The Association of Serum Erythroferrone, a Regulator of Erythropoiesis and Iron Homeostasis, with Cardiometabolic Risk Factors in Apparently Healthy Young Adults—A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Laboratory and Anthropometric Measurements
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Group
3.2. Correlation Analysis
3.3. Association of ERFE Concentration with Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ERFE | Erythroferrone |
HbA1c | Glycated hemoglobin |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
CRP | C-reactive protein |
OR | Odds ratio |
MetS | Metabolic syndrome |
IL-6 | Interleukin-6 |
EPO | Erythropoietin |
CTRP15 | C1q/TNF-related protein 15 |
BMI | Body mass index |
WC | Waist circumference |
WHR | Waist–hip ratio |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
EDTA | Ethylenediaminetetraacetic acid |
Fe | Iron |
LDL-C | Low-density lipoprotein cholesterol |
Non-HDL-C | Non-high-density lipoprotein cholesterol |
HDL-C | High-density lipoprotein cholesterol |
TC | Total cholesterol |
TG | Triglycerides |
ApoB | Apolipoprotein B |
ApoAI | Apolipoprotein AI |
GLP-1 | Glucagon-like protein-1 |
ATP | Adenosine triphosphate |
BMP6 | Bone morphogenetic protein-6 |
References
- Hilton, C.; Sabaratnam, R.; Drakesmith, H.; Karpe, F. Iron, glucose and fat metabolism and obesity: An intertwined relationship. Int. J. Obes. 2023, 47, 554–563. [Google Scholar] [CrossRef]
- Sobieska, K.; Buczyńska, A.; Krętowski, A.J.; Popławska-Kita, A. Iron homeostasis and insulin sensitivity: Unraveling the complex interactions. Rev. Endocr. Metab. Disord. 2024, 25, 925–939. [Google Scholar] [CrossRef]
- Seldin, M.M.; Peterson, J.M.; Byerly, M.S.; Wei, Z.; Wong, G.W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 2012, 287, 11968–11980. [Google Scholar] [CrossRef]
- Kautz, L.; Jung, G.; Valore, E.V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014, 46, 678–684. [Google Scholar] [CrossRef]
- Coffey, R.; Ganz, T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. Hemasphere 2018, 2, e35. [Google Scholar] [CrossRef]
- Babar, S.; Saboor, M. Erythroferrone in focus: Emerging perspectives in iron metabolism and hematopathologies. Blood Sci. 2024, 6, e00198. [Google Scholar] [CrossRef] [PubMed]
- Architect MULTIGENT Iron Assay (6K95) [Package Insert]; Abbott Laboratories: Lake Bluff, IL, USA, 2012.
- Bąk-Sosnowska, M.; Białkowska, M.; Bogdański, P.; Chomiuk, T.; Dobrowolski, P.; Gałązka-Sobotka, M.; Holecki, M.; Jankowska-Zduńczyk, A.; Jarosińska, A.; Jezierska, M.; et al. Zalecenia kliniczne dotyczące postępowania u chorych na otyłość 2024–stanowisko Polskiego Towarzystwa Leczenia Otyłości. Med. Prakt. Wyd. Spec. 2024, 1–116. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef] [PubMed]
- Sampson, M.; Ling, C.; Sun, Q.; Harb, R.; Ashmaig, M.; Warnick, R.; Sethi, A.; Fleming, J.K.; Otvos, J.D.; Meeusen, J.W.; et al. A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020, 5, 540–548. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.L.; Zhu, Y.J.; Li, C.G.; Tang, Y.Z.; Ni, C.L.; Chen, L.M.; Niu, W.Y. Circulating Serum Myonectin Levels in Obesity and Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2021, 129, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Hilton, C.; Sabaratnam, R.; Neville, M.; Karpe, F. Plasma Erythroferrone is negatively correlated with total body fat. Society for Endocrinology BES 2022. Endocr. Abstr. 2022, 86, P76. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Qin, C. Serum myonectin is increased after laparoscopic sleeve gastrectomy. Ann. Clin. Biochem. 2020, 57, 360–364. [Google Scholar] [CrossRef]
- Li, K.; Liao, X.; Wang, K.; Mi, Q.; Zhang, T.; Jia, Y.; Xu, X.; Luo, X.; Zhang, C.; Liu, H.; et al. Myonectin Predicts the Development of Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Appleby, S.; Chew-Harris, J.; Troughton, R.W.; Richards, A.M.; Pemberton, C.J. Analytical and biological assessment of circulating human erythroferrone. Clin. Biochem. 2020, 79, 41–47. [Google Scholar] [CrossRef]
- Ganz, T.; Jung, G.; Naeim, A.; Ginzburg, Y.; Pakbaz, Z.; Walter, P.B.; Kautz, L.; Nemeth, E. Immunoassay for human serum erythroferrone. Blood 2017, 130, 1243–1246. [Google Scholar] [CrossRef]
- Busti, F.; Zidanes, A.L.; Bertolone, L.; Martinelli, N.; Castagna, A.; Marchi, G.; Vianello, A.; Bozzini, C.; Pramstaller, P.; Girelli, D. Serum Erythroferrone Levels in a Large General Population: Towards a Better Understanding of Connections between Erythropoiesis and Iron Homeostasis. Blood 2023, 142 (Suppl. 1), 1096. [Google Scholar] [CrossRef]
- Badenhorst, C.E.; Forsyth, A.K.; Govus, A.D. A contemporary understanding of iron metabolism in active premenopausal females. Front. Sports Act. Living 2022, 4, 903937. [Google Scholar] [CrossRef]
- Fillebeen, C.; Lam, N.H.; Chow, S.; Botta, A.; Sweeney, G.; Pantopoulos, K. Regulatory Connections between Iron and Glucose Metabolism. Int. J. Mol. Sci. 2020, 21, 7773. [Google Scholar] [CrossRef]
- Rodríguez-Mortera, R.; Caccavello, R.; Hermo, R.; Garay-Sevilla, M.E.; Gugliucci, A. Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants 2021, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Aguree, S.; Reddy, M.B. Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age. Nutrients 2021, 13, 217. [Google Scholar] [CrossRef]
- Mantovani, A.; Busti, F.; Borella, N.; Scoccia, E.; Pecoraro, B.; Sani, E.; Morandin, R.; Csermely, A.; Piasentin, D.; Grespan, E.; et al. Elevated plasma hepcidin concentrations are associated with an increased risk of mortality and nonfatal cardiovascular events in patients with type 2 diabetes: A prospective study. Cardiovasc. Diabetol. 2024, 23, 305. [Google Scholar] [CrossRef]
- Martinelli, N.; Traglia, M.; Campostrini, N.; Biino, G.; Corbella, M.; Sala, C.; Busti, F.; Masciullo, C.; Manna, D.; Previtali, S.; et al. Increased serum hepcidin levels in subjects with the metabolic syndrome: A population study. PLoS ONE 2012, 7, e48250. [Google Scholar] [CrossRef]
- Qiu, F.; Wu, L.; Yang, G.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Wang, N. The role of iron metabolism in chronic diseases related to obesity. Mol. Med. 2022, 28, 130. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, S.; Catarino, C.; Santos-Silva, A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes. Rev. 2013, 14, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Laurindo, L.F.; Tofano, R.J.; Flato, U.A.P.; Mendes, C.G.; de Alvares Goulart, R.; Briguezi, A.M.G.M.; Bechara, M.D. Dysmetabolic Iron Overload Syndrome: Going beyond the Traditional Risk Factors Associated with Metabolic Syndrome. Endocrines 2023, 4, 18–37. [Google Scholar] [CrossRef]
- Cempaka, A.R.; Tseng, S.-H.; Yuan, K.-C.; Bai, C.-H.; Tinkov, A.A.; Skalny, A.V.; Chang, J.-S. Dysregulated Iron Metabolism-Associated Dietary Pattern Predicts an Altered Body Composition and Metabolic Syndrome. Nutrients 2019, 11, 2733. [Google Scholar] [CrossRef]
- Yin, W.; Noguchi, C.T. The Role of Erythropoietin in Metabolic Regulation. Cells 2025, 14, 280. [Google Scholar] [CrossRef]
- Li, J.; Yang, M.; Yu, Z.; Tian, J.; Du, S.; Ding, H. Kidney-secreted erythropoietin lowers lipidemia via activating JAK2-STAT5 signaling in adipose tissue. EBioMedicine 2019, 50, 317–328. [Google Scholar] [CrossRef]
- Khedr, E.; El-Sharkawy, M.; Abdulwahab, S.; Eldin, E.N.; Ali, M.; Youssif, A.; Ahmed, B. Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients. Hemodial. Int. 2009, 13, 340–346. [Google Scholar] [CrossRef]
- Coffey, R.; Sardo, U.; Kautz, L.; Gabayan, V.; Nemeth, E.; Ganz, T. Erythroferrone is not required for the glucoregulatory and hematologic effects of chronic erythropoietin treatment in mice. Physiol. Rep. 2018, 6, e13890. [Google Scholar] [CrossRef]
- Dziembowska, I.; Wójcik, M.; Bukowski, J.; Żekanowska, E. Physical Training Increases Erythroferrone Levels in Men. Biology 2021, 10, 1215. [Google Scholar] [CrossRef]
- Spoto, B.; Kakkar, R.; Lo, L.; Devalaraja, M.; Pizzini, P.; Torino, C.; Leonardis, D.; Cutrupi, S.; Tripepi, G.; Mallamaci, F.; et al. Serum Erythroferrone Levels Associate with Mortality and Cardiovascular Events in Hemodialysis and in CKD Patients: A Two Cohorts Study. J. Clin. Med. 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Srole, D.N.; Jung, G.; Waring, A.J.; Nemeth, E.; Ganz, T. Characterization of erythroferrone structural domains relevant to its iron-regulatory function. J. Biol. Chem. 2023, 299, 105374. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.; Jung, G.; Olivera, J.D.; Karin, G.; Pereira, R.C.; Nemeth, E.; Ganz, T. Erythroid overproduction of erythroferrone causes iron overload and developmental abnormalities in mice. Blood 2022, 139, 439–451. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 122) | Women (n = 63) | Men (n = 59) | p |
---|---|---|---|---|
Age (years) | 30.5 (26–34) | 31 (25–36) | 30 (27–34) | 0.587 |
BMI (kg/m2) | 23.8 (21.1–26.1) | 21.4 (20.1–23.8) | 24.2 (22.7–26.8) | <0.001 |
Overweight (n; %) | 30/122; 24.6 | 11/63; 17.5 | 19/59; 32.2 | 0.059 |
WC (cm) | 82.5 (71–92) | 72 (68–79) | 92 (87–96) | <0.001 |
WHR | 0.83 (0.76–0.88) | 0.76 (0.73–0.79) | 0.89 (0.85–0.91) | <0.001 |
Abdominal obesity (n; %) | 35/122; 28.7 | 14/63; 22.2 | 21/59; 35.6 | 0.102 |
SBP (mmHg) | 118 (106–128) | 110 (98–119) | 126 (115–132) | <0.001 |
DBP (mmHg) | 78 (68–84) | 75 (66–82) | 82 (73–87) | 0.002 |
ERFE (ng/mL) | 1.79 (1.19–2.61) | 1.93 (1.41–3.08) | 1.51 (1.06–2.3) | 0.009 |
Fe (μmol/L) | 16.4 (12.7–21.8) | 14.9 (11.0–18.9) | 17.9 (13.8–22.2) | 0.017 |
Hepcidin (ng/mL) | 20.1 (9.5–35.4) | 12.2 (5.0–21.9) | 31.7 (18.1–47.5) | <0.001 |
Glucose (mmol/L) | 5.11 (4.83–5.33) | 4.94 (4.72–5.17) | 5.22 (4.94–5.44) | <0.001 |
CRP (mg/L) | 0.60 (0.40–1.50) | 0.50 (0.30–1.80) | 0.75 (0.40–1.40) | 0.374 |
HbA1c (mmol/mol) | 33 (31–34) | 32 (31–34) | 33 (31–37) | 0.092 |
Insulin (µU/mL) | 7.29 (5.32–10.01) | 6.40 (4.68–8.14) | 7.94 (6.11–11.21) | 0.002 |
HOMA-IR | 1.66 (1.18–2.18) | 1.41 (1.11–1.79) | 1.89 (1.34–2.54) | <0.001 |
TC (mmol/L) | 4.89 (4.40–5.38) | 191 (4.40–5.30) | 4.89 (4.32–5.40) | 0.822 |
HDL-C (mmol/L) | 1.40 (1.16–1.58) | 1.55 (1.34–1.73) | 1.21 (1.11–1.42) | <0.001 |
TG (mmol/L) | 0.92 (0.70–1.35) | 0.79 (0.61–1.08) | 1.03 (0.83–1.81) | <0.001 |
LDL-C (mmol/L) | 2.97 (2.48–3.49) | 2.87 (2.38–3.21) | 3.10 (2.61–3.67) | 0.062 |
Non-HDL-C (mmol/L) | 3.44 (2.97–4.01) | 3.36 (2.82–3.78) | 3.75 (3.18–4.16) | 0.010 |
ApoAI (g/L) | 1.43 (1.29–1.63) | 1.56 (1.41–1.79) | 1.31 (1.20–1.48) | <0.001 |
ApoB (g/L) | 0.77 (0.66–0.88) | 0.73 (0.62–0.86) | 0.82 (0.72–0.91) | 0.012 |
Variables | All (n = 122) | Women (n = 63) | Men (n = 59) | p | |||
---|---|---|---|---|---|---|---|
R | p | R | p | R | p | Women vs. Men | |
Age | −0.26 | 0.004 | −0.21 | 0.104 | −0.31 | 0.018 | 0.564 |
BMI | −0.65 | <0.001 | −0.55 | <0.001 | −0.65 | 0.000 | 0.400 |
WC | −0.52 | <0.001 | −0.57 | <0.001 | −0.44 | 0.001 | 0.347 |
WHR | −0.39 | <0.001 | −0.48 | <0.001 | −0.23 | 0.082 | 0.123 |
SBP | −0.18 | 0.044 | 0.20 | 0.117 | −0.33 | 0.011 | 0.452 |
Fe | 0.12 | 0.182 | 0.06 | 0.673 | 0.34 | 0.009 | 0.116 |
Hepcidin | −0.35 | <0.001 | −0.29 | 0.026 | −0.29 | 0.024 | 1.000 |
CRP | −0.31 | <0.001 | −0.30 | 0.016 | −0.24 | 0.069 | 0.728 |
HbA1c | −0.28 | 0.002 | −0.31 | 0.012 | −0.19 | 0.155 | 0.492 |
Insulin | −0.23 | 0.012 | −0.10 | 0.451 | −0.25 | 0.053 | 0.406 |
HOMA-IR | −0.23 | 0.010 | −0.09 | 0.474 | −0.25 | 0.054 | 0.376 |
HDL-C | 0.26 | 0.003 | 0.24 | 0.056 | 0.13 | 0.323 | 0.540 |
TG | −0.32 | <0.001 | −0.27 | 0.032 | −0.33 | 0.011 | 0.723 |
Non-HDL-C | −0.20 | 0.028 | −0.06 | 0.621 | −0.32 | 0.013 | 0.147 |
ApoB | −0.20 | 0.030 | −0.13 | 0.332 | −0.28 | 0.035 | 0.400 |
Risk Factors | Unadjusted | Adjusted for Age and Sex | Adjusted for Age, Sex and BMI | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Overweight (BMI > 25 kg/m2) | 0.051 (0.007–0.381) | 0.004 | 0.065 (0.020–0.210) | <0.001 | --- | --- |
Abdominal obesity (WC ≥ 80/≥94 cm, F/M) | 0.372 (0.215–0.643) | <0.001 | 0.438 (0.249–0.769) | 0.004 | 0.965 (0.519–1.079) | 0.909 |
Elevated blood pressure (SBP 120–139 mmHg or DBP 70–89 mmHg) | 1.152 (0.801−1.658) | 0.446 | 1.285 (0.858–1.925) | 0.655 | 1.697 (0.986–2.082) | 0.148 |
CRP > 1 mg/L | 0.648 (0.450–0.933) | 0.020 | 0.658 (0.449–0.965) | 0.032 | 0.789 (0.512–1.214) | 0.281 |
HOMA-IR ≥ 2.0 | 0.584 (0.383–0.891) | 0.013 | 0.630 (0.403–0.984) | 0.042 | 0.731 (0.434–1.232) | 0.239 |
TG ≥ 1.69 mmol/L | 0.521 (0.286–0.948) | 0.033 | 0.755 (0.403–1.412) | 0.379 | 0.750 (0.361–1.559) | 0.441 |
HDL-C < 1.16/<1.03 mmol/L (F/M) | 1.011 (0.625–1.636) | 0.965 | 1.167 (0.695–1.985) | 0.560 | 1.662 (0.885–2.971) | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, K.; Stefańska, A.; Krintus, M. The Association of Serum Erythroferrone, a Regulator of Erythropoiesis and Iron Homeostasis, with Cardiometabolic Risk Factors in Apparently Healthy Young Adults—A Preliminary Study. Nutrients 2025, 17, 3205. https://doi.org/10.3390/nu17203205
Bergmann K, Stefańska A, Krintus M. The Association of Serum Erythroferrone, a Regulator of Erythropoiesis and Iron Homeostasis, with Cardiometabolic Risk Factors in Apparently Healthy Young Adults—A Preliminary Study. Nutrients. 2025; 17(20):3205. https://doi.org/10.3390/nu17203205
Chicago/Turabian StyleBergmann, Katarzyna, Anna Stefańska, and Magdalena Krintus. 2025. "The Association of Serum Erythroferrone, a Regulator of Erythropoiesis and Iron Homeostasis, with Cardiometabolic Risk Factors in Apparently Healthy Young Adults—A Preliminary Study" Nutrients 17, no. 20: 3205. https://doi.org/10.3390/nu17203205
APA StyleBergmann, K., Stefańska, A., & Krintus, M. (2025). The Association of Serum Erythroferrone, a Regulator of Erythropoiesis and Iron Homeostasis, with Cardiometabolic Risk Factors in Apparently Healthy Young Adults—A Preliminary Study. Nutrients, 17(20), 3205. https://doi.org/10.3390/nu17203205