) | 8461 (69.55) | 75,586 (53.18) | 10,730 (55.92) | |||
Current | 34,800 (74.55) | 4747 (67.58) | 31,345 (32.84) | 3667 (30.14) | 66,145 (46.54) | 8414 (43.85) | |||
Unknown | 79 (0.17) | 8 (0.11) | 327 (0.34) | 37 (0.16) | 406 (0.29) | 45 (0.23) | |||
Regular exercise | <0.0001 | <0.0001 | <0.0001 | ||||||
No | 20,463 (43.84) | 4642 (66.09) | 47,008 (49.25) | 7941 (65.28) | 67,471 (47.47) | 12,583 (65.57) | |||
Yes | 26,140 (56.00) | 2363 (33.64 ) | 48,264 (50.56) | 4206 (34.57) | 74,404 (52.35) | 6569 (34.23) | |||
Unknown | 77 (0.16) | 19 (0.27) | 185 (0.19) | 18 (0.15) | 262 (0.18) | 37 (0.19) | |||
Disease History | |||||||||
CVD | 10,441 (22.37) | 1736 (24.72) | <0.0001 | 15,931 (16.69) | 2897 (23.81) | <0.0001 | 26,372 (18.55) | 4633 (24.14) | <0.0001 |
Cancer | 838 (1.80) | 110 (1.57) | <0.0001 | 3294 (3.45) | 281 (2.31) | <0.0001 | 4132 (2.91) | 391 (2.04) | <0.0001 |
Men (n = 53,704) | Women (n = 107,622) | Overall (n = 161,326) | |||||||
---|---|---|---|---|---|---|---|---|---|
Urban (n = 46,680) | Rural (n = 7024) | p-Value | Urban (n = 95,457) | Rural (n = 12,165) | p-Value | Urban (n = 142,137) | Rural (n = 19,189) | p-Value | |
Height (cm) | 169.02 ± 0.03 | 166.68 ± 0.07 | <0.0001 | 156.60 ± 0.02 | 154.27 ± 0.05 | <0.0001 | 160.74 ± 0.01 | 158.40 ± 0.04 | <0.0001 |
Weight (kg) | 70.02 ± 0.04 | 68.07 ± 0.11 | <0.0001 | 57.89 ± 0.03 | 58.85 ± 0.08 | <0.0001 | 61.93 ± 0.02 | 61.84 ± 0.06 | 0.146 |
BMI (kg/m2) | 24.48 ± 0.01 | 24.46 ± 0.03 | 0.651 | 23.61 ± 0.00 | 24.72 ± 0.03 | <0.0001 | 23.90 ± 0.01 | 24.60 ± 0.02 | <0.0001 |
<25 | 27,586 (59.10) | 4080 (58.09) | <0.0001 | 68,677 (71.95) | 6978 (57.36) | <0.0001 | 96,263 (67.73) | 11,058 (57.63) | <0.0001 |
≥25 | 19,094 (40.90) | 2944 (41.91) | 26,780 (28.05) | 5187 (42.64) | 45,874 (32.27) | 8131 (42.37) | |||
WC (cm) | 85.78 ± 0.03 | 86.34 ± 0.09 | <0.0001 | 78.20 ± 0.03 | 82.61 ± 0.08 | <0.0001 | 80.72 ± 0.02 | 83.74 ± 0.06 | <0.0001 |
HC (cm) | 96.14 ± 0.03 | 94.78 ± 0.07 | <0.0001 | 93.56 ± 0.02 | 94.26 ± 0.06 | <0.0001 | 94.42 ± 0.02 | 94.37 ± 0.04 | 0.332 |
Waist-hip ratio | 0.89 ± 0.00 | 0.91 ± 0.00 | <0.0001 | 0.84 ± 0.00 | 0.88 ± 0.00 | <0.0001 | 0.85 ± 0.00 | 0.89 ± 0.00 | <0.0001 |
SBP (mmHg) | 125.34 ± 0.07 | 126.84 ± 0.20 | <0.0001 | 120.22 ± 0.05 | 123.75 ± 0.16 | <0.0001 | 121.92 ± 0.04 | 124.72 ± 0.11 | <0.0001 |
DBP (mmHg) | 78.81 ± 0.05 | 82.27 ± 0.13 | <0.0001 | 74.64 ± 0.03 | 78.53 ± 0.10 | <0.0001 | 76.03 ± 0.03 | 79.76 ± 0.07 | <0.0001 |
FBG (mg/dL) | 98.87 ± 0.11 | 102.49 ± 0.34 | <0.0001 | 92.57 ± 0.06 | 95.54 ± 0.19 | <0.0001 | 94.67 ± 0.06 | 97.87 ± 0.15 | <0.0001 |
Triglyceride (mg/dL) | 154.74 ± 0.52 | 173.27 ± 1.53 | <0.0001 | 112.03 ± 0.24 | 135.98 ± 0.77 | <0.0001 | 126.42 ± 0.24 | 148.25 ± 0.65 | <0.0001 |
Total cholesterol (mg/dL) | 194.25 ± 0.16 | 195.03 ± 0.43 | 0.088 | 199.28 ± 0.12 | 202.78 ± 0.34 | <0.0001 | 197.60 ± 0.09 | 200.12 ± 0.26 | <0.0001 |
HDL-cholesterol (mg/dL) | 49.63 ± 0.05 | 43.40 ± 0.13 | <0.0001 | 56.56 ± 0.04 | 46.70 ± 0.10 | <0.0001 | 54.25 ± 0.03 | 45.71 ± 0.09 | <0.0001 |
LDL-cholesterol (mg/dL) | 115.25 ± 0.15 | 119.47 ± 0.39 | <0.0001 | 120.61 ± 0.10 | 129.51 ± 0.30 | <0.0001 | 118.86 ± 0.08 | 126.10 ± 0.23 | <0.0001 |
LDL/HDL | 2.42 ± 0.00 | 2.87 ± 0.01 | <0.0001 | 2.23 ± 0.00 | 2.88 ± 0.01 | <0.0001 | 2.30 ± 0.00 | 2.88 ± 0.01 | <0.0001 |
Men (n = 53,704) | Women (n = 107,622) | Overall (n = 161,326) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban (n = 46,680) | Rural (n = 7024) | p† | p§ | Urban (n = 95,457) | Rural (n = 12,165) | p† | p§ | Urban (n = 142,137) | Rural (n = 19,189) | p† | p§ | |
Total energy intake (kcal/day) | 1866.43 ± 2.32 | 1845.07 ± 6.17 | 0.001 | 1692.98 ± 1.61 | 1622.04 ± 4.29 | <0.0001 | 1750.75 ± 1.32 | 1697.72 ± 3.59 | <0.0001 | |||
Carbohydrate (g/1000 kcal) | 177.17 ± 0.08 | 182.10 ± 0.20 | <0.0001 | <0.0001 | 179.72 ± 0.06 | 187.44 ± 0.15 | <0.0001 | <0.0001 | 178.87 ± 0.05 | 185.58 ± 0.12 | <0.0001 | <0.0001 |
Protein (g/1000 kcal) | 33.51 ± 0.03 | 31.70 ± 0.07 | <0.0001 | <0.0001 | 33.72 ± 0.02 | 31.30 ± 0.06 | <0.0001 | <0.0001 | 33.65 ± 0.02 | 31.45 ± 0.04 | <0.0001 | <0.0001 |
Fat (g/1000 kcal) | 16.09 ± 0.03 | 14.39 ± 0.07 | <0.0001 | <0.0001 | 15.26 ± 0.02 | 12.45 ± 0.05 | <0.0001 | <0.0001 | 15.54 ± 0.02 | 13.13 ± 0.04 | <0.0001 | <0.0001 |
CHO% of energy | 71.80 ± 0.03 | 74.01 ± 0.09 | <0.0001 | <0.0001 | 72.57 ± 0.02 | 76.00 ± 0.06 | <0.0001 | <0.0001 | 72.32 ± 0.02 | 75.31 ± 0.05 | <0.0001 | <0.0001 |
Protein% of energy | 13.56 ± 0.01 | 12.87 ± 0.03 | <0.0001 | <0.0001 | 13.59 ± 0.01 | 12.67 ± 0.02 | <0.0001 | <0.0001 | 13.58 ± 0.01 | 12.74 ± 0.02 | <0.0001 | <0.0001 |
Fat% of energy | 14.64 ± 0.02 | 13.13 ± 0.06 | <0.0001 | <0.0001 | 13.83 ± 0.02 | 11.32 ± 0.05 | <0.0001 | <0.0001 | 14.10 ± 0.01 | 11.95 ± 0.04 | <0.0001 | <0.0001 |
Calcium (mg/1000 kcal) | 223.09 ± 0.43 | 211.66 ± 1.15 | <0.0001 | <0.0001 | 268.86 ± 0.38 | 246.54 ± 1.07 | <0.0001 | <0.0001 | 253.63 ± 0.30 | 235.25 ± 0.80 | <0.0001 | <0.0001 |
Phosphorus (mg/1000 kcal) | 491.09 ± 0.41 | 476.52 ± 1.06 | <0.0001 | <0.0001 | 518.47 ± 0.34 | 495.83 ± 0.94 | <0.0001 | <0.0001 | 509.36 ± 0.26 | 489.64 ± 0.71 | <0.0001 | <0.0001 |
Iron (mg/1000 kcal) | 5.38 ± 0.01 | 5.00 ± 0.02 | <0.0001 | <0.0001 | 5.87 ± 0.01 | 5.34 ± 0.02 | <0.0001 | <0.0001 | 5.70 ± 0.00 | 5.23 ± 0.01 | <0.0001 | <0.0001 |
Potassium (mg/1000 kcal) | 1200.19 ± 1.69 | 1168.44 ± 4.53 | <0.0001 | <0.0001 | 1340.89 ± 1.43 | 1284.43 ± 4.22 | <0.0001 | <0.0001 | 1294.07 ± 1.12 | 1246.54 ± 3.04 | <0.0001 | <0.0001 |
Vitamin A (RE/1000 kcal) | 257.34 ± 0.68 | 241.31 ± 1.89 | <0.0001 | <0.0001 | 281.75 ± 0.54 | 257.76 ± 1.58 | <0.0001 | <0.0001 | 273.63 ± 0.43 | 252.52 ± 1.17 | <0.0001 | <0.0001 |
Vitamin B1 (mg/1000 kcal) | 0.58 ± 0.00 | 0.56 ± 0.00 | <0.0001 | <0.0001 | 0.57 ± 0.00 | 0.54 ± 0.00 | <0.0001 | <0.0001 | 0.57 ± 0.00 | 0.55 ± 0.00 | <0.0001 | <0.0001 |
Vitamin B2 (mg/1000 kcal) | 0.49 ± 0.00 | 0.46 ± 0.00 | <0.0001 | <0.0001 | 0.53± 0.00 | 0.48 ± 0.00 | <0.0001 | <0.0001 | 0.52 ± 0.00 | 0.47 ± 0.00 | <0.0001 | <0.0001 |
Niacin (mg/1000 kcal) | 8.26 ± 0.01 | 7.77 ± 0.02 | <0.0001 | <0.0001 | 8.29 ± 0.01 | 7.68 ± 0.02 | <0.0001 | <0.0001 | 8.28 ± 0.00 | 7.71 ± 0.01 | <0.0001 | <0.0001 |
Vitamin C (mg/1000 kcal) | 52.29 ± 0.12 | 50.31 ± 0.32 | <0.0001 | <0.0001 | 66.21 ± 0.11 | 63.41 ± 0.32 | <0.0001 | <0.0001 | 61.57 ± 0.09 | 59.07 ± 0.23 | <0.0001 | <0.0001 |
Zinc (μg/1000 kcal) | 4.50 ± 0.00 | 4.22 ± 0.01 | <0.0001 | <0.0001 | 4.53 ± 0.00 | 4.22 ± 0.01 | <0.0001 | <0.0001 | 4.52 ± 0.00 | 4.22 ± 0.01 | <0.0001 | <0.0001 |
Vitamin E (mg/1000 kcal) | 4.38 ± 0.01 | 4.08 ± 0.02 | <0.0001 | <0.0001 | 4.73 ± 0.01 | 4.38 ± 0.02 | <0.0001 | <0.0001 | 4.61 ± 0.00 | 4.28 ± 0.01 | <0.0001 | <0.0001 |
Sodium (mg/1000 kcal) | 1446.04 ± 3.12 | 1593.48 ± 9.92 | <0.0001 | <0.0001 | 1459.59 ± 2.37 | 1602.03 ± 7.85 | <0.0001 | <0.0001 | 1455.08 ± 1.94 | 1599.33 ± 5.28 | <0.0001 | <0.0001 |
Folate (μg/1000 kcal) | 114.04 ± 0.21 | 109.57 ± 0.57 | <0.0001 | <0.0001 | 129.83 ± 0.18 | 123.49 ± 0.50 | <0.0001 | <0.0001 | 124.58 ± 0.14 | 118.91 ± 0.38 | <0.0001 | <0.0001 |
Men (n = 53,704) | Women (n = 107,622) | Overall (n = 161,326) | |||||||
---|---|---|---|---|---|---|---|---|---|
Urban (n = 46,680) | Rural (n = 7024) | p-Value | Urban (n = 95,457) | Rural (n = 12,165) | p-Value | Urban (n = 142,137) | Rural (n = 19,189) | p-Value | |
Metabolic syndrome | |||||||||
Prevalence (n (%)) * | 12,217 (26.17) | 2684 (38.21) | <0.0001 | 19,803 (20.75) | 4951 (40.70) | <0.0001 | 32,020 (22.53) | 7635 (39.79) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 1.75 (1.66–1.84) | <0.0001 | Ref. | 2.62 (2.52–2.73) | <0.0001 | Ref. | 2.26 (2.19–2.33) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 1.68 (1.58–1.80) | <0.0001 | Ref. | 1.73 (1.65–1.81) | <0.0001 | Ref. | 1.65 (1.59–1.72) | <0.0001 |
Abdominal obesity | |||||||||
Prevalence (n (%)) | 13,849 (29.7) | 2353 (33.5) | <0.0001 | 38,904 (40.8) | 7566 (62.2) | <0.0001 | 52,753 (37.1) | 9919 (51.7) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 1.19 (1.13–1.26) | <0.0001 | Ref. | 2.39 (2.30–2.49) | <0.0001 | Ref. | 1.87 (1.82–1.93) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 1.15 (1.08–1.22) | <0.0001 | Ref. | 1.63 (1.56–1.70) | <0.0001 | Ref. | 1.36 (1.32–1.41) | <0.0001 |
High blood pressure | |||||||||
Prevalence (n (%)) | 22,669 (48.6) | 3652 (52.0) | <0.0001 | 32,122 (33.7) | 5108 (42.0) | <0.0001 | 54,791 (38.6) | 8760 (45.7) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 1.15 (1.09–1.21) | <0.0001 | Ref. | 1.43 (1.37–1.48) | <0.0001 | Ref. | 1.32 (1.28–1.36) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 1.00 (0.94–1.06) | 0.998 | Ref. | 0.98 (0.94–1.03) | 0.421 | Ref. | 0.97 (0.93–1.00) | 0.044 |
High triglyceride | |||||||||
Prevalence (n (%)) | 18,082 (38.7) | 3158 (45.0) | <0.0001 | 18,897 (19.8) | 3700 (30.4) | <0.0001 | 36,979 (26.0) | 6858 (35.7) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 1.29 (1.23–1.36) | <0.0001 | Ref. | 1.77 (1.70–1.85) | <0.0001 | Ref. | 1.56 (1.51–1.61) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 1.25 (1.18–1.33) | <0.0001 | Ref. | 1.28 (1.22–1.34) | <0.0001 | Ref. | 1.23 (1.18–1.27) | <0.0001 |
High blood glucose | |||||||||
Prevalence (n (%)) | 15,407 (33.0) | 2701 (38.5) | <0.0001 | 17,892 (18.7) | 2800 (23.0) | <0.0001 | 33,299 (23.4) | 5501 (28.7) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 1.27 (1.20–1.34) | <0.0001 | Ref. | 1.30 (1.24–1.36) | <0.0001 | Ref. | 1.28 (1.24–1.33) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 1.11 (1.05–1.18) | 0.000 | Ref. | 0.92 (0.88–0.97) | 0.002 | Ref. | 0.96 (0.95–1.02) | 0.478 |
Low HDL cholesterol | |||||||||
Prevalence (n (%)) | 8857 (19.0) | 2897 (41.2) | <0.0001 | 29,973 (31.4) | 7934 (65.2) | <0.0001 | 38,830 (27.3) | 10,831(56.4) | <0.0001 |
Model I (OR, 95% CI) | Ref. | 3.00 (2.84–3.16) | <0.0001 | Ref. | 4.10 (3.94–4.26) | <0.0001 | Ref. | 3.66 (3.55–3.78) | <0.0001 |
Model II (OR, 95% CI) | Ref. | 3.11 (2.92–3.31) | <0.0001 | Ref. | 3.44 (3.29–3.59) | <0.0001 | Ref. | 3.25 (3.14–3.37) | <0.0001 |
Quartile of Carbohydrate Consumption (g/Day) | p-Trend ‡ | Quartile of Sodium Consumption (mg/Day) | p-Trend ‡ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | |||
Men (n = 53,704) | ||||||||||
n | 9152 | 13,994 | 14,396 | 16,162 | 11,211 | 12,644 | 13,967 | 15,882 | ||
Median | 226.92 | 285.01 | 329.33 | 412.45 | 1142.02 | 1954.54 | 1748.86 | 4061.51 | ||
Model I | Ref. | 0.98 (0.92–1.04) | 1.01 (0.95–1.07) | 1.07 (1.01–1.13) | 0.003 | Ref. | 1.09 (1.03–1.15) | 1.13 (1.07–1.20) | 1.20 (1.14–1.27) | <0.0001 |
Model II | Ref. | 1.01 (0.94–1.08) | 1.05 (0.97–1.13) | 1.06 (0.95–1.18) | 0.281 | Ref. | 1.10 (1.03–1.17) | 1.13 (1.06–1.21) | 1.19 (1.11–1.28) | <0.0001 |
Women (n = 107,622) | ||||||||||
n | 31,179 | 26,338 | 25,936 | 24,169 | 29,120 | 27,688 | 26,365 | 24,449 | ||
Median | 211.04 | 284.55 | 329.58 | 404.83 | 1113.12 | 1940.32 | 2730.04 | 3999.38 | ||
Model I | Ref. | 1.21 (1.17–1.26) | 1.14 (1.09–1.19) | 1.09 (1.05–1.14) | <0.0001 | Ref. | 1.02 (0.98–1.06) | 1.06 (1.02–1.10) | 1.14 (1.10–1.19) | <0.0001 |
Model II | Ref. | 1.21 (1.15–1.28) | 1.25 (1.17–1.33) | 1.37 (1.25–1.50) | <0.0001 | Ref. | 1.03 (0.98–1.08) | 1.05 (1.00–1.10) | 1.09 (1.03–1.14) | 0.0004 |
Overall (n = 161,326) | ||||||||||
n | 40,331 | 40,332 | 40,332 | 40,331 | 40,331 | 40,332 | 40,332 | 40,331 | ||
Median | 215.03 | 284.72 | 329.48 | 407.65 | 1121.41 | 1944.78 | 2736.81 | 4024.33 | ||
Model I | Ref. | 1.14 (1.10–1.17) | 1.10 (1.07–1.14) | 1.10 (1.06–1.14) | <0.0001 | Ref. | 1.04 (1.01–1.08) | 1.08 (1.05–1.12) | 1.16 (1.12–1.20) | <0.0001 |
Model II | Ref. | 1.14 (1.09–1.18) | 1.16 (1.11–1.22) | 1.23 (1.15–1.32) | <0.0001 | Ref. | 1.05 (1.01–1.09) | 1.07 (1.03–1.11) | 1.11 (1.07–1.16) | <0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Shin, Y.; Kim, Y. Risk of Metabolic Syndrome among Middle-Aged Koreans from Rural and Urban Areas. Nutrients 2018, 10, 859. https://doi.org/10.3390/nu10070859
Lee S, Shin Y, Kim Y. Risk of Metabolic Syndrome among Middle-Aged Koreans from Rural and Urban Areas. Nutrients. 2018; 10(7):859. https://doi.org/10.3390/nu10070859
Chicago/Turabian StyleLee, Seohyun, Yoonjin Shin, and Yangha Kim. 2018. "Risk of Metabolic Syndrome among Middle-Aged Koreans from Rural and Urban Areas" Nutrients 10, no. 7: 859. https://doi.org/10.3390/nu10070859
APA StyleLee, S., Shin, Y., & Kim, Y. (2018). Risk of Metabolic Syndrome among Middle-Aged Koreans from Rural and Urban Areas. Nutrients, 10(7), 859. https://doi.org/10.3390/nu10070859