Could a Change in Diet Revitalize Children Who Suffer from Unresolved Fatigue?
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
Dependent variable | Regular Diet | Advised Diet |
---|---|---|
Vitamin A (μg) | 169.00 | 198.80 |
Vitamin C (mg) | 38.25 | 47.75 |
Vitamin D (μg) | 1.57 | 0.51 |
Vitamin E (mg) | 2.79 | 12.56 |
Vitamin B2 (mg) | 2.39 | 2.30 |
Vitamin B12 (μg) | 4.82 | 5.29 |
Iron (mg) | 4.37 | 5.42 |
Zinc (mg) | 5.48 | 11.24 |
Folic Acid (μg) | 192.51 | 337.96 |
Phosphor (mg) | 1745.80 | 1710.30 |
Calcium (mg) | 1485.80 | 1327.30 |
Beta-caroten (μg) | 5122.90 | 6035.90 |
(alpha)-linoleic acid (%) | 40.62 | 44.74 |
2.2. Ethics
2.3. Intervention
2.4. Measurements
2.5. Statistics
3. Results
3.1. Study Population
3.2. Compliance of Intervention Group
3.3. Clinical Outcomes
N = 98 | Intervention Group (n = 50) | Control Group (n = 48) | p-value |
---|---|---|---|
Sex (M/F) | 24/26 | 21/27 | 0.69 |
Age mean (SD) (years) | 7.44 (5.0) | 7.0 (4.8) | 0.66 |
FU time mean (SD) (days) | 137.1 (67.0) | 141.9 (72.8) | 0.73 |
General fatigue * | 49.6 (19.0) | 47.9 (24.2) | 0.70 |
Cognitive fatigue * | 55.3 (22.1) | 60.0 (24.6) | 0.33 |
Sleep/need to rest * | 57.1 (20.4) | 55.8 (18.7) | 0.74 |
Comorbid diagnosis (%) | 27 (54) § | 26 (54) § | 0.41 |
Medication (%) | 25 (50) § | 28 (58) § | 0.99 |
Compliance to the total diet (%) | 29.8 | 29.3 | 0.91 |
Compliance to green vegetables (%) | 47.1 | 56.5 | 0.26 |
Compliance to beef (%) | 40.6 | 54.9 | 0.13 |
Compliance to whole milk (%) | 17.0 | 8.6 | 0.24 |
Compliance to full fat butter (%) | 12.5 | 2.5 | 0.09 |
Dependent variable | Intervention Group (N = 40) | Control Group (N = 48) |
---|---|---|
Second score (range) PedsQL | ||
General fatigue | 59.1 (16.7–91.7) | 54.4 (4.2–100.0) |
Cognitive fatigue | 66.7 (0.0–100.0) | 63.8 (16.7–100.0) |
Need to sleep | 66.5 (29.2–95.8) | 60.1 (16.7–100.0) |
Change (SD) in score PedsQL | ||
General fatigue | 9.5 (17.5) | 6.4 (19.2) |
Cognitive fatigue | 8.1 (21.4) | 2.9 (18.4) |
Need to sleep | 12.0 * (17.8) | 4.4 * (16.3) |
Dependent variable | Green Vegetables | Beef | Whole Milk | Full-Fat Butter | ||||
---|---|---|---|---|---|---|---|---|
N = 88 | B * | 95% CI | B * | 95% CI | B * | 95% CI | B * | 95% CI |
General fatigue | 8.88 | −1.23; 18.99 | 1.32 | −10.12; 12.75 | 3.62 | −6.26; 13.50 | −2.55 | −12.07; 6.97 |
Cognitive fatigue | 16.45 | 2.27; 30.63 | 3.83 | −7.44; 15.10 | −1.70 | −11.26; 7.86 | −1.20 | −10.47; 8.08 |
Need to sleep | 8.12 | −2.74; 18.98 | 7.56 | −0.94; 16.06 | 7.32 | 0.02; 14.62 | 2.63 | −4.69; 9.96 |
3.4. Impact on BMI
4. Discussion
4.1. Benefits of a Nutrient-Rich Diet
4.2. Limitations and Future Perspectives
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wijga, A.H.; Beckers, M.C.B. Klachten En Kwalen Bij Kinderen in Nederland. Ned. Tijdschr. Geneeskd. 2011, 155, A3464. [Google Scholar] [PubMed]
- Luntamo, T.; Sourander, A.; Santalahti, P.; Aromaa, M.; Helenius, H. Prevalence changes of pain, sleep problems and fatigue among 8-year-old children: Years 1989, 1999, and 2005. J. Pediatr. Psychol. 2012, 37, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Rimes, K.A.; Goodman, R.; Hotopf, M.; Wessely, S.; Meltzer, H.; Chalder, T. Incidence, prognosis, and risk factors for fatigue and chronic fatigue syndrome in adolescents: A Prospective Community Study. Pediatrics 2007, 119, e603–e609. [Google Scholar] [CrossRef] [PubMed]
- Crawley, E.; Sterne, J.A. Association between School Absence and physical function in paediatric chronic fatigue syndrome/myalgic encephalopathy. Arch. Dis. Child. 2009, 94, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Fowler, T.; Duthie, P.; Thapar, A.; Farmer, A. The Definition of disabling fatigue in children and adolescents. BMC Fam. Pract. 2005, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Velde, L.G.H.; Leegsma, J.; van der Gaag, E.J. Recurrent upper respiratory tract infections in children; the influence of green vegetables, beef, whole milk and butter. Food Nutr. Sci. 2013, 4, 71. [Google Scholar] [CrossRef]
- Crawley, E. The epidemiology of chronic fatigue syndrome/myalgic encephalitis in children. Arch. Dis. Child. 2014, 99, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, B.; Weber, P.; Eggersdorfer, M. Micronutrients—A global perspective on intake, health benefits and economics. Int. J. Vitam. Nutr. Res. 2012, 82, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Kurpad, A.V.; Edward, B.S.; Aeberli, I. Micronutrient supply and health outcomes in children. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.B.; Joffe, A.; Duggan, A.K.; Casella, J.F.; Brandt, J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet 1996, 348, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Verdon, F.; Burnand, B.; Stubi, C.L.; Bonard, C.; Graff, M.; Michaud, A.; Bischoff, T.; de Vevey, M.; Studer, J.P.; Herzig, L.; et al. Iron supplementation for unexplained fatigue in non-anaemic women: Double blind randomised placebo controlled trial. BMJ 2003, 326, 1124. [Google Scholar] [CrossRef]
- Baars, E.W.; Gans, S.; Ellis, E.L. The effect of hepar magnesium on seasonal fatigue symptoms: A Pilot Study. J. Altern. Complement. Med. 2008, 14, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Ataei, E.; Ardalan, G.; Nazemian, M.; Tajadini, M.; Heshmat, R.; Keikha, M.; Motlagh, M.E. Relationship of serum magnesium and vitamin d levels in a nationally-representative sample of Iranian adolescents: The CASPIAN-III Study. Int. J. Prev. Med. 2014, 5, 99–103. [Google Scholar] [PubMed]
- Ellis, F.R.; Nasser, S. A pilot study of vitamin B12 in the treatment of tiredness. Br. J. Nutr. 1973, 30, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Kodama, M.; Kodama, T.; Murakami, M. The value of the Dehydroepiandrosterone-annexed vitamin C infusion treatment in the clinical control of chronic fatigue syndrome (CFS). II. Characterization of CFS patients with special reference to their response to a new vitamin C infusion treatment. In Vivo 1996, 10, 585–596. [Google Scholar] [PubMed]
- Miwa, K.; Fujita, M. Increased oxidative stress suggested by low serum vitamin E concentrations in patients with chronic fatigue syndrome. Int. J. Cardiol. 2009, 136, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Monsen, E.R. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Puri, B.K. Long-chain polyunsaturated fatty acids and the pathophysiology of myalgic encephalomyelitis (chronic fatigue syndrome). J. Clin. Pathol. 2007, 60, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz-Shenkar, S.; Carasso, R.L. Effects of essential fatty acids in iron deficient and sleep-disturbed attention deficit hyperactivity disorder (ADHD) children. Eur. J. Clin. Nutr. 2011, 65, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.; Hannon, E.M.; Flynn, A. Nutritional quality of the school-day diet in Irish children (5–12 years). J. Hum. Nutr. Diet. 2014, 28, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.; McNulty, B.A.; Nugent, A.P.; Gibney, M.J.; Flynn, A. Diet, lifestyle and body weight in Irish children: Findings from Irish universities nutrition alliance national surveys. Proc. Nutr. Soc. 2014, 73, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Nederlands Centrum Jeugdgezondheidszorg. Voeding En Vitamines: Cijfers; Nederlands Centrum Jeugdgezondheidszorg: Utrecht, The Netherlands, 2011. [Google Scholar]
- Arroll, M.A.; Howard, A. A Preliminary prospective study of nutritional, psychological and combined therapies for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in a private care setting. BMJ Open 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, M.W.J.; van der Gaag, E.J. Subclinical hypothyroidism in children can normalize after changes in dietary intake. Food Nutr. Sci. 2012, 3, 411–416. [Google Scholar] [CrossRef]
- Dutch Food Center. NEVO-Tabel 2013: Nederlands Voedingsstoffenbestand; Dutch Food Center: The Hague, The Netherlands, 2013. [Google Scholar]
- Varni, J.W.; Beaujean, A.A.; Limbers, C.A. Factorial invariance of pediatric patient self-reported fatigue across age and gender: A multigroup confirmatory factor analysis approach utilizing the pedsql multidimensional fatigue scale. Qual. Life Res. 2013, 22, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, M.; Cremers, E.M.; Kaspers, G.J.; Gemke, R.J. Fatigue in children: Reliability and validity of the Dutch PedsQL multidimensional fatigue scale. Qual. Life Res. 2011, 20, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Behan, P.O.; Behan, W.M.; Horrobin, D. Effect of high doses of essential fatty acids on the Postviral fatigue syndrome. Acta Neurol. Scand. 1990, 82, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zevenbergen, H.; de Bree, A.; Zeelenberg, M.; Laitinen, K.; van Duijn, G.; Floter, E. Foods with a high fat quality are essential for healthy diets. Ann. Nutr. Metab. 2009, 54 (Suppl. 1), 15–24. [Google Scholar] [CrossRef]
- Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Reiter, R.J. Clinical uses of melatonin in pediatrics. Int. J. Pediatr. 2011, 2011, 892624. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; West, K.P., Jr. Interactions between zinc and vitamin A: An update. Am. J. Clin. Nutr. 1998, 68, 435S–441S. [Google Scholar] [PubMed]
- Rahman, M.M.; Wahed, M.A.; Fuchs, G.J.; Baqui, A.H.; Alvarez, J.O. Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. Am. J. Clin. Nutr. 2002, 75, 92–98. [Google Scholar] [PubMed]
- Fine, K.D.; Santa Ana, C.A.; Porter, J.L.; Fordtran, J.S. Intestinal absorption of magnesium from food and supplements. J. Clin. Investig. 1991, 88, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Al-Mekhlafi, H.M.; al-Zabedi, E.M.; al-Maktari, M.T.; Atroosh, W.M.; al-Delaimy, A.K.; Moktar, N.; Sallam, A.A.; Abdullah, W.A.; Jani, R.; Surin, J. Effects of vitamin A supplementation on iron status indices and iron deficiency anaemia: A randomized controlled trial. Nutrients 2013, 6, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Michelazzo, F.B.; Oliveira, J.M.; Stefanello, J.; Luzia, L.A.; Rondo, P.H. The influence of vitamin A supplementation on iron status. Nutrients 2013, 5, 4399–4413. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, F.M.; van der Werf, S.; Bleijenberg, G.; van der Zee, L.; van der Meer, J.W. The Effect of a polynutrient supplement on fatigue and physical activity of patients with chronic fatigue syndrome: A double-blind randomized controlled trial. QJM 2002, 95, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Thompson, H.S. Antioxidants: What role do they play in physical activity and health? Am. J. Clin. Nutr. 2000, 72, 637S–646S. [Google Scholar] [PubMed]
- Konig, D.; Wagner, K.H.; Elmadfa, I.; Berg, A. Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exerc. Immunol. Rev. 2001, 7, 108–133. [Google Scholar] [PubMed]
- Kennedy, G.; Khan, F.; Hill, A.; Underwood, C.; Belch, J.J. Biochemical and vascular aspects of pediatric chronic fatigue syndrome. Arch. Pediatr. Adolesc. Med. 2010, 164, 817–823. [Google Scholar] [PubMed]
- Cummings, C.; Canadian Paediatric Society, Community Paediatrics Committee. Melatonin for the management of sleep disorders in children and adolescents. Paediatr. Child. Health 2012, 17, 331–336. [Google Scholar] [PubMed]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, F.; Aydin, E.; Tastan, E.; Arslan, N.; Senes, M.; Unlu, I.; Kavuzlu, A. Is there a relationship between serum levels of vitamin A, vitamin E, copper and zinc and otitis media with effusion in children? Indian. J. Otolaryngol. Head. Neck. Surg. 2013, 65, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.S. Proinflammatory cytokines and sickness behavior: Implications for depression and cancer-related symptoms. Oncol. Nurs. Forum 2008, 35, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Gidding, S.S.; Dennison, B.A.; Birch, L.L.; Daniels, S.R.; Gillman, M.W.; Lichtenstein, A.H.; Rattay, K.T.; Steinberger, J.; Stettler, N.; van Horn, L.; et al. Dietary recommendations for children and adolescents: A guide for practitioners. Pediatrics 2006, 117, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Wijga, A.H.; Smit, H.A.; Kerkhof, M.; de Jongste, J.C.; Gerritsen, J.; Neijens, H.J.; Boshuizen, H.C.; Brunekreef, B. Association of consumption of products containing milk fat with reduced asthma risk in pre-school children: The PIAMA Birth Cohort Study. Thorax 2003, 58, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Bryan, J.; Buckley, J.; Murphy, K.J. Dairy consumption and metabolic syndrome: A systematic review of findings and methodological issues. Obes. Rev. 2011, 12, e190–e201. [Google Scholar] [CrossRef] [PubMed]
- Noel, S.E.; Ness, A.R.; Northstone, K.; Emmett, P.; Newby, P.K. Milk intakes are not associated with percent body fat in children from ages 10 to 13 years. J. Nutr. 2011, 141, 2035–2041. [Google Scholar] [CrossRef] [PubMed]
- Pfeuffer, M.; Schrezenmeir, J. Milk and the metabolic syndrome. Obes. Rev. 2007, 8, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Bigornia, S.J.; LaValley, M.P.; Moore, L.L.; Northstone, K.; Emmett, P.; Ness, A.R.; Newby, P.K. Dairy intakes at age 10 years do not adversely affect risk of excess adiposity at 13 years. J. Nutr. 2014, 144, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Barba, G.; Troiano, E.; Russo, P.; Venezia, A.; Siani, A. Inverse association between body mass and frequency of milk consumption in children. Br. J. Nutr. 2005, 93, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeels, M.A.; Foets, M.; van der Wouden, J.C.; van den Heuvel, W.J.; Prins, A. Everyday symptoms in childhood: Occurrence and general practitioner consultation rates. Br. J. Gen. Pract. 1998, 48, 880–884. [Google Scholar] [PubMed]
- Marshall, P.S.; O’Hara, C.; Steinberg, P. Effects of seasonal allergic rhinitis on fatigue levels and mood. Psychosom. Med. 2002, 64, 684–691. [Google Scholar] [PubMed]
- Kristjansdottir, J.; Olsson, G.I.; Sundelin, C.; Naessen, T. Self-reported health in adolescent girls varies according to the season and its relation to medication and hormonal contraception—A Descriptive Study. Eur. J. Contracept. Reprod. Health Care 2013, 18, 343–354. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steenbruggen, T.G.; Hoekstra, S.J.; Van der Gaag, E.J. Could a Change in Diet Revitalize Children Who Suffer from Unresolved Fatigue? Nutrients 2015, 7, 1965-1977. https://doi.org/10.3390/nu7031965
Steenbruggen TG, Hoekstra SJ, Van der Gaag EJ. Could a Change in Diet Revitalize Children Who Suffer from Unresolved Fatigue? Nutrients. 2015; 7(3):1965-1977. https://doi.org/10.3390/nu7031965
Chicago/Turabian StyleSteenbruggen, Tessa Gerjanne, Sietske Johanna Hoekstra, and Ellen José Van der Gaag. 2015. "Could a Change in Diet Revitalize Children Who Suffer from Unresolved Fatigue?" Nutrients 7, no. 3: 1965-1977. https://doi.org/10.3390/nu7031965
APA StyleSteenbruggen, T. G., Hoekstra, S. J., & Van der Gaag, E. J. (2015). Could a Change in Diet Revitalize Children Who Suffer from Unresolved Fatigue? Nutrients, 7(3), 1965-1977. https://doi.org/10.3390/nu7031965