Metabolic Dysfunction-Associated Steatotic Liver Disease Is Linked to Environmental Sustainability: The Role of the Mediterranean Diet
Abstract
1. Introduction
2. Methods
2.1. Design
2.2. Participants, Recruitment and Ethics
2.3. Sociodemographic Characteristics
2.4. Fatty Liver Disease Parameters
2.5. Dietary Parameters
2.6. Environmental Parameters
2.7. Statistics
3. Results
4. Discussion
Strengths and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Habibullah, M.; Jemmieh, K.; Ouda, A.; Haider, M.Z.; Malki, M.I.; Elzouki, A.N. Metabolic-associated fatty liver disease: A selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front. Med. 2024, 11, 1291501. [Google Scholar] [CrossRef] [PubMed]
- Callans, L.E.; Ivey, K.L.; Chang, K.M.; Kaplan, D.E.; VA Million Veteran Program. Diet composition impacts the natural history of steatotic liver disease. Hepatol. Commun. 2025, 9, e0754. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; Mascaró, C.M.; Ugarriza, L.; Casares, M.; Llompart, I.; Abete, I.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A.; Bouzas, C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 3186. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angullo-Martinez, E.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 2223. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef]
- García, S.; Pastor, R.; Monserrat-Mesquida, M.; Álvarez-Álvarez, L.; Rubín-García, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Martínez, J.A.; et al. Ultra-processed foods consumption as a promoting factor of greenhouse gas emissions, water, energy, and land use: A longitudinal assessment. Sci. Total Environ. 2023, 891, 164417. [Google Scholar] [CrossRef]
- Seves, S.M.; Verkaik-Kloosterman, J.; Biesbroek, S.; Temme, E.H. Are more environmentally sustainable diets with less meat and dairy nutritionally adequate? Public Health Nutr. 2017, 20, 2050–2062. [Google Scholar]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10 (Suppl. S4), S380–S388. [Google Scholar] [CrossRef]
- García, S.; Bouzas, C.; Mateos, D.; Pastor, R.; Álvarez, L.; Rubín, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Goday, A.; et al. Carbon dioxide (CO2) emissions and adherence to Mediterranean diet in an adult population: The Mediterranean diet index as a pollution level index. Environ. Health 2023, 22, 1. [Google Scholar] [CrossRef]
- Guo, B.; Guo, Y.; Nima, Q.; Feng, Y.; Wang, Z.; Lu, R.; Ma, Y.; Zhou, J.; Xu, H.; Chen, L.; et al. Exposure to air pollution is associated with an increased risk of metabolic dysfunction-associated fatty liver disease. J. Hepatol. 2022, 76, 518–525. [Google Scholar] [CrossRef]
- Dolce, A.; Della Torre, S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023, 15, 2335. [Google Scholar] [CrossRef]
- Ran, S.; Zhang, J.; Tian, F.; Qian, Z.; Wei, S.; Wang, Y.; Chen, G.; Zhang, J.; Arnold, L.D.; McMillin, S.E.; et al. Association of metabolic signatures of air pollution with MASLD: Observational and Mendelian randomization study. J. Hepatol. 2025, 82, 560–570. [Google Scholar]
- García, S.; Pastor, R.; Monserrat-Mesquida, M.; Álvarez-Álvarez, L.; Rubín-García, M.; Martínez-González, M.Á.; Salas-Salvado, J.; Corella, D.; Goday, A.; Martínez, J.A.; et al. Metabolic syndrome criteria and severity and carbon dioxide (CO2) emissions in an adult population. Global. Health 2023, 19, 50. [Google Scholar] [CrossRef]
- Grosso, G.; Fresán, U.; Bes-Rastrollo, M.; Marventano, S.; Galvano, F. Environmental Impact of Dietary Choices: Role of the Mediterranean and Other Dietary Patterns in an Italian Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1468. [Google Scholar] [CrossRef]
- Fresán, U.; Martínez-Gonzalez, M.A.; Sabaté, J.; Bes-Rastrollo, M. The Mediterranean diet, an environmentally friendly option: Evidence from the Seguimiento Universidad de Navarra (SUN) cohort. Public Health Nutr. 2018, 21, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Lorca-Camara, V.; Bosque-Prous, M.; Bes-Rastrollo, M.; O’Callaghan-Gordo, C.; Bach-Faig, A. Environmental and Health Sustainability of the Mediterranean Diet: A Systematic Review. Adv. Nutr. 2024, 15, 100322. [Google Scholar] [PubMed]
- ¿Qué es la dieta Mediterránea?—Fundación Dieta Mediterránea. Barcelona. 2010. Available online: https://dietamediterranea.com/nutricion-saludable-ejercicio-fisico/ (accessed on 22 September 2025).
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; García, S.; Argelich, E.; Casares, M.; Ugarriza, L.; Llompart, I.; Tur, J.A.; Sureda, A. Impact of Adherence to the Mediterranean Diet on Antioxidant Status and Metabolic Parameters in NAFLD Patients: A 24-Month Lifestyle Intervention Study. Antioxidants 2024, 13, 480. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Ugarriza, L.; Llompart, I.; Tur, J.A.; Sureda, A. Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2020, 9, 759. [Google Scholar] [PubMed]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; García, S.; Mateos, D.; Casares, M.; Ugarriza, L.; Llompart, I.; Tur, J.A.; Sureda, A. Effects of a Two-Year Lifestyle Intervention on Intrahepatic Fat Reduction and Renal Health: Mitigation of Inflammation and Oxidative Stress, a Randomized Trial. Antioxidants 2024, 13, 754. [Google Scholar] [CrossRef] [PubMed]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Gómez, C.; Mateos, D.; Ripoll-Vera, T.; Tur, J.A.; Sureda, A. Inflammatory and Oxidative Stress Markers Related to Adherence to the Mediterranean Diet in Patients with Metabolic Syndrome. Antioxidants 2022, 11, 901. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental footprints of Mediterranean versus Western dietary patterns: Beyond the health benefits of the Mediterranean diet. Environ. Health 2013, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- NCT04442620. Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN) ClinicalTrials.gov. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 22 September 2025).
- The International Diabetic Federation (IDF). The IDF Consensus Worldwide Definition of Definition of the Metabolic Syndrome. 2022. Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 22 September 2025).
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Martin-moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and validation of a food frequency questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef]
- de la Fuente-Arrillaga, C.; Ruiz, Z.V.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, Guía de Prácticas (Spanish Food Composition Tables), 17th ed.; Piramide Ediciones Sa: Madrid, Spain, 2015. [Google Scholar]
- Mataix, J.; Manas, M.; Llopis, J.; Martinez de Victoria, E.; Juan, J.; Borregon, A. Tablas de Composición de Alimentos (Spanish Food Composition Tables), 5th ed.; Universidad de Granada: Granada, Spain, 2013. [Google Scholar]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef]
- Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Tinahones, F.J.; Miranda, J.L.; et al. Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40, 4971–4979. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: La Plaine Saint-Denis, France, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: La Plaine Saint-Denis, France, 2006.
- García, S.; Monserrat-Mesquida, M.; Argelich, E.; Ugarriza, L.; Salas-Salvadó, J.; Bautista, I.; Vioque, J.; Zomeño, M.D.; Corella, D.; Pintó, X.; et al. Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome. Nutrients 2024, 16, 730. [Google Scholar] [CrossRef]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob. Change Biol. Bioenergy 2017, 9, 489–507. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; de Mattos, M.J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 2011, 45, 6117–6123. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration (NASA). ¿Qué es el efecto invernadero? California Institute of Technology: Pasadena, CA, USA, 2023. Available online: https://climate.nasa.gov/faq/70/que-es-el-efecto-invernadero/ (accessed on 22 June 2025).
- United Nations (UN). OMM: Los Niveles de Gases de Efecto Invernadero en la Atmósfera Alcanzan un Nuevo Récord; UN: New York, NY, USA, 2018; Available online: https://unfccc.int/es/news/omm-los-niveles-de-gases-de-efecto-invernadero-en-la-atmosfera-alcanzan-un-nuevo-record (accessed on 22 September 2025).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Objetivos de Reducción de Emisiones de Gases de Efecto Invernadero. Madrid. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/objetivos.html (accessed on 22 September 2025).
- Nair, N.K.; Bui, L.P.; Sawicki, C.M.; Kandula, N.R.; Kanaya, A.M.; Lee, K.H.; Stampfer, M.J.; Willett, W.C.; Bhupathiraju, S.N. Adherence to the EAT-Lancet Planetary Health Diet and Cardiometabolic Risk Markers in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study. Curr. Dev. Nutr. 2025, 9, 107468. [Google Scholar] [CrossRef]
- García, S.; Monserrat-Mesquida, M.; Mas-Fontao, S.; Cuadrado-Soto, E.; Ortiz-Ramos, M.; Matía-Martín, P.; Daimiel, L.; Vázquez, C.; Tur, J.A.; Bouzas, C. Body composition and CO2 dietary emissions. Front. Pub. Health 2025, 12, 1432109. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, L.; Vitelli-Storelli, F.; Rubín-García, M.; Martín-Sánchez, V.; García Fernández, C.; Carvalho, C.; Araújo, J.; Ramos, E. Environmental impact of the diet of young Portuguese and its relationship with adherence to the Mediterranean Diet. Eur. J. Nutr. 2024, 63, 2307–2315. [Google Scholar] [CrossRef]
- Conrad, Z.; Korol, M.; DiStaso, C.; Wu, S. Greater adherence to the Mediterranean diet pattern in the United States is associated with sustainability trade-offs. Nutr. J. 2024, 23, 159. [Google Scholar] [CrossRef]
- Aznar de la Riera Mdel, C.; Ortolá, R.; Kales, S.N.; Graciani, A.; Diaz-Gutierrez, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Health and environmental dietary impact: Planetary health diet vs. Mediterranean diet. Nationwide Cohort Spain. Sci. Total Environ. 2025, 968, 178924. [Google Scholar] [CrossRef] [PubMed]
- Water Footprint Calculator. Food’s Big Water Footprint. EcoRise. 2022. Available online: https://watercalculator.org/footprint/foods-big-water-footprint/ (accessed on 22 September 2025).
- World Economic Forum (WEF). Which Foods Need the Most Water to Produce? 2021. Available online: https://www.weforum.org/stories/2021/06/water-footprint-food-sustainability/ (accessed on 22 September 2025).
- Wang, J.; Yin, Y.; Sun, S.; Zhao, J.; Tang, Y.; Wang, Y.; Wu, P. The effect of dietary changes on the water and carbon footprints in China. Sustain. Prod. Consum. 2024, 49, 276–288. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. Treenuts and groundnuts in the EAT-Lancet reference diet: Concerns regarding sustainable water use. Glob. Food Sec. 2020, 24, 100357. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; IPCC: New York, NY, USA, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf (accessed on 22 September 2025).
- Gepner, Y.; Shelef, I.; Komy, O.; Cohen, N.; Schwarzfuchs, D.; Bril, N.; Rein, M.; Serfaty, D.; Kenigsbuch, S.; Zelicha, H.; et al. The beneficial effects of Mediterranean diet over low-fat diet may be mediated by decreasing hepatic fat content. J. Hepatol. 2019, 71, 379–388. [Google Scholar] [CrossRef]
- Sualeheen, A.; Tan, S.; Georgousopoulou, E.; Daly, R.M.; Tierney, A.C.; Roberts, S.K.; George, E.S. Mediterranean diet for the management of metabolic dysfunction-associated steatotic liver disease in non-Mediterranean, Western countries: What’s known and what’s needed? Nutr. Bull. 2024, 49, 444–462. [Google Scholar] [CrossRef]
- Zelicha, H.; Kloting, N.; Kaplan, A.; Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Chassidim, Y.; Bluher, M.; Ceglarek, U.; Isermann, B.; et al. The effect of high-polyphenol Mediterranean diet on visceral adiposity: The DIRECT PLUS randomized controlled trial. BMC Med. 2022, 20, 327. [Google Scholar] [CrossRef]
- Rodríguez Núñez, S.; Rubín-García, M.; Martín-Sánchez, V.; Álvarez-Álvarez, L.; Molina, A.J. Mediterranean Diet, Obesity-Related Metabolic Cardiovascular Disorders, and Environmental Sustainability: A Systematic Review. Nutrients 2025, 17, 2005. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2013, 72, 13–20. [Google Scholar] [PubMed]
%IFC Higher Reduction (§) n = 30 | %IFC Lower Reduction or Increase (§) n = 30 | p-Value | |
---|---|---|---|
Age | Mean (SD) | ||
52.3 (6.8) | 53.3 (6.6) | 0.56 | |
Sex | n (%) | ||
Men | 20 (66.7) | 18 (60) | 0.59 |
Women | 10 (33.3) | 12 (40) | |
Educational Level | n (%) | ||
Primary | 9 (30) | 12 (40) | 0.65 |
Secondary | 13 (43.4) | 12 (40) | |
University | 8 (26.7) | 6 (20) | |
Job Situation | n (%) | ||
Not working | 4 (13.3) | 6 (19.9) | 0.70 |
Working | 24 (80) | 20 (66.7) | |
Retired | 2 (6.7) | 4 (13.3) | |
Alcohol Consumption | n (%) | ||
None | 12 (40) | 7 (23.3) | 0.38 |
Yes, sometimes | 14 (46.7) | 18 (60) | |
Yes, regularly | 4 (13.3) | 5 (16.7) | |
Physical Activity | n (%) | ||
None | 14 (46.7) | 15 (50) | 0.86 |
Low | 11 (36.7) | 12 (40) | |
Moderate | 4 (13.3) | 2 (6.7) | |
High | 1 (3.3) | 1 (3.3) | |
Completers n = 60 | Dropouts n = 83 | p-Value | |
Age | Mean (SD) | ||
52.8 (6.7) | 51.8 (7.3) | 0.49 | |
Sex | n (%) | ||
Men | 38 (63.3) | 37 (44.6) | 0.03 |
Women | 22 (36.7) | 46 (55.4) | |
Educational Level | n (%) | ||
Primary | 21 (34.0) | 33 (39.7) | 0.81 |
Secondary | 25 (41.7) | 29 (35.0) | |
University | 14 (23.3) | 21 (25.3) | |
Job Situation | n (%) | ||
Not-working | 8 (13.4) | 11 (13.2) | 0.78 |
Working | 46 (76.6) | 67 (80.7) | |
Retired | 6 (10.0) | 5 (6.0) | |
Alcohol Consumption | n (%) | ||
None | 19 (31.7) | 35 (42.2) | 0.51 |
Yes, sometimes | 32 (53.3) | 35 (42.2) | |
Yes, regularly | 9 (15.0) | 13 (15.7) | |
Physical Activity | n (%) | ||
None | 29 (48.3) | 41 (49.4) | 0.62 |
Low | 23 (38.3) | 26 (31.3) | |
Moderate | 6 (10.0) | 14 (16.9) | |
High | 2 (3.3) | 2 (2.4) |
%IFC Higher Reduction (§), n = 30 | %IFC Lower Reduction or Increase (§), n = 30 | B Coefficient | 95% Confidence Intervals | η2 Partial | Time*Group ‡ | ||
---|---|---|---|---|---|---|---|
Mean (SD) | |||||||
GHG Emissions (kg CO2eq) | Baseline | 5.3 (1.7) | 5.4 (1.6) | 14.2 | −4.8–33.3 | 0.07 | 0.04 |
6 months | 4.7 (1.4) | 5.4 (1.9) | |||||
▲ | −0.5 (1.5) * | 0.04 (1.1) | |||||
Water Use (m3) | Baseline | 10.1 (2.8) | 12.3 (4.8) | 0.2 | −52.1–52.5 | 0.08 | 0.02 |
6 months | 11.6 (4.4) | 11.5 (4.5) | |||||
▲ | 1.5 (3.8) * | −0.7 (3.4) | |||||
Energy Use (MJ) | Baseline | 62.2 (20.2) | 65.8 (20.9) | 123.2 | −105.1–351.5 | 0.04 | 0.16 |
6 months | 57.9 (16.7) | 66.4 (21.8) | |||||
▲ | −4.3 (17.5) | 0.5 (14.1) | |||||
Land Use (Pt) | Baseline | 276.1 (98.1) | 266.2 (86.9) | 947.5 | −74.8–1969.9 | 0.08 | 0.02 |
6 months | 236.3 (90.1) | 261.8 (111.1) | |||||
▲ | −39.8 (81.1) * | −4.3 (63.4) | |||||
SScore (points) | Baseline | 2.1 (1.4) | 1.8 (1.6) | −4.3 | −27.7–19.1 | 0.003 | 0.68 |
6 months | 2.2 (1.6) | 1.7 (1.7) | |||||
▲ | 0.1 (1.8) | −0.03 (1.3) | |||||
MD-Adh (Points) | Baseline | 7.9 (2.5) | 8.1 (2.9) | −20.1 | −62.4–22.1 | 0.13 | <0.01 |
6 months | 12.8 (2.6) a | 10.9 (2.5) a | |||||
▲ | 4.8 (3.1) * | 2.7 (2.8) * | |||||
Energy Intake | Baseline | 2332.6 (688.4) | 2261.9 (552.9) | 813.3 | −8563.8–10,190.5 | 0.03 | 0.18 |
6 months | 2065.7 (423.2) | 2221.3 (750.3) | |||||
▲ | −266.8 (722.2) * | −40.5 (562.1) | |||||
Elastography (Kilopascals) | Baseline | 5.3 (1.5) a | 4.7 (1.3) a | 1.5 | −27.4–30.5 | 0.08 | 0.07 |
6 months | 5.4 (1.6) | 5.2 (1.5) | |||||
▲ | −0.1 | 0.8 (1.6) * | |||||
Hepatic Steatosis level | Baseline | 2.0 (0.2) a | 1.6 (0.4) a | −4.5 | −19.5–10.4 | 0.07 | 0.09 |
6 months | 1.3 (0.7) | 1.6 (0.7) | |||||
▲ | −0.6 (0.8) * | −0.1 (0.7) | |||||
Visceral Fat (points) | Baseline | 14.1 (3.1) | 13.6 (3.9) | −1.6 | −18.6–15.5 | 0.15 | <0.01 |
6 months | 12.9 (2.8) | 13.4 (3.6) | |||||
▲ | −1.3 (1.1) * | −0.2 (1.1) |
%IFC Changes | ||
---|---|---|
R (Correlation Coefficient) | p-Value | |
GHG Emissions (kg CO2eq) change | −0.005 | 0.96 |
Water Use (m3) Change | −0.301 | 0.02 |
Energy Use (MJ) Change | −0.082 | 0.54 |
Land Use (Pt) Change | 0.042 | 0.75 |
SScore Change | 1.000 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, S.; Bouzas, C.; Ródenas-Munar, M.; Cepeda, V.; Ugarriza, L.; Casares, M.; Gómez, C.; Mateos, D.; Tur, J.A. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Linked to Environmental Sustainability: The Role of the Mediterranean Diet. Nutrients 2025, 17, 3206. https://doi.org/10.3390/nu17203206
García S, Bouzas C, Ródenas-Munar M, Cepeda V, Ugarriza L, Casares M, Gómez C, Mateos D, Tur JA. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Linked to Environmental Sustainability: The Role of the Mediterranean Diet. Nutrients. 2025; 17(20):3206. https://doi.org/10.3390/nu17203206
Chicago/Turabian StyleGarcía, Silvia, Cristina Bouzas, Marina Ródenas-Munar, Violeta Cepeda, Lucía Ugarriza, Miguel Casares, Cristina Gómez, David Mateos, and Josep A. Tur. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease Is Linked to Environmental Sustainability: The Role of the Mediterranean Diet" Nutrients 17, no. 20: 3206. https://doi.org/10.3390/nu17203206
APA StyleGarcía, S., Bouzas, C., Ródenas-Munar, M., Cepeda, V., Ugarriza, L., Casares, M., Gómez, C., Mateos, D., & Tur, J. A. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease Is Linked to Environmental Sustainability: The Role of the Mediterranean Diet. Nutrients, 17(20), 3206. https://doi.org/10.3390/nu17203206