Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Socio-Demographic and Clinical Variables
2.3. Genetic Variables
2.3.1. DNA Isolation
2.3.2. Genotyping and Quality Control
2.3.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Genotype Distribution
3.3. Influence of Gene Polymorphisms on the Risk of Asthma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padem, N.; Saltoun, C. Classification of Asthma. Allergy Asthma Proc. 2019, 40, 385–388. [Google Scholar] [CrossRef]
- Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.; et al. Global, Regional, and National Deaths, Prevalence, Disability-Adjusted Life Years, and Years Lived with Disability for Chronic Obstructive Pulmonary Disease and Asthma, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef]
- Stern, J.; Pier, J.; Litonjua, A.A. Asthma Epidemiology and Risk Factors. Semin. Immunopathol. 2020, 42, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Vanijcharoenkarn, K.; Shih, J.A.; Lee, F.E.-H. Epidemiology and Risk Factors for Asthma. Respir. Med. 2019, 149, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Luzán 5 Health Consulting, S.A. Gema 5.2. Guía Española Para el Manejo del Asma. Madrid, Spain. 2020. Available online: https://www.todostuslibros.com/libros/gema-5-0-guia-espanola-para-el-manejo-del-asma_978-84-17372-97-2 (accessed on 2 January 2023).
- Han, Y.-Y.; Forno, E.; Celedón, J.C. Vitamin D Insufficiency and Asthma in a US Nationwide Study. J. Allergy Clin. Immunol. Pract. 2017, 5, 790–796.e1. [Google Scholar] [CrossRef]
- Li, F.; Jiang, L.; Willis-Owen, S.A.; Zhang, Y.; Gao, J. Vitamin D Binding Protein Variants Associate with Asthma Susceptibility in the Chinese Han Population. BMC Med. Genet. 2011, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.C.; Agrawal, D.K. Vitamin D and Bronchial Asthma: An Overview of Data From the Past 5 Years. Clin. Ther. 2017, 39, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.J.; O’Garra, A. 1α,25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4+ T Cells to Enhance the Development of Th2 Cells. J. Immunol. 2001, 167, 4974–4980. [Google Scholar] [CrossRef] [PubMed]
- Jurutka, P.W.; Whitfield, G.K.; Hsieh, J.C.; Thompson, P.D.; Haussler, C.A.; Haussler, M.R. Molecular Nature of the Vitamin D Receptor and Its Role in Regulation of Gene Expression. Rev. Endocr. Metab. Disord. 2001, 2, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Pineda Lancheros, L.E.; Rojo Tolosa, S.; Gálvez Navas, J.M.; Martínez Martínez, F.; Sánchez Martín, A.; Jiménez Morales, A.; Pérez Ramírez, C. Effect of Single Nucleotide Polymorphisms in the Vitamin D Metabolic Pathway on Susceptibility to Non-Small-Cell Lung Cancer. Nutrients 2022, 14, 4668. [Google Scholar] [CrossRef]
- González Rojo, P.; Pérez Ramírez, C.; Gálvez Navas, J.M.; Pineda Lancheros, L.E.; Rojo Tolosa, S.; Ramírez Tortosa, M.C.; Jiménez Morales, A. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 8686. [Google Scholar] [CrossRef]
- Díez, B.C.; Pérez-Ramírez, C.; del Mar Maldonado-Montoro, M.; Carrasco-Campos, M.I.; Martín, A.S.; Lancheros, L.E.P.; Martínez Martínez, F.; Calleja-Hernández, M.A.; Ramírez-Tortosa, M.C.; Jiménez-Morales, A. Association between polymorphisms in the vitamin D receptor and susceptibility to multiple sclerosis. Pharm. Genom. 2021, 31, 40–47. [Google Scholar] [CrossRef]
- Márquez-Pete, N.; Pérez-Ramírez, C.; Maldonado Montoro, M.D.M.; Martínez-Martínez, F.; Fernández-Llimos, F.; Sánchez-Pozo, A.; Ramírez-Tortosa, M.C.; Jiménez-Morales, A. Association of Vitamin D Receptor Gene Polymorphisms with Rheumatoid Arthritis. 2020. Available online: https://www.archivesofmedicalscience.com/Association-of-vitamin-D-receptor-gene-polymorphisms-nwith-rheumatoid-arthritis,116606,0,2.html (accessed on 2 January 2023).
- Bai, Y.H.; Lu, H.; Hong, D.; Lin, C.C.; Yu, Z.; Chen, B.C. Vitamin D Receptor Gene Polymorphisms and Colorectal Cancer Risk: A Systematic Meta-Analysis. World J. Gastroenterol. 2012, 18, 1672–1679. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Zhang, L.; Chen, S.-Y.; Yang, G.-J.; Huang, X.-L.; Duan, Y.; Yang, L.-J.; Ye, D.-Q.; Wang, J. Association between VDR Polymorphisms and Multiple Sclerosis: Systematic Review and Updated Meta-Analysis of Case-Control Studies. Neurol. Sci. 2018, 39, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.-I.; Kesterson, R.A.; Yamamoto, H.; Taketani, Y.; Nishiwaki, E.; Tatsumi, S.; Inoue, Y.; Morita, K.; Takeda, E.; Pike, J.W. Structural Organization of the Human Vitamin D Receptor Chromosomal Gene and Its Promoter. Mol. Endocrinol. 1997, 11, 1165–1179. [Google Scholar] [CrossRef] [PubMed]
- Kerr Whitfield, G.; Remus, L.S.; Jurutka, P.W.; Zitzer, H.; Oza, A.K.; Dang, H.T.L.; Haussler, C.A.; Galligan, M.A.; Thatcher, M.L.; Dominguez, C.E.; et al. Functionally Relevant Polymorphisms in the Human Nuclear Vitamin D Receptor Gene. Mol. Cell. Endocrinol. 2001, 177, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Pulito, C.; Terrenato, I.; Di Benedetto, A.; Korita, E.; Goeman, F.; Sacconi, A.; Biagioni, F.; Blandino, G.; Strano, S.; Muti, P.; et al. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas. PLoS ONE 2015, 10, e0124894. [Google Scholar] [CrossRef] [PubMed]
- Rochel, N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients 2022, 14, 2847. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Scazzone, C.; Ragonese, P.; Salemi, G.; Lo Sasso, B.; Schillaci, R.; Musso, G.; Bellia, C.; Ciaccio, M. Vitamin D Receptor Polymorphisms and 25-Hydroxyvitamin D in a Group of Sicilian Multiple Sclerosis Patients. Neurol. Sci. 2016, 37, 261–267. [Google Scholar] [CrossRef]
- Cheng, J.B.; Levine, M.A.; Bell, N.H.; Mangelsdorf, D.J.; Russell, D.W. Genetic Evidence That the Human CYP2R1 Enzyme Is a Key Vitamin D 25-Hydroxylase. Proc. Natl. Acad. Sci. USA 2004, 101, 7711–7715. [Google Scholar] [CrossRef] [Green Version]
- Pineda Lancheros, L.E.; Pérez Ramírez, C.; Sánchez Martín, A.; Gálvez Navas, J.M.; Martínez Martínez, F.; Ramírez Tortosa, M.D.C.; Jiménez Morales, A. Impact of Genetic Polymorphisms on the Metabolic Pathway of Vitamin D and Survival in Non-Small Cell Lung Cancer. Nutrients 2021, 13, 3783. [Google Scholar] [CrossRef] [PubMed]
- Toledano, J.M.; Moreno-Fernandez, J.; Puche-Juarez, M.; Ochoa, J.J.; Diaz-Castro, J.; Toledano, J.M.; Moreno-Fernandez, J.; Puche-Juarez, M.; Ochoa, J.J.; Diaz-Castro, J. Implications of Vitamins in COVID-19 Prevention and Treatment through Immunomodulatory and Anti-Oxidative Mechanisms. Antioxidants 2021, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, K.I.; Kitanaka, S.; Sato, T.; Kobori, M.; Yanagisawa, J.; Kato, S. 25-Hydroxyvitamin D3 1alpha-Hydroxylase and Vitamin D Synthesis. Science 1997, 277, 1827–1830. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, Y.; Noshiro, M.; Okuda, K. Cloning and Expression of CDNA Encoding 25-Hydroxyvitamin D3 24-Hydroxylase. FEBS Lett. 1991, 278, 195–198. [Google Scholar] [CrossRef]
- Latacz, M.; Snarska, J.; Kostyra, E.; Fiedorowicz, E.; Savelkoul, H.F.J.; Grzybowski, R.; Cieślińska, A. Single Nucleotide Polymorphisms in 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase (CYP27B1) Gene: The Risk of Malignant Tumors and Other Chronic Diseases. Nutrients 2020, 12, 801. [Google Scholar] [CrossRef]
- Awasthi, N.; Awasthi, S.; Pandey, S.; Gupta, S. Association of Vitamin D Receptor Gene Polymorphisms in North Indian Children with Asthma: A Case-Control Study. Int. J. Mol. Epidemiol. Genet. 2021, 12, 24. [Google Scholar]
- Raby, B.A.; Lazarus, R.; Silverman, E.K.; Lake, S.; Lange, C.; Wjst, M.; Weiss, S.T. Association of Vitamin D Receptor Gene Polymorphisms with Childhood and Adult Asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 1057–1065. [Google Scholar] [CrossRef]
- Despotovic, M.; Jevtovic Stoimenov, T.; Stankovic, I.; Basic, J.; Pavlovic, D. Vitamin D Receptor Gene Polymorphisms in Serbian Patients With Bronchial Asthma: A Case-Control Study. J. Cell. Biochem. 2017, 118, 3986–3992. [Google Scholar] [CrossRef]
- Rodrigues Simões, T.M.; Da Silva, R.; Bianco, B.; Fonseca, F.L.A.; Solé, D.; Oselka Saccardo Sarni, R. Vitamin D Levels, Frequency of Vitamin D Receptor Gene Polymorphisms, and Associations with Overweight and Asthma in Brazilian Schoolchildren. Ann. Nutr. Metab. 2019, 75, 238–245. [Google Scholar] [CrossRef]
- Leiter, K.; Franks, K.; Borland, M.L.; Coleman, L.; Harris, L.; Le Souëf, P.N.; Laing, I.A. Vitamin D Receptor Polymorphisms Are Associated with Severity of Wheezing Illnesses and Asthma Exacerbations in Children. J. Steroid Biochem. Mol. Biol. 2020, 201, 105692. [Google Scholar] [CrossRef]
- Galvão, A.A.; De Araújo Sena, F.; Andrade Belitardo, E.M.M.D.; De Santana, M.B.R.; Costa, G.N.D.O.; Cruz, Á.A.; Barreto, M.L.; Costa, R.D.S.; Alcantara-Neves, N.M.; Figueiredo, C.A. Genetic Polymorphisms in Vitamin D Pathway Influence 25(OH)D Levels and Are Associated with Atopy and Asthma. Allergy Asthma. Clin. Immunol. 2020, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Bossé, Y.; Lemire, M.; Poon, A.H.; Daley, D.; He, J.Q.; Sandford, A.; White, J.H.; James, A.L.; Musk, A.W.; Palmer, L.J.; et al. Asthma and Genes Encoding Components of the Vitamin D Pathway. Respir. Res. 2009, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Saadi, A.; Gao, G.; Li, H.; Wei, C.; Gong, Y.; Liu, Q. Association Study between Vitamin D Receptor Gene Polymorphisms and Asthma in the Chinese Han Population: A Case-Control Study. BMC Med. Genet. 2009, 10, 71. [Google Scholar] [CrossRef]
- Wjst, M. Variants in the Vitamin D Receptor Gene and Asthma. BMC Genet. 2005, 6, 2. [Google Scholar] [CrossRef]
- Nasiri-Kalmarzi, R.; Abdi, M.; Hosseini, J.; Tavana, S.; Mokarizadeh, A.; Rahbari, R. Association of Vitamin D Genetic Pathway with Asthma Susceptibility in the Kurdish Population. J. Clin. Lab. Anal. 2020, 34, e23039. [Google Scholar] [CrossRef]
- Rubio Hererra, M.A.; Salas-Salvadó, J.; Barbany, M.; Moreno, B.; Aranceta, J.; Bellido, D.; Blay, V.; Carraro, R.; Formiguera, X.; Foz, M.; et al. Consenso SEEDO 2007 Para La Evaluación Del Sobrepeso y La Obesidad y El Establecimiento de Criterios de Intervención Terapéutica. Med. Clin. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- GINA. Global Iniciative for Asthma Management and Prevention (GINA 2019); GINA: Fontana, WI, USA, 2019. [Google Scholar]
- Randolph, J.J.; Falbe, K.; Manuel, A.K.; Balloun, J.L. A Step-by-Step Guide to Propensity Score Matching in R. Pract. Assess. Res. Eval. 2019, 19, 18. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Team R.C. R: A Language and Environment for Statistical Computing 4.0.2; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminati, M.; Pham, D.L.; Bagnasco, D.; Canonica, G.W. Type 2 Immunity in Asthma. World Allergy Organ. J. 2018, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Ashok, N.; Kirubakaran, R.; Saraswathy, R. Association of Vitamin D Gene Polymorphisms in Children with Asthma—A Systematic Review. Heliyon 2020, 6, e04795. [Google Scholar] [CrossRef]
- Munkhbayarlakh, S.; Kao, H.F.; Hou, Y.I.; Tuvshintur, N.; Bayar-Ulzii, B.; Narantsetseg, L.; Wang, J.Y.; Hsin Wu, L.S. Vitamin D Plasma Concentration and Vitamin D Receptor Genetic Variants Confer Risk of Asthma: A Comparison Study of Taiwanese and Mongolian Populations. World Allergy Organ. J. 2019, 12, 100076. [Google Scholar] [CrossRef]
- Navas-Nazario, A.; Li, F.Y.; Shabanova, V.; Weiss, P.; Cole, D.E.C.; Carpenter, T.O.; Bazzy-Asaad, A. Effect of Vitamin D-Binding Protein Genotype on the Development of Asthma in Children. Ann. Allergy. Asthma Immunol. 2014, 112, 519–524. [Google Scholar] [CrossRef]
- Baker, A.R.; McDonnell, D.P.; Hughes, M.; Crisp, T.M.; Mangelsdorf, D.J.; Haussler, M.R.; Pike, J.W.; Shine, J.; O’Malley, B.W. Cloning and Expression of Full-Length CDNA Encoding Human Vitamin D Receptor. Proc. Natl. Acad. Sci. USA 1988, 85, 3294–3298. [Google Scholar] [CrossRef]
- Nagpal, S.; Na, S.; Rathnachalam, R. Noncalcemic Actions of Vitamin D Receptor Ligands. Endocr. Rev. 2005, 26, 662–687. [Google Scholar] [CrossRef]
- Santos, H.L.B.S.; De Souza E Silva, S.; De Paula, E.; Pereira-Ferrari, L.; Mikami, L.; Riedi, C.A.; Chong-Neto, H.J.; Rosário, N.A. Vitamin D Receptor gene mutations and vitamin D serum levels inasthmatic children. Rev. Paul. Pediatr. 2018, 36, 269. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greiller, C.L.; Mein, C.A.; Hoti, M.; Bakhsoliani, E.; Telcian, A.G.; Simpson, A.; Barnes, N.C.; Curtin, J.A.; Custovic, A.; et al. Vitamin D Receptor Genotype Influences Risk of Upper Respiratory Infection. Br. J. Nutr. 2018, 120, 891–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizaoui, K.; Berraies, A.; Hamdi, B.; Kaabachi, W.; Hamzaoui, K.; Hamzaoui, A. Association of Vitamin D Receptor Gene Polymorphisms with Asthma Risk: Systematic Review and Updated Meta-Analysis of Case-Control Studies. Lung 2014, 192, 955–965. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S. Meta-Analysis of Vitamin D Receptor Gene Polymorphisms in Childhood Asthma. Front. Pediatr. 2022, 10, 843691. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.J.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Genetics and Biology of Vitamin D Receptor Polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Yang, F.; Bergeron, J.M.; Linehan, L.A.; Lalley, P.A.; Sakaguchi, A.Y.; Bowman, B.H. Mapping and Conservation of the Group-Specific Component Gene in Mouse. Genomics 1990, 7, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.S.; Elgazzaz, M.G.; Ibrahim, A.; Hussein, M.H.; Khashana, M.S.; Toraih, E.A. Association of Group-Specific Component Exon 11 Polymorphisms with Bronchial Asthma in Children and Adolescents. Scand. J. Immunol. 2019, 89, e12740. [Google Scholar] [CrossRef]
- Lahmar, O.; Salhi, M.; Kaabachi, W.; Berraies, A.; Ammar, J.; Soomro, M.H.; Larsen, M.; Annesi-Maesano, I.; Hamzaoui, K.; Hamzaoui, A. Association Between Vitamin D Metabolism Gene Polymorphisms and Risk of Tunisian Adults’ Asthma. Lung 2018, 196, 285–295. [Google Scholar] [CrossRef] [PubMed]
Gene | Location, SNP | dbSNP ID | Assay ID |
---|---|---|---|
VDR (12q13.11) | Intron 8, C > A | rs7975232 (ApaI) | C__28977635_10 |
Intron 8, G > A | rs1544410 (BsmI) | AN324M4 | |
Exon 2, C > T | rs2228570 (FokI) | C__12060045_20 | |
Intron 1, G > A | rs11568820 (Cdx2) | C___2880808_10 | |
Exon 9, T > C | rs731236 (TaqI) | C___2404008_10 | |
CYP27B1 (12q14.1) | 3′ UTR, A > G | rs703842 | ANH6J3F |
Promotor 5′, G > C | rs3782130 | ANGZRHH | |
5′ UTR, A > G Intron 6, T > C | rs10877012 rs4646536 | C__26237740_10 C__25623453_10 | |
CYP24A1 (20q13.2) | Exon 6, G > A | rs6068816 | C__25620091_20 |
3′ UTR, G > C | rs4809957 | C___3120981_20 | |
CYP2R1 (11p15.2) | 5′ UTR, A > G | rs10741657 | C___2958430_10 |
GC (4q13.3) | Exon 11, T > G | rs7041 | C___3133594_30 |
Cases | Controls | χ² | p Value | Reference | OR | 95% CI | |||
---|---|---|---|---|---|---|---|---|---|
N | n (%) | N | n (%) | ||||||
Gender | 221 | 442 | |||||||
Female | 147 (66.5) | 275 (62.2) | 1.177 | 0.278 | |||||
Male | 74 (33.5) | 167 (37.8) | |||||||
Age | 221 | 56 (46, 66) | 442 | 60 (51, 67) | 0.091 * | ||||
Smoking status | 221 | 442 | |||||||
Current smokers | 13 (5.9) | 118 (29.9) | 43.06 | <0.001 | Non-smokers | 0.16 | 0.08–0.28 | ||
Former smokers | 50 (22.6) | 95 (21.7) | 0.75 | 0.50–1.11 | |||||
Non-smokers | 158 (71.5) | 225 (51.4) | 1 | ||||||
COVID-19 | 221 | 412 | |||||||
Yes | 18 (8.1) | 34 (8.3) | 0.002 | 0.963 | |||||
No | 203 (91.9) | 378 (91.7) | |||||||
BMI | 209 | 313 | |||||||
Normal weight | 44 (21.1) | 103 (33.0) | 10.29 | 0.006 | Normal weight | 1 | |||
Overweight | 79 (37.8) | 113 (36.2) | 1.64 | 1.04–2.59 | |||||
Obesity | 86 (41.1) | 96 (30.8) | 2.1 | 1.33–3.33 | |||||
Allergy (pollen or medications) | 221 | ||||||||
Yes | 97 (43.9) | ||||||||
No | 124 (56.1) | ||||||||
ICS (mg/day) | 221 | ||||||||
320 (160, 640) | |||||||||
OCS (dose/year) | 221 | ||||||||
Yes | 139 (62.9) | ||||||||
No | 82 (37.1) | ||||||||
%FEV1 | 191 | ||||||||
74.8 ± 23.5 | |||||||||
Exacerbations/year | 218 | ||||||||
Yes | 78 (35.8) | ||||||||
No | 140 (64.2) | ||||||||
Eosinophils (cells/μL) | 213 | ||||||||
280 (120, 560) |
Models | Genotype | Cases [n (%)] | Controls [n (%)] | p-Value a | Adjusted p-Value b | OR c | CI 95% |
---|---|---|---|---|---|---|---|
Genotypic | GG | 113 (51.4) | 232 (54.7) | 0.003 | 0.039 | 1 | |
AG | 81 (36.8) | 172 (40.6) | 2.76 | 1.46–5.29 | |||
AA | 26 (11.8) | 20 (4.7) | 2.67 | 1.43–5.04 | |||
Dominant | A | 107 (48.6) | 192 (45.3) | 0.418 | 1 | ||
GG | 113 (51.4) | 232 (54.7) | |||||
Recessive | AA | 26 (11.8) | 20 (4.7) | <0.001 | 0.011 | 2.71 | 1.48–5.02 |
G | 194 (88.2) | 404 (95.3) | |||||
Allelic | A | 133 (30.2) | 212 (25) | 0.045 | 0.579 | ||
G | 307 (69.8) | 636 (75) | |||||
Additive | - | - | - | 0.044 | 0.577 |
Genotypic | Dominant | Recessive | Additive | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA vs. GG | AG vs. GG | A vs. GG | AA vs. G | A vs. G | |||||||||||
p-Value | OR | 95% CI | p-Value | OR | 95% CI | P-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | |
BMI | |||||||||||||||
Overweight | 0.017 | 1.76 | 1.11–2.80 | 0.017 | 1.76 | 1.11–2.80 | 0.019 | 1.73 | 1.10–2.76 | 0.017 | 1.76 | 1.11–2.80 | 0.001 | 1.73 | 1.10–2.75 |
Obese | 0.001 | 2.17 | 1.37–3.48 | 0.001 | 2.17 | 1.37–3.48 | 0.001 | 2.17 | 1.37–3.45 | 0.001 | 2.17 | 1.37–3.48 | 0.020 | 2.14 | 1.36–3.42 |
rs11568820 | 0.005 | 2.73 | 1.36–5.67 | 0.994 | 1.00 | 0.68–1.46 | 0.367 | 1.18 | 0.82–1.69 | 0.004 | 2.73 | 1.39–5.57 | 0.051 | 1.32 | 1.00–1.75 |
rs1544410 | rs7975232 | rs731236 | rs4646536 | rs703842 | rs3782130 | rs10877012 | Freq. | OR (95% CI) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
1 | G | C | T | A | T | G | G | 0.3329 | 1.00 | --- |
2 | A | A | C | A | T | G | G | 0.2382 | 1.02 (0.69–1.50) | 0.93 |
3 | A | A | C | G | C | C | T | 0.108 | 1.30 (0.79–2.15) | 0.3 |
4 | G | A | T | A | T | G | G | 0.0629 | 1.79 (0.27–1.19) | 0.14 |
5 | G | C | T | G | C | C | T | 0.0602 | 0.63 (0.29–1.35) | 0.24 |
6 | A | C | T | A | T | G | G | 0.032 | 2.84 (1.06–7.64) | 0.039 |
7 | G | A | T | G | C | C | T | 0.0279 | 0.77 (0.32–1.84) | 0.56 |
8 | A | A | T | A | T | G | G | 0.0139 | 1.47 (0.40–5.41) | 0.56 |
9 | G | A | C | A | T | G | G | 0.0102 | 2.76 (0.45–17.14) | 0.28 |
rare | * | * | * | * | * | * | * | 0.1138 | 1.40 (0.89–2.22) | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo-Tolosa, S.; Pineda-Lancheros, L.E.; Gálvez-Navas, J.M.; Sánchez-Martínez, J.A.; González-Gutiérrez, M.V.; Fernández-Alonso, A.; Morales-García, C.; Jiménez-Morales, A.; Pérez-Ramírez, C. Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma. Nutrients 2023, 15, 823. https://doi.org/10.3390/nu15040823
Rojo-Tolosa S, Pineda-Lancheros LE, Gálvez-Navas JM, Sánchez-Martínez JA, González-Gutiérrez MV, Fernández-Alonso A, Morales-García C, Jiménez-Morales A, Pérez-Ramírez C. Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma. Nutrients. 2023; 15(4):823. https://doi.org/10.3390/nu15040823
Chicago/Turabian StyleRojo-Tolosa, Susana, Laura Elena Pineda-Lancheros, José María Gálvez-Navas, José Antonio Sánchez-Martínez, María Victoria González-Gutiérrez, Andrea Fernández-Alonso, Concepción Morales-García, Alberto Jiménez-Morales, and Cristina Pérez-Ramírez. 2023. "Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma" Nutrients 15, no. 4: 823. https://doi.org/10.3390/nu15040823