Protein Supplementation with Low Fat Meat after Resistance Training: Effects on Body Composition and Strength
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Nutritional Assessment and Supplementation Protocol
2.3. Resistance Training Protocol
Food Group (n = 12) | Control Group (n = 14) | ||
---|---|---|---|
Sex, M/F | 8/4 | 11/3 | N.S. (a) |
Age, years | 23.7 ± 2.5 | 23.9 ± 4.2 | N.S. (b) |
Weight, kg | 67.8 ± 13.9 | 72.8 ± 14.2 | N.S. (b) |
Height, cm | 1.70 ± 0.06 | 1.73 ± 0.09 | N.S. (b) |
BMI, kg/m2 | 23.5 ± 4.7 | 24.1 ± 3.5 | N.S. (b) |
Fat Mass, kg | 15.0 ± 6.7 | 15.9 ± 4.9 | N.S. (b) |
Fat Free Mass, kg | 52.8 ± 9.4 | 56.9 ± 11.9 | N.S. (b) |
Lean Mass, kg | 39.1 ± 7.3 | 41.1 ± 9.8 | N.S. (b) |
1RM Bench Press, kg | 51 ± 18 | 44 ± 18 | N.S. (b) |
1RM Lat Machine, kg | 58 ± 16 | 61 ± 18 | N.S. (b) |
1RM Leg Press, kg | 97 ± 24 | 93 ± 25 | N.S. (b) |
2.4. Measures
2.4.1. Strength Test
2.4.2. Body Composition Test
2.5. Statistical Methods
3. Results
3.1. Body Composition
Group | N | FM (kg) | FFM (kg) | LM (kg) | |||
---|---|---|---|---|---|---|---|
Week 0 | Week 8 | Week 0 | Week 8 | Week 0 | Week 8 | ||
FG | 12 | 15.0 ± 6.7 | 13.1 ± 7.6 * | 52.8 ± 9.4 | 55.1 ± 10.9 ** | 39.1 ± 7.3 | 40.3 ± 8.8 |
CG | 14 | 15.9 ± 4.9 | 14.9 ± 5.6 | 56.9 ± 11.9 | 57.4 ± 11.4 | 41.1 ± 9.8 | 40.6 ± 9.3 |
Group | N | Δ FM | Δ FFM | Δ LM | Δ BP | Δ LAM | Δ LP |
---|---|---|---|---|---|---|---|
FG | 12 | −1.9 ± 2.9 | 2.3 ± 2.5 | 1.2 ± 2.4 | 11.8 ± 7.4 | 11.6 ± 6.2 | 76.6 ± 46.1 |
CG | 14 | −1.0 ± 2.2 | 0.5 ± 2.3 | −0.5 ± 2.0 | 15.2 ± 11.5 | 9.0 ± 5.2 | 79.5 ± 36.4 |
3.2. Muscle Strength
4. Discussion
5. Conclusions
Author Contributions
Key Acronyms
MPS | Muscle protein synthesis |
EAAs | essential amino acids |
1RM | one repetition maximum |
FG | food group |
GP | control group |
FM | fat mass |
FFM | fat free mass |
LM | lean mass |
BIA | bioelectrical impedance analyzer |
BP | bench press |
LAM | lat machine |
LP | leg press |
BMI | body mass index |
Conflicts of Interest
References
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. ISSN exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010, 7, 72. [Google Scholar] [CrossRef]
- Aragon, A.A.; Schoenfeld, B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int. Soc. Sports Nutr. 2013, 10, 5. [Google Scholar] [CrossRef]
- Stark, M.; Lukaszuk, J.; Prawitz, A.; Salacinski, A. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J. Int. Soc. Sports Nutr. 2012, 9, 54. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The effect of protein timing on muscle strength and hypertrophy: A meta-analysis. J. Int. Soc. Sports Nutr. 2013, 10, 53. [Google Scholar] [CrossRef]
- Negro, M.; Rucci, S.; Buonocore, D.; Focarelli, A.; Marzatico, F. Sports Nutrition Science: An essential overview. Prog. Nutr. 2013, 15, 3–30. [Google Scholar]
- Tang, J.E.; Manolakos, J.J.; Kujbida, G.W.; Lysecki, P.J.; Moore, D.R.; Phillips, S.M. Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Appl. Physiol. Nutr. Metab. 2007, 32, 1132–1138. [Google Scholar] [CrossRef]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar]
- Hartman, J.; Tang, J.; Wilkinson, S.; Tarnopolsky, M.; Lawrence, R.; Fullerton, A.; Phillips, S. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar]
- Wilkinson, S.; Tarnopolsky, M.; MacDonald, M.; MacDonald, J.; Armstrong, D.; Phillips, S. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am. J. Clin. Nutr. 2007, 85, 1031–1040. [Google Scholar]
- Symons, T.B.; Sheffield-Moore, M.; Mamerow, M.M.; Wolfe, R.R.; Paddon-Jones, D. The anabolic response to resistance exercise and a protein-rich meal is not diminished by age. J. Nutr. Health Aging 2011, 15, 376–381. [Google Scholar] [CrossRef]
- Robinson, M.J.; Burd, N.A.; Breen, L.; Rerecich, T.; Yang, Y.; Hector, A.J.; Baker, S.K.; Phillips, S.M. Dose-dependent responses of myofibrillar protein synthesis with beef ingestion are enhanced with resistance exercise in middle-aged men. Appl. Physiol. Nutr. Metab. 2013, 38, 120–125. [Google Scholar] [CrossRef]
- Chernoff, R. Protein and older adults. J. Am. Coll. Nutr. 2004, 23, 627S–630S. [Google Scholar] [CrossRef]
- Symons, T.B.; Schutzler, S.E.; Cocke, T.L.; Chinkes, D.L.; Wolfe, R.R.; Paddon-Jones, D. Aging does not impair the anabolic response to a protein-rich meal. Am. J. Clin. Nutr. 2007, 86, 451–456. [Google Scholar]
- Assessment of Muscular Strength and Endurance. ACSM’s Guidelines for Exercise Testing and Prescription, 4th ed.; Roitman, J.L., Herridge, M., Kelsey, M., LaFontaine, T.P., Miller, L., Wegner, M., Williams, M.A., York, T., Eds.; Williams and Wilkins: Baltimore, MD, USA, 1995; pp. 376–380. [Google Scholar]
- NIH Consensus Statement. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. December 12–14, 1994. Nutrition 1996, 12, 749–762. [Google Scholar] [CrossRef]
- Bolanowski, M.; Nilsson, B.E. Assessment of human body composition using dual-energy x-ray absorptiometry and bioelectrical impedance analysis. Med. Sci. Monit. 2001, 7, 1029–1033. [Google Scholar]
- Negro, M.; Giardina, S.; Marzani, B.; Marzatico, F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fitness 2008, 48, 347–351. [Google Scholar]
- Layman, D.K. Dietary Guidelines should reflect new understandings about adult protein needs. Nutr. Metab. (Lond.) 2009, 6, 12. [Google Scholar] [CrossRef]
- Pennings, B.; Groen, B.B.; van Dijk, J.W.; de Lange, A.; Kiskini, A.; Kuklinski, M.; Senden, J.M.; van Loon, L.J. Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men. Am. J. Clin. Nutr. 2013, 98, 121–128. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Negro, M.; Vandoni, M.; Ottobrini, S.; Codrons, E.; Correale, L.; Buonocore, D.; Marzatico, F. Protein Supplementation with Low Fat Meat after Resistance Training: Effects on Body Composition and Strength. Nutrients 2014, 6, 3040-3049. https://doi.org/10.3390/nu6083040
Negro M, Vandoni M, Ottobrini S, Codrons E, Correale L, Buonocore D, Marzatico F. Protein Supplementation with Low Fat Meat after Resistance Training: Effects on Body Composition and Strength. Nutrients. 2014; 6(8):3040-3049. https://doi.org/10.3390/nu6083040
Chicago/Turabian StyleNegro, Massimo, Matteo Vandoni, Sara Ottobrini, Erwan Codrons, Luca Correale, Daniela Buonocore, and Fulvio Marzatico. 2014. "Protein Supplementation with Low Fat Meat after Resistance Training: Effects on Body Composition and Strength" Nutrients 6, no. 8: 3040-3049. https://doi.org/10.3390/nu6083040