Polyphenols and DNA Damage: A Mixed Blessing
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Whole Foods and Drinks
3.2. Extracts of Plants
3.2.1. Tea-Related Extracts
3.2.2. Lamiaceae Family Plants
3.2.3. Honey-Related Extracts
3.2.4. Fruits and Berries
3.2.5. Miscellaneous Plant Extracts
4. Isolated Phytochemicals
4.1. Compounds Related to Tea and Coffee
4.2. Curcumin
4.3. Resveratrol
4.4. Flavonoids
5. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
SB | strand break |
Fpg | formamidopyrimidine DNA glycosylase |
EndoIII | endonuclease III (Nth) |
8-OH–Gua (8-OH–G) | 8-oxo–7,8-dihydroguanine |
PBMN | peripheral blood mononuclear |
NER | nucleotide excision repair |
Ab | antibody |
NP | nanoparticle |
Dox | doxorubicin |
B(a)P | benzo(a)phenol |
CPD | cyclobutane pyrimidine dimer |
t-BOOH | tert-butyl hydroperoxide |
PCB | polychlorinated biphenyls |
DEN | diethylnitrosamine |
TPA | tetradecanoyl-phorbol acetate |
References
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. J. Am. Med. Assoc. 2007, 297, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Collins, A.R. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Kasai, H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res./Rev. Mutat. Res. 1997, 387, 147–163. [Google Scholar] [CrossRef]
- Kasai, H.; Kawai, K. 8-hydroxyguanine, an oxidative DNA and RNA modification. In Modified Nucleic Acids in Biology and Medicine; Jurga, S.E., Erdmann, V.A., Barciszewski, J., Eds.; Springer: Basel, Switzerland, 2016; pp. 147–185. [Google Scholar]
- Sedelnikova, O.A.; Rogakou, E.P.; Panyutin, I.G.; Bonner, W.M. Quantitative detection of (125)idu-induced DNA double-strand breaks with gamma-h2ax antibody. Radiat. Res. 2002, 158, 486–492. [Google Scholar] [CrossRef]
- Huang, X.; Darzynkiewicz, Z. Cytometric assessment of histone h2ax phosphorylation: A reporter of DNA damage. Methods Mol. Biol. 2006, 314, 73–80. [Google Scholar] [PubMed]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Norppa, H.; Ceppi, M.; Stromberg, U.; Vermeulen, R.; Znaor, A.; Cebulska-Wasilewska, A.; Fabianova, E.; Fucic, A.; Gundy, S.; et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: Results from a pooled cohort study of 22,358 subjects in 11 countries. Carcinogenesis 2008, 29, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; El-Zein, R.; Bolognesi, C.; Fenech, M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: Evidence from human studies. Mutagenesis 2011, 26, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Huerta, O.D.; Aguilera, C.M.; Martin, M.V.; Soto, M.J.; Rico, M.C.; Vallejo, F.; Tomas-Barberan, F.; Perez-de-la-Cruz, A.J.; Gil, A.; Mesa, M.D. Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J. Nutr. 2015, 145, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Flores, L.A.; Medina, S.; Cejuela-Anta, R.; Martinez-Sanz, J.M.; Abellan, A.; Genieser, H.G.; Ferreres, F.; Gil-Izquierdo, A. DNA catabolites in triathletes: Effects of supplementation with an aronia-citrus juice (polyphenols-rich juice). Food Funct. 2016, 7, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Spadafranca, A.; Martinez Conesa, C.; Sirini, S.; Testolin, G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 2010, 103, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, L.; Pitozzi, V.; Luceri, C.; Giannini, L.; Toti, S.; Salvini, S.; Sera, F.; Souquet, J.M.; Cheynier, V.; Sofi, F.; et al. Effects of de-alcoholised wines with different polyphenol content on DNA oxidative damage, gene expression of peripheral lymphocytes, and haemorheology: An intervention study in post-menopausal women. Eur. J. Nutr. 2011, 50, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Klimis-Zacas, D.; Del Bo, C.; Martini, D.; Campolo, J.; Vendrame, S.; Moller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhomme de la Roche, H.; Seagrove, S.; Mehta, A.; Divekar, P.; Campbell, S.; Curnow, A. Using natural dietary sources of antioxidants to protect against ultraviolet and visible radiation-induced DNA damage: An investigation of human green tea ingestion. J. Photochem. Photobiol. B Biol. 2010, 101, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Alleva, R.; Manzella, N.; Gaetani, S.; Ciarapica, V.; Bracci, M.; Caboni, M.F.; Pasini, F.; Monaco, F.; Amati, M.; Borghi, B.; et al. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating dna damage response. Mol. Nutr. Food Res. 2016, 60, 2243–2255. [Google Scholar] [CrossRef] [PubMed]
- Venancio, V.P.; Marques, M.C.; Almeida, M.R.; Mariutti, L.R.; Souza, V.C.; Barbosa, F., Jr.; Pires Bianchi, M.L.; Marzocchi-Machado, C.M.; Mercadante, A.Z.; Antunes, L.M. Chrysobalanus icaco l. Fruits inhibit nadph oxidase complex and protect DNA against doxorubicin-induced damage in wistar male rats. J. Toxicol. Environ. Health Part A 2016, 79, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Roy, M. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in swiss albino mice. J. Environ. Pathol. Toxicol. Oncol. 2011, 30, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.R.; Darin, J.D.; Hernandes, L.C.; Aissa, A.F.; Chiste, R.C.; Mercadante, A.Z.; Antunes, L.M.; Bianchi, M.L. Antigenotoxic effects of piquia (caryocar villosum) in multiple rat organs. Plant Foods Hum. Nutr. 2012, 67, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, J.C.; Antunes, L.M.; Aissa, A.F.; Darin, J.D.; De Rosso, V.V.; Mercadante, A.Z.; Bianchi Mde, L. Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with acai pulp (euterpe oleracea mart.) on mice using the erythrocytes micronucleus test and the comet assay. Mutat. Res. 2010, 695, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Krajka-Kuzniak, V.; Szaefer, H.; Ignatowicz, E.; Adamska, T.; Markowski, J.; Baer-Dubowska, W. Influence of cloudy apple juice on n-nitrosodiethylamine- induced liver injury and phases i and ii biotransformation enzymes in rat liver. Acta Pol. Pharm. 2015, 72, 267–276. [Google Scholar] [PubMed]
- Acharyya, N.; Sajed Ali, S.; Deb, B.; Chattopadhyay, S.; Maiti, S. Green tea (camellia sinensis) alleviates arsenic-induced damages to DNA and intestinal tissues in rat and in situ intestinal loop by reinforcing antioxidant system. Environ. Toxicol. 2015, 30, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Park, J.H.; Kim, S.Y.; Lee, S.W.; Chun, S.S.; Park, E. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev. Nutr. Food Sci. 2014, 19, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.K.; Siu-wai, C.; Siu, P.M.; Benzie, I.F. Genoprotection and genotoxicity of green tea (camellia sinensis): Are they two sides of the same redox coin? Redox Rep. Commun. Free Radic. Res. 2013, 18, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Kuhnel, H.; Adilijiang, A.; Dadak, A.; Wieser, M.; Upur, H.; Stolze, K.; Grillari, J.; Strasser, A. Investigations into cytotoxic effects of the herbal preparation abnormal savda munziq. Chin. J. Integr. Med. 2015, 53, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Haza, A.I.; Morales, P. Spanish honeys protect against food mutagen-induced DNA damage. J. Sci. Food Agric. 2013, 93, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Xue, K.; Tang, L.; Wang, F.; Song, X.; Chyu, M.C.; Pence, B.C.; Shen, C.L.; Wang, J.S. Mitigation of oxidative damage by green tea polyphenols and tai chi exercise in postmenopausal women with osteopenia. PLoS ONE 2012, 7, e48090. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, J.J.; Xiong, L.; Zhang, L.; Sun, D.; Liu, H. Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J. Nutr. Biochem. 2010, 21, 741–748. [Google Scholar] [PubMed]
- Katiyar, S.K.; Vaid, M.; van Steeg, H.; Meeran, S.M. Green tea polyphenols prevent uv-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes. Cancer Prev. Res. 2010, 3, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez Mdel, C.; Carvente-Juarez, M.M.; Altamirano-Lozano, M.A. Antigenotoxic and apoptotic activity of green tea polyphenol extracts on hexavalent chromium-induced DNA damage in peripheral blood of cd-1 mice: Analysis with differential acridine orange/ethidium bromide staining. Oxidative Med. Cell. Longev. 2013, 2013, 486419. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Wang, Z.; Zhou, S.; Klaunig, J.E. Protective effects of antioxidants on acrylonitrile-induced oxidative stress in female f344 rats. Environ. Toxicol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, E.D.; Filip, A.; Clichici, S.; Daicoviciu, D.; Achim, M.; Postescu, I.D.; Bolfa, P.; Bolojan, L.; Vlase, L.; Muresan, A. Photochemoprotective effect of calluna vulgaris extract on skin exposed to multiple doses of ultraviolet b in skh-1 hairless mice. J. Environ. Pathol. Toxicol. Oncol. 2012, 31, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Shukla, S.K.; Sharma, R.K. Rec-2006-a fractionated extract of podophyllum hexandrum protects cellular DNA from radiation-induced damage by reducing the initial damage and enhancing its repair in vivo. Evid.-Based Complement. Altern. Med. 2011, 2011, 473953. [Google Scholar] [CrossRef] [PubMed]
- Matic, S.; Stanic, S.; Bogojevic, D.; Vidakovic, M.; Grdovic, N.; Dinic, S.; Solujic, S.; Mladenovic, M.; Stankovic, N.; Mihailovic, M. Methanol extract from the stem of cotinus coggygria scop., and its major bioactive phytochemical constituent myricetin modulate pyrogallol-induced DNA damage and liver injury. Mutat. Res. 2013, 755, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Katiyar, S.K. Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class i histone deacetylases and induction of DNA damage. Genes Cancer 2015, 6, 49–61. [Google Scholar] [PubMed]
- Durgo, K.; Kostic, S.; Gradiski, K.; Komes, D.; Osmak, M.; Franekic, J. Genotoxic effects of green tea extract on human laryngeal carcinoma cells in vitro. Arch. Hig. Rada Toksikol. 2011, 62, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sanchez, A.; Barrajon-Catalan, E.; Caturla, N.; Castillo, J.; Benavente-Garcia, O.; Alcaraz, M.; Micol, V. Protective effects of citrus and rosemary extracts on uv-induced damage in skin cell model and human volunteers. J. Photochem. Photobiol. B Biol. 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Cornaghi, L.; Arnaboldi, F.; Calo, R.; Landoni, F.; Baruffaldi Preis, W.F.; Marabini, L.; Donetti, E. Effects of uv rays and thymol/thymus vulgaris l. Extract in an ex vivo human skin model: Morphological and genotoxicological assessment. Cells Tissues Organs 2016, 201, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Calo, R.; Visone, C.M.; Marabini, L. Thymol and thymus vulgaris L. Activity against uva- and uvb-induced damage in nctc 2544 cell line. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 791, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sanchez, A.; Barrajon-Catalan, E.; Herranz-Lopez, M.; Castillo, J.; Micol, V. Lemon balm extract (Melissa officinalis L.) promotes melanogenesis and prevents uvb-induced oxidative stress and DNA damage in a skin cell model. J. Dermatol. Sci. 2016, 84, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Venuprasad, M.P.; Hemanth Kumar, K.; Khanum, F. Neuroprotective effects of hydroalcoholic extract of ocimum sanctum against h2o2 induced neuronal cell damage in sh-sy5y cells via its antioxidative defence mechanism. Neurochem. Res. 2013, 38, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasampandan, R.; Jayakumar, R. Protection of cadmium chloride induced DNA damage by lamiaceae plants. Asian Pac. J. Trop. Biomed. 2011, 1, 391–394. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Tulipani, S.; Gonzales-Paramas, A.M.; Santos-Buelga, C.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Photoprotective potential of strawberry (fragaria x ananassa) extract against uv-a irradiation damage on human fibroblasts. J. Agric. Food Chem. 2012, 60, 2322–2327. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Gonzalez-Paramas, A.M.; Santos-Buelga, C.; Quiles, J.L.; Bompadre, S.; Mezzetti, B.; et al. Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules 2014, 19, 7798–7816. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Antonacci, R.; Wang, Y.Y.; Lattuada, N.; Dal Sasso, M.; Marabini, L.; Fibiani, M.; Lo Scalzo, R. Comparative antioxidant activity of cultivated and wild vaccinium species investigated by epr, human neutrophil burst and comet assay. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1987–1999. [Google Scholar] [PubMed]
- Yamamoto, A.; Nakashima, K.; Kawamorita, S.; Sugiyama, A.; Miura, M.; Kamitai, Y.; Kato, Y. Protective effects of raw and cooked blackcurrant extract on DNA damage induced by hydrogen peroxide in human lymphoblastoid cells. Pharm. Biol. 2014, 52, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Bellion, P.; Digles, J.; Will, F.; Dietrich, H.; Baum, M.; Eisenbrand, G.; Janzowski, C. Polyphenolic apple extracts: Effects of raw material and production method on antioxidant effectiveness and reduction of DNA damage in caco-2 cells. J. Agric. Food Chem. 2010, 58, 6636–6642. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Konczak, I.; Ramzan, I.; Sze, D.M. Native australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutr. Cancer 2011, 63, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Botden, I.P.; Oeseburg, H.; Durik, M.; Leijten, F.P.; Van Vark-Van Der Zee, L.C.; Musterd-Bhaggoe, U.M.; Garrelds, I.M.; Seynhaeve, A.L.; Langendonk, J.G.; Sijbrands, E.J.; et al. Red wine extract protects against oxidative-stress-induced endothelial senescence. Clin. Sci. 2012, 123, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, C.O.; Aliyazicioglu, Y.; Demir, S.; Turan, I.; Bahat, Z.; Misir, S.; Deger, O. Evaluation of the radioprotective effect of turkish propolis on foreskin fibroblast cells. J. Cancer Res. Ther. 2016, 12, 990–994. [Google Scholar] [PubMed]
- Tsai, Y.C.; Wang, Y.H.; Liou, C.C.; Lin, Y.C.; Huang, H.; Liu, Y.C. Induction of oxidative DNA damage by flavonoids of propolis: Its mechanism and implication about antioxidant capacity. Chem. Res. Toxicol. 2012, 25, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon e in prostate cancer patients before prostatectomy: Evaluation of potential chemopreventive activities. Cancer Prev. Res. 2012, 5, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Ferk, F.; Misik, M.; Nersesyan, A.; Pichler, C.; Jager, W.; Szekeres, T.; Marculescu, R.; Poulsen, H.E.; Henriksen, T.; Bono, R.; et al. Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: Results of human intervention trials. Mol. Nutr. Food Res. 2016, 60, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Cariddi, L.N.; Sabini, M.C.; Escobar, F.M.; Montironi, I.; Manas, F.; Iglesias, D.; Comini, L.R.; Sabini, L.I.; Dalcero, A.M. Polyphenols as possible bioprotectors against cytotoxicity and DNA damage induced by ochratoxin A. Environ. Toxicol. Pharmacol. 2015, 39, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Papiez, M.A. The influence of curcumin and (−)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem. Toxicol. 2013, 36, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Tahir, M.; Ali, F.; Qamar, W.; Lateef, A.; Khan, R.; Quaiyoom, A.; Oday, O.H.; Sultana, S. Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of swiss albino mice: The protective effect of ellagic acid. Mol. Cell. Biochem. 2012, 365, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Bhatnagar, P.; Singh, M.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. Synthesis of plga nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int. J. Nanomed. 2013, 8, 1451–1462. [Google Scholar]
- Li, G.X.; Chen, Y.K.; Hou, Z.; Xiao, H.; Jin, H.; Lu, G.; Lee, M.J.; Liu, B.; Guan, F.; Yang, Z.; et al. Pro-oxidative activities and dose-response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: A comparative study in vivo and in vitro. Carcinogenesis 2010, 31, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Marrazzo, G.; Bosco, P.; La Delia, F.; Scapagnini, G.; Di Giacomo, C.; Malaguarnera, M.; Galvano, F.; Nicolosi, A.; Li Volti, G. Neuroprotective effect of silibinin in diabetic mice. Neurosci. Lett. 2011, 504, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Rocha de Oliveira, C.; Ceolin, J.; Rocha de Oliveira, R.; Goncalves Schemitt, E.; Raskopf Colares, J.; De Freitas Bauermann, L.; Hilda Costabeber, I.; Morgan-Martins, M.I.; Mauriz, J.L.; Da Silva, J.; et al. Effects of quercetin on polychlorinated biphenyls-induced liver injury in rats. Nutr. Hosp. 2014, 29, 1141–1148. [Google Scholar] [PubMed]
- Patil, S.L.; Rao, N.B.; Somashekarappa, H.M.; Rajashekhar, K.P. Antigenotoxic potential of rutin and quercetin in swiss mice exposed to gamma radiation. Biomed. J. 2014, 37, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Manzolli, E.S.; Serpeloni, J.M.; Grotto, D. Protective effects of the flavonoid chrysin against methylmercury-induced genotoxicity and alterations of antioxidant status, in vivo. Oxidative Med. Cell. Longev. 2015, 2015, 602360. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Q.; Ding, J.; Xiao, Z.H.; Liu, C.M. Puerarin ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney through erk/nrf2/are pathway. Food Chem. Toxicol. 2014, 71, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Ma, J.Q.; Sun, Y.Z. Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environ. Toxicol. Pharmacol. 2010, 30, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.A.; Swartz, C.; Maronpot, R.; Davis, J.; Recio, L.; Koyanagi, M.; Hayashi, S.M. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food Chem. Toxicol. 2015, 83, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Vikram, A.; Tripathi, D.N.; Ramarao, P.; Jena, G.B. Antioxidant and antimutagenic effect of quercetin against den induced hepatotoxicity in rat. Phytother. Res. 2010, 24, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ansar, S.; Siddiqi, N.J.; Zargar, S.; Ganaie, M.A.; Abudawood, M. Hepatoprotective effect of quercetin supplementation against acrylamide-induced DNA damage in wistar rats. BMC Complement. Altern. Med. 2016, 16, 327. [Google Scholar] [CrossRef] [PubMed]
- Carino-Cortes, R.; Alvarez-Gonzalez, I.; Martino-Roaro, L.; Madrigal-Bujaidar, E. Effect of naringin on the DNA damage induced by daunorubicin in mouse hepatocytes and cardiocytes. Biol. Pharm. Bull. 2010, 33, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Apigenin, a bioactive flavonoid from lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet b-induced reactive oxygen species and DNA damage. J. Acupunct. Meridian Stud. 2013, 6, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.W.; Piao, M.J.; Kim, K.C.; Yao, C.W.; Zheng, J.; Kim, S.M.; Hyun, C.L.; Ahn, Y.S.; Hyun, J.W. The polyphenol chlorogenic acid attenuates uvb-mediated oxidative stress in human hacat keratinocytes. Biomol. Ther. 2014, 22, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Moron, E.; Calderon-Montano, J.M.; Orta, M.L.; Pastor, N.; Perez-Guerrero, C.; Austin, C.; Mateos, S.; Lopez-Lazaro, M. The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase i- and ii-DNA complexes in cells. J. Agric. Food Chem. 2012, 60, 7384–7391. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Shimada, S.; Ishida, H.; Nakashima, M. Chafuroside b, an oolong tea polyphenol, ameliorates uvb-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes. PLoS ONE 2013, 8, e77308. [Google Scholar] [CrossRef] [PubMed]
- Vanella, L.; Barbagallo, I.; Acquaviva, R.; Di Giacomo, C.; Cardile, V.; Abraham, N.G.; Sorrenti, V. Ellagic acid: Cytodifferentiating and antiproliferative effects in human prostatic cancer cell lines. Curr. Pharm. Des. 2013, 19, 2728–2736. [Google Scholar] [CrossRef] [PubMed]
- Abib, R.T.; Quincozes-Santos, A.; Zanotto, C.; Zeidan-Chulia, F.; Lunardi, P.S.; Goncalves, C.A.; Gottfried, C. Genoprotective effects of the green tea-derived polyphenol/epicatechin gallate in c6 astroglial cells. J. Med. Food 2010, 13, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Miene, C.; Weise, A.; Glei, M. Impact of polyphenol metabolites produced by colonic microbiota on expression of cox-2 and gstt2 in human colon cells (lt97). Nutr. Cancer 2011, 63, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Patel, K.; Kern, S.E. Salivary alpha-amylase, serum albumin, and myoglobin protect against DNA-damaging activities of ingested dietary agents in vitro. Food Chem. Toxicol. 2014, 70, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Thiagarajan, K.; Chandrasekaran, R. In vitro evaluation of antiproliferative effect of ethyl gallate against human oral squamous carcinoma cell line kb. Nat. Prod. Res. 2015, 29, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Zielinska-Przyjemska, M.; Ignatowicz, E.; Krajka-Kuzniak, V.; Baer-Dubowska, W. Effect of tannic acid, resveratrol and its derivatives, on oxidative damage and apoptosis in human neutrophils. Food Chem. Toxicol. 2015, 84, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Basu, S.; Parija, L.; Rout, D.; Manna, S.; Dandapat, J.; Debata, P.R. Curcumin and ellagic acid synergistically induce ros generation, DNA damage, p53 accumulation and apoptosis in hela cervical carcinoma cells. Biomed. Pharmacother. 2016, 81, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sebastia, N.; Montoro, A.; Hervas, D.; Pantelias, G.; Hatzi, V.I.; Soriano, J.M.; Villaescusa, J.I.; Terzoudi, G.I. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the pcc and g2-assay. Mutat. Res. 2014, 766–767, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lewinska, A.; Wnuk, M.; Grabowska, W.; Zabek, T.; Semik, E.; Sikora, E.; Bielak-Zmijewska, A. Curcumin induces oxidation-dependent cell cycle arrest mediated by sirt7 inhibition of rdna transcription in human aortic smooth muscle cells. Toxicol. Lett. 2015, 233, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ross, S.M.; Trask, O.J.; Carmichael, P.L.; Dent, M.; White, A.; Andersen, M.E.; Clewell, R.A. Assessing dose-dependent differences in DNA-damage, p53 response and genotoxicity for quercetin and curcumin. Toxicol. In Vitro 2013, 27, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Ide, H.; Yu, J.; Lu, Y.; China, T.; Kumamoto, T.; Koseki, T.; Muto, S.; Horie, S. Testosterone augments polyphenol-induced DNA damage response in prostate cancer cell line, LNCaP. Cancer Sci. 2011, 102, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.N.; Lee, M.Y. Inhibitory effect of antioxidants on the benz[a]anthracene-induced oxidative DNA damage in lymphocyte. J. Environ. Biol./Acad. Environ. Biol. India 2011, 32, 7–10. [Google Scholar]
- Lu, J.J.; Cai, Y.J.; Ding, J. Curcumin induces DNA damage and caffeine-insensitive cell cycle arrest in colorectal carcinoma hct116 cells. Mol. Cell. Biochem. 2011, 354, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Cai, Y.J.; Ding, J. The short-time treatment with curcumin sufficiently decreases cell viability, induces apoptosis and copper enhances these effects in multidrug-resistant k562/a02 cells. Mol. Cell. Biochem. 2012, 360, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Turkez, H.; Sisman, T. The genoprotective activity of resveratrol on aflatoxin b(1)-induced DNA damage in human lymphocytes in vitro. Toxicol. Ind. Health 2012, 28, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jiang, X.; Hu, Y.; Zhang, Z. The protective role of resveratrol in the sodium arsenite-induced oxidative damage via modulation of intracellular gsh homeostasis. Biol. Trace Element Res. 2013, 155, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Demoulin, B.; Hermant, M.; Castrogiovanni, C.; Staudt, C.; Dumont, P. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase ii and activates the atm kinase to trigger p53-dependent apoptosis. Toxicol. In Vitro 2015, 29, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Liu, C.; Sanli, T.; Tsiani, E.; Singh, G.; Bristow, R.G.; Dayes, I.; Lukka, H.; Wright, J.; Tsakiridis, T. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the ampk, akt and mtor pathways. Radiat. Oncol. 2011, 6, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, B.; Allibe, N.; Cottet-Rousselle, C.; Lamarche, F.; Nuiry, L.; Barret, L. Specific conditions for resveratrol neuroprotection against ethanol-induced toxicity. J. Toxicol. 2012, 2012, 973134. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.; Aydemir, N.C.; Vatan, O.; Tuzun, E.; Bilaloglu, R. Influence of naringin on cadmium-induced genomic damage in human lymphocytes in vitro. Toxicol. Ind. Health 2012, 28, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Cristina Marcarini, J.; Ferreira Tsuboy, M.S.; Cabral Luiz, R.; Regina Ribeiro, L.; Beatriz Hoffmann-Campo, C.; Segio Mantovani, M. Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in htc hepatic cells. Exp. Toxicol. Pathol. 2011, 63, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Maeda, J.; Roybal, E.J.; Brents, C.A.; Uesaka, M.; Aizawa, Y.; Kato, T.A. Natural and glucosyl flavonoids inhibit poly(adp-ribose) polymerase activity and induce synthetic lethality in brca mutant cells. Oncol. Rep. 2014, 31, 551–556. [Google Scholar] [PubMed]
- Wu, L.Y.; Lu, H.F.; Chou, Y.C.; Shih, Y.L.; Bau, D.T.; Chen, J.C.; Hsu, S.C.; Chung, J.G. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia hl-60 cells. Am. J. Chin. Med. 2015, 43, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Kurzawa-Zegota, M.; Najafzadeh, M.; Baumgartner, A.; Anderson, D. The protective effect of the flavonoids on food-mutagen-induced DNA damage in peripheral blood lymphocytes from colon cancer patients. Food Chem. Toxicol. 2012, 50, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Kozics, K.; Valovicova, Z.; Slamenova, D. Structure of flavonoids influences the degree inhibition of benzo(a)pyrene—Induced DNA damage and micronuclei in hepg2 cells. Neoplasma 2011, 58, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jeon, Y.K.; Jeon, W.; Nam, M.J. Fisetin induces apoptosis in huh-7 cells via downregulation of birc8 and bcl2l2. Food Chem. Toxicol. 2010, 48, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.W.; Chiu, Y.J.; Fan, M.J.; Lu, H.F.; Yeh, H.F.; Li, K.H.; Chen, P.Y.; Chung, J.G.; Yang, J.S. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma u-2 os cells. Mol. Nutr. Food Res. 2010, 54, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, G.R.; Grotto, D.; Angeli, J.P.; Serpeloni, J.M.; Rocha, B.A.; Bastos, J.K.; Barbosa, F., Jr. Evaluation of antigenotoxic effects of plant flavonoids quercetin and rutin on hepg2 cells. Phytother. Res. 2011, 25, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, G.R.; Angeli, J.P.; Serpeloni, J.M.; Grotto, D.; Rocha, B.A.; Bastos, J.K.; Knasmuller, S.; Junior, F.B. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat. Res. 2011, 726, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhao, J.; Bowman, L.; Lu, Y.; Shi, X. Inhibition of ap-1 and mapk signaling and activation of nrf2/are pathway by quercitrin. Int. J. Oncol. 2010, 36, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J.; Johnson, W.; Dobson, V.L. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutat. Res. 1997, 390, 141–151. [Google Scholar] [CrossRef]
- Duthie, S.J.; Collins, A.R.; Duthie, G.G.; Dobson, V.L. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat. Res. 1997, 393, 223–231. [Google Scholar] [CrossRef]
Reference | Material Tested | Analysis | Assays | System | Concentration/Dose | Result |
---|---|---|---|---|---|---|
In Humans | ||||||
[10] | Orange juice | Polyphenols | 8-OH–G in urine by ELISA | Overweight/obese humans | 300 or 745 mg/day (12 weeks) | 8-OH–G ↓ |
[11] | Aronia-citrus juice | Flavonones, flavones, antocyanins etc. | 8-OH–G in plasma by UHPLC-MS/MS | Triathletes (supplemented and placebo groups) | 200 mL/day (45 days) | Inconclusive—levels of DNA damage products too low |
[12] | Dark chocolate | Polyphenols | Comet assay | Healthy subjects: PBMN cells | 860 mg/day (2 weeks) | H2O2-induced SBs ↓ (short-term—2 h—only) |
[13] | De-alcoholised wine | Anthocyanins, flavonols etc. | Comet assay with Fpg | Post-menopausal women; peripheral blood lymphocytes | 500 mL/day (1 month) | No effect |
[14] | Wild blueberry drink | Phenolic acids and anthocyanins | Comet assay + Fpg; H2O2resistance (comet assay); DNA repair (in vitro comet assay) | Subjects with cardiovascular risk factors: PBMN cells | 375 mg anthocyanins/day (6 weeks) | No effect on DNA SBs. Fpg-sensitive sites ↓; H2O2 resistance ↑; no effect on repair |
[15] | Green tea | Comet assay | Healthy subjects: PBMN cells 30, 60, 90 min after ingestion, exposed ex vivo to UV(A)/VIS radiation | Single 540 mL dose | Protection against UV(A)/VIS-induced DNA SBs seen in ‘responders’ | |
[16] | Honey | Phenolic compounds | Comet assay with EndoIII, Fpg | Pesticide-exposed humans | 2-week honey supplementation (50 g/day) | DNA repair ↑, EndoIII and Fpg sites ↓ |
In Vivo | ||||||
[17] | Chrysobalanus icaco fruit | Polyphenols, Mg, Se | Comet assay on blood and MN assay on bone marrow and PBMN | Rats + Dox | Up to 0.4 g/kg/day for 14 days | Blood cells; DNA SBs ↓. Bone marrow, blood cells; MN ↓ |
[18] | Green and black teas | 8-OH–G on liver by HPLC | Swiss albino mice + Na arsenite | 2.5% of 0.5 g dry leaves/5 mL of boiled water (equivalent to human consumption of 1 cup). 22 days. | Protection (8-OH–G ↓) | |
[19] | Piquia pulp | Phenolic compounds, carotenoids | Comet assay on liver, kidney, heart cells MN on bone marrow and PBMN cells | Rats + Dox | 75, 150, 300 mg/kg/day for 14 days | Protection against DNA SBs and MN formation: lowest dose tends to be most effective |
[20] | Açai pulp | Phenolic compounds, carotenoids | Comet assay on liver, kidney and PBMN cells: MN on bone marrow and PBMN cells | Mice + Dox | 3.33,10, 16.7 g/kg/day for 1 or 14 days | Protection against DNA SBs and MN formation: 14 days pretreatment more effective |
[21] | Cloudy apple juice | Polyphenols | Comet assay on liver cells | Rats | 10 mL/kg/day for 28 days | DNA SBs ↑ and no effect on N-nitrosodiethylamine-induced damage |
[22] | Green tea | -- | Comet assay on intestinal cells | Rats + As | 10 mg/mL in water for 28 days | Claim protection |
[23] | Spinach | Total polyphenols | Comet assay on leukocytes | Hyperlipidemic rats | 5% (powder) in diet, for 6 weeks | H2O2-induced DNA SBs in leukocytes ↓ |
In Vitro | ||||||
[24] | Green tea | -- | Comet assay with Fpg | Human PBMN cells | 7–71 µM catechins | DNA damage ↓ at lower concentrations but ↑ at highest concentration |
[25] | Herbal preparation | Total phenolics | Comet assay | YAC-1 (mouse lymphoma) cells | 1–13 mg/mL | DNA SBs ↑ at 8.7 mg/mL |
Rat fibroblasts | 1–13 mg/mL | DNA SBs ↑ at 2.2 mg/mL | ||||
[26] | Various honeys | -- | Comet assay | HepG2 (human liver carcinoma) cells treated with B(a)P, PhIP, nitrosamines | 0.1–100 mg/mL | Slight decreases in DNA SBs in most cases, not dose-dependent |
Reference | Material tested | Analysis | Assays | System | Concentration/Dose | Result |
---|---|---|---|---|---|---|
In Humans | ||||||
[27] | Green tea polyphenols | Urinary 8-OH–G by HPLC | Postmenopausal women with osteoporosis | 500 mg/day (capsules, 6 months) | 8-OH–G ↓ over 6 months | |
In Vivo | ||||||
Tea-Related | ||||||
[28] | Green tea polyphenols | 8-OH–G in brain by Ab assay | Rats | 400 mg/day (gastric intubation, 4 weeks) | 8-OH–G ↓ | |
[29] | Green tea polyphenols | Epicatechin derivatives | CPD on skin and lymph nodes by Ab assay | Mice (NER+ and-) + UV | 0.2% in drinking water (7 days before UV irradiation) | Enhanced removal of CPDs in NER-proficient mice |
[30] | Green tea extract | MN in polychromatic erythrocytes | Mice + Cr(VI) | 30 mg/kg (one dose—gavage) | MN ↓ | |
[31] | Green tea polyphenols | Comet assay with Fpg on blood; 8-OH–G in brain by HPLC | Rats + acrylonitrile | 0.4% in diet (1 week before acrylonitrile and then throughout acrylonitrile treatment for 28 days) | ↓ Fpg-sensitive sites and 8-OH–G ↓ | |
[32] | Calluna vulgaris polyphenol extract | CPDs in skin by Ab assay | Mice + UV(B) | 4 mg/cm2 (30 min before exposure to UV, repeated on 10 days) | CPDs ↓ | |
[33] | Podophyllum hexandrum extract | Total phenolics | Alkaline halo assay; DNA repair (SB rejoining—PCR assay) | Thymocytes from γ-irradiated mice | 15 mg/kg (one dose, i.p.) | Protection against γ-ray-induced DNA SBs and accelerated rejoining |
[34] | Cotinus coggyria extract | Comet assay on liver | Rats + pyrogallol | 0.5–2 g/kg (single dose, i.p.) | SBs at highest dose of extract alone: protection against pyrogallol-induced SBs at 0.5 g/kg | |
In Vitro | ||||||
Tea-Related | ||||||
[35] | Green tea polyphenols | Comet assay | Melanoma cell lines | 20–60 μg/mL (time) | 40, 60 μg/mL; DNA SBs ↑ | |
[36] | Green tea extract | Comet assay | Human laryngeal carcinoma cell line (HEp2) + drug-resistant cell line CK2 | 1× = 2 g/200 mL H2O2 Concentration tested = 0.1× | SBs ↑ at 72 h, not 48 h | |
Lamiaceae | ||||||
[37] | Citrus and rosemary bioflavonoid extract | Total polyphenols | Comet assay | HaCaT (human keratinocytes) + UV(B) | 100 μg/mL | Pre-treatment: UV(B)-induced DNA SBs ↓ |
MN | Human lymphocytes + X-ray | 1 mg/mL | X-ray induced MN ↓ | |||
[38] | Thymus vulgaris extract | Comet assay and γ-H2AX by Ab | Human skin model exposed to UV(B) | 1.8 μg/mL | Protection against DNA damage | |
[39] | Thymus vulgaris extract | Comet assay 24 h after UV | NCTC (human keratinocytes) + UV(A) or UV(B) | 1.82 μg/mL | DNA SBs ↓ | |
MN | No effect seen | |||||
γ-H2AX by Ab | No effect seen | |||||
[40] | Lemon balm extract | Polyphenols | Comet assay and γ-H2AX by Ab assay | Human keratinocytes + UV(B) | 15–100 μg/mL | DNA SBs ↓ (100 μg/mL); γH2AX ↓ (15 μg/mL) |
[41] | Ocimum sanctum extract (“Holy basil”) | Total phenolics | Comet assay | SH-SY5Y (human neuroblastoma) cells | 75 μg/mL | H2O2-induced DNA SBs ↓ |
[42] | Various Lamiaceae leaf extracts | Total polyphenols, flavonoids | Comet assay | HepG2 (human liver carcinoma) cells + CdCl2 | 50–350 μg/mL for 4 h | Dose-dependent decrease in Cd-induced DNA SBs |
Fruits and Berries | ||||||
[43] | Strawberry extract | Anthocyanins | Comet assay | Human dermal fibroblasts exposed to UV(A) | 0.05–0.5 mg/mL | Protection against DNA SBs at 0.25, 0.5 mg/mL |
[44] | Strawberry extract | Total phenolics, flavonoids, anthocyanins, vitamin C, β-carotene | Comet assay | Human dermal fibroblasts exposed to H2O2 | 0.5 mg/mL | DNA SBs ↓ |
[45] | Vaccinium berries extract | Total polyphenols and anthocyanins | Comet assay | A549 (human lung adenocarcinoma) cells | 21–167 μg/mL | Dose-dependent protection against DNA SBs induced by t-BOOH |
[46] | Blackcurrant extract | Comet assay (H2O2 resistance) | TK6 (human lymphoblastoid) cells | 0.5–3 mg/mL | H2O2-induced DNA SBs ↓ | |
MN ± H2O2 | 1 mg/mL | H2O2-induced MN ↓ | ||||
[47] | Various apple polyphenol s extract | Monomeric polyphenols oligosaccharides and oligomeric procyanidins. | Comet assay with Fpg | Caco2 (colon carcinoma) cells | 1–100 μg/mL | Menadione-induced DNA SBs and Fpg-sensitive sites ↓ Greatest protection at low concentrations; with some extracts, damage ↑ at high doses |
[48] | Polyphenol extracts of Australian fruits | Phenolic acids and anthocyanins | MN | HT29 (human colon adenocarcinoma) cells | 0.5–1 mg/mL | MN ↑ with one extract |
[49] | Red wine extract | Comet assay | HUVECs (human umbilical vein endothelial) cells + t-BOOH | 25 μg/mL | DNA SBs ↓ | |
Honey-Related | ||||||
[16] | Honey extract | Phenolic compounds | Comet assay with EndoIII, Fpg | Bronchial epithelial and neuronal cells | 5 μg/mL | Pesticide (glyphosate, chlorpyrifos)-induced damage (SBs, EndoIII and Fpg sites) ↓ |
Cellular DNA repair | Protection against inhibition of repair of DNA SBs by pesticides | |||||
[50] | Propolis extr | Comet assay | Fibroblasts | 0.1–0.3 mg/mL | γ-Ray-induced DNA SBs ↓ | |
[51] | Propolis | Comet assay + Fpg, EndoIII | Human gastric cancer cell line AGS | 0.3 µg/mL | High DNA damage, suppressed by antioxidants or catalase |
Reference | Material Tested | Assays | System | Concentration/Dose | Result |
---|---|---|---|---|---|
In Humans | |||||
[52] | Epigallocatechin gallate | 8-OH–G in leukocyte DNA (HPLC/UV/MS) | Prostate cancer patients | 800 mg/day (3 to 6 weeks before surgery) | Decrease in 8-OH–G not significant |
[53] | Xanthohumol (drink) | Comet assay and urinary 8-OH–G (UPLC) | Cross over intervention trial, healthy subjects | 12 mg/day for 14 days | FPG-sites ↓, H2O2-induced SBs ↓, 8-OH–G ↓ |
Xanthohumol (pills) | Comet assay | Parallel intervention trial, healthy subjects | FPG-sites ↓, H2O2-induced SBs ↓ | ||
In Vivo | |||||
[54] | Luteolin | Comet assay and MN on blood and bone marrow | Mice + ochratoxin A | 2.5 mg/kg (one dose i.p.) | No effect |
Chlorogenic acid | 10 mg/kg (one dose i.p.) | DNA SBs ↓; also MN ↓ | |||
Caffeic acid | 10 mg/kg (one dose i.p.) | DNA SBs ↓ | |||
[55] | Curcumin | Comet assay with FPG on bone marrow | Rats + etoposide | 100 or 200 mg/kg/day (7 days, gavage) | Pretreatment → etoposide-induced DNA damage ↓ |
Epicatechin | 20 or 40 mg/kg/day (7 days, gavage) | Pretreatment → etoposide-induced oxidative DNA damage ↓ (less than with Curcumin) but not DNA SBs. | |||
[56] | Ellagic acid | MN in polychromatic erythrocytes; alkaline unwinding | Swiss albino mice + cyclophosphamide | 50/100 mg/kg/day (orally, 7 days) | Protection against MN formation and DNA SBs |
[57] | Epigallocatechin gallate and theaflavin | Alkaline unwinding assay | Mouse skin + dimethylbenzanthracene | 100 μg/mouse (topical application, 1 h) | Topical pretreatment → DNA SBs ↓ |
Epigallocatechin gallate and theaflavin as NPs (PLGA) | 5–20 μg/mouse (topical application, 1 h) | NP form has ~30-fold dose-advantage | |||
[58] | Epigallocatechin gallate | γ-H2AX by Western blot and Ab and 8-OH–G by Ab assay | H1299 (human lung cancer cells) xenografts in mice | 0.1%–0.5% in diet, 30 mg/kg/day injection | Dose-dependent ↑ in γ-H2AX and 8-OH–G |
[59] | Silibinin | 8-OH–G in various brain regions by ELISA | Diabetic mice | 20 mg/kg/day i.p. (4 weeks) | 8-OH–G ↓ in different regions of brain |
[60] | Quercetin | MN in bone marrow and blood | Rats + PCBs | 50 mg/kg/day for 25 days | PCB-induced MN ↓ |
[61] | Quercetin | Chrom abs and MN in bone marrow; Comet assay on blood | Mice + γ-irradiation | 20 mg/kg/day for 5 days | Radiation-induced Chrom abs, SBs, MN ↓ |
Rutin | 10 mg/kg/day for 5 days | ||||
[62] | Chrysin | Comet assay (hepatocytes and leukocytes) | Rats + methyl mercury | 0.1, 1, 10 mg/kg/day for 45 days | MeHg-induced SBs ↓ at higher doses |
[63] | Puerarin | 8-OH–G in kidney by HPLC | Mice + CCl4 | 0.2 or 0.4 g/kg/day for 4 weeks | 8-OH–G ↓ |
[64] | Quercetin | 8-OH–G in kidney by HPLC | Rats + lead | 10 mg/kg/day for 10 weeks | 8-OH–G ↓ |
[65] | Myricitrin, Myricetin | MN (reticulocytes); Comet assay (liver, duodenum, stomach) | Mice | 1, 1.5, 2 g/kg/day for 3 days | No increase in MN, SBs only in liver + myricetin |
[66] | Quercetin | Comet assay on liver | Rats + DEN | 10, 30, 100 mg/kg/day for 5 days | DEN-induced SBs ↓ |
[34] | Myricetin | Comet assay on liver | Rats + pyrogallol | 255.5 μg/kg 2 h and 12 h before pyrogallol | SBs ↓ in liver |
[67] | Quercitin | Comet assay on liver | Rats + acrylamide | 10 mg/kg/day for 5 days | No effect of quercetin alone. Acrylamide-induced SBs ↓ |
8-OH–G in liver by ELISA | No effect of quercetin alone. Acrylamide-induced 8-OH–G ↓ | ||||
[68] | Naringin | Comet assay | Mice (hepatocytes and cardiocytes) | 50, 250 or 500 mg/kg oral (one dose) | No effect |
50, 250 or 500 mg/kg oral (one dose) + Dau i.p. | DNA SBs induced by Dau ↓ | ||||
[69] | Apigenin | Chrom abs and MN in bone marrow; comet assay on skin; DNA repair (removal of CPDs by Ab) | Mice + UV(B) | 1.5–3 mg/cm2 (24 h; during UV irradiation) | Chrom abs and MN ↓; tail length ↓. Removal of dimers apparently stimulated by apigenin |
In Vitro | |||||
Tea-Related | |||||
[70] | Chlorogenic acid | Comet assay | HaCaT (human keratinocytes) cells + UV(B) | Not stated. Probably 5–80 μM | DNA SBs ↓ |
[71] | Chlorogenic acid | Comet assay | K562 (human leukaemia) cells | 0.5–5 mM | DNA SBs ↑ |
γ-H2AX by Ab | Chinese hamster AA8 cell line and K562 | 0.5 mM | γ-H2AX foci ↑ | ||
[72] | Chafuroside B (tea polyphenol) | CPDs by Ab | Human keratinocytes + UV(B) | 1 μM | CPDs ↓ after 24 h |
[73] | Ellagic acid | Comet assay | Prostate cancer cell lines LNCaP, DU145, BPH-1 | 4.5–300 μM | DNA SBs ↑ at 9 μM in BPH-1, 37 μM in DU 145, 150 μM in LnCap |
[74] | Epicatechin gallate | Comet assay; MN | C6 astroglial cells | 0.1–1 μM | H2O2-induced DNA SBs and MN formation ↓ |
[58] | Epigallocatechin gallate | γ-H2AX and 8-OH–G by Ab assay | H1299 (human lung adenocarcinoma) cells | 50 μM | γ-H2AX and 8-OH–G ↑ |
[75] | Metabolites of quercetin, chlorogenic acid | Comet assay | LT97 (human colorectal adenoma) cells + cumene hydroperoxide | 2.5 μM/5 μM | Decrease in DNA SBs |
[76] | Epigallocatechin gallate | Comet assay | HeLa (human cervical cancer) cells, p53R (cells with p53 reporter) | 10, 20 μg/mL | DNA SBs ↑ |
[77] | Ethyl gallate | Comet assay | Human carcinoma cell line KB | 20–50 μg/mL | DNA SBs ↑ |
[78] | Tannic acid | Comet assay with Fpg | Human neutrophils | 10–150 μM | DNA SBs ↑ (dose-dependent); weak effect (↑) in TPA-stimulated cells. Fpg sites also ↑, but ↓ in TPA-stimulated cells |
Resveratrol | DNA damage (SBs) ↑ (dose-dependent); but ↓ (dose-dependent) in TPA-stimulated cells. Same pattern with FPG sites | ||||
[36] | Epigallocatechin gallate; Epicatechin gallate | Comet assay | HEp2 (human laryngeal carcinoma cell line) | 50 μM | With either ECG or EGCG, SBs ↓ at 48 h (from background); no effect at 72 h |
CK2 (drug resistant, from HEp2) | No effect at 48 or 72 h | ||||
Curcumin | |||||
[79] | Curcumin; Ellagic acid | Comet assay | HeLa (human cervical cancer) cells | 25 μM | DNA SBs ↑ (with both together; not significant alone) |
[80]; | Curcumin | Chrom abs and PCC | Human lymphocytes, with/without stimulation | 0.14–7 μM | Radioprotective effects seen for both reagents in PCC assay (non-cycling cells) Radiosensitisation of cycling cells (chrom abs) by both reagents |
Resveratrol | 2.2–220 μM | ||||
[81] | Curcumin | 8-OH–G by Ab assay | Smooth muscle cells | up to 10 μM | 8-OH–G ↑ |
[82] | Quercetin; Curcumin | γ-H2AX by Ab assay | HT1080 human fibrosarcoma cell line | 30 and 80 μM Quercetin; 10 and 15 μM Curcumin, | Significant increases in γ H2AX |
MN | 30 μM Quercetin; 10 μM Curcumin | Significant increases in MN. (Quercetin less effective.) | |||
[83] | Soy isoflavones | γ-H2AX by Ab assay | LNCaP (human prostate cancer) cells | 10 μg/mL | No effect on H2AX |
Curcumin | 25 μg/mL | γ-H2AX ↑ | |||
[84] | Polyphenols | Comet assay | Lymphocytes + B(a)P | 5 μg/mL | DNA SBs ↓ |
Curcumin | 5 and 10 μg/mL | DNA SBs ↓ | |||
[85] | Curcumin | Comet assay | HCT-116 (human colon cancer) cells | 50 μM | DNA SBs ↑ |
[86] | Curcumin | Comet assay | K562 (human leukaemia) cells | 12.5–200 μM | DNA SBs ↑ |
Resveratrol | |||||
[87] | Resveratrol | Chrom abs | Human lymphocytes + aflatoxin | 10–100 μM | No effect of resveratrol alone. Dose-dependent decrease in aflatoxin-induced chrom abs |
[88] | Resveratrol | MN; Comet assay | Human bronchial epithelial cell line HBE + Na arsenite | 5 μM | ↓ DNA SBs and MN induced by arsenite |
[89] | Resveratrol | γ -H2AX by Ab assay | HCT-116 (human colon cancer) cells | 25 μM | γ-H2AX foci ↑: DNA damage due to toposiomerase II poisoning |
[90] | Resveratrol | γ -H2AX by Ab assay | Prostate epithelial cells | 5 μM | Ionising radiation-induced damage enhanced |
[91] | Resveratrol | Comet assay | Rat astrocytes + ethanol | 1–10 μM | ↓ DNA SBs induced by ethanol |
Lamiaceae | |||||
[39] | Thymol | Comet assay 24 h after UV | NCTC (human keratinocytes) + UV(A) or UV(B) | 1 μg/mL | DNA SBs ↓ |
MN | No effect seen | ||||
γ-H2AX by Ab assay | No effect seen | ||||
Flavonoids | |||||
[92] | Naringin | Chromosome aberrations | Human lymphocytes treated with Cd | 1, 2 μg/mL | Cd-induced chrom abs ↓ |
SCE | No significant effect on SCE | ||||
[93] | Rutin | Comet assay | Rat hepatic cell line HTC | 10–810 μg/mL (24 h) | SBs at highest concentration |
MN | No significant increase in MN—but protection against MN induced by B(a)P | ||||
[94] | Quercetin; Rutin | ã-H2AX by Ab assay | V79 lung fibroblast hamster cells | 100 μg/mL for 12 h | Massive foci, results of lethality |
[95] | Kaempferol | Comet assay | HL-60 human leukemia cells | 75 μM, 6–48 h | SBs induced |
[96] | Quercetin | Comet assay | Lymphocytes from healthy subjects and colon cancer patients, + food mutagens PhIP and IQ | 100, 250, 500 μM | SBs induced by PhIP or IQ ↓ |
Rutin | 50, 250, 500 μM | ||||
[97] | Fisetin, Kaempferol; Galangin; Quercetin; Luteolin; Chrysin; 7-hydroxyflavone; 7,8-dihydroxyflavone; Baicalein; Rutin | Comet assay; MN | HepG2 (human liver carcinoma) cells + B(a)P | 2.5–25 μM | SBs induced by B(a)P ↓ (all except rutin); MN induced by B(a)P ↓ (all except rutin); Fi>Qu>Ga>Ka>Lu (more effective group); Ch, 7Fl, 7,8Fl, Ba (less effective group) |
[98] | Fisetin | Comet assay | Human hepatic Huh-7 cells | 60 μM | SBs ↑ |
[99] | Kaempferol | Comet assay | Human osteosarcoma cells U2-OS | 50, 100, 150 μM | SBs ↑ (not quantitated) |
[65] | Myricitrin | MN | TK6 (human lymphoblastoid) cells | 20–500 μg/mL for 24 h | MN ↑ (Dose-dependent) |
Myricetin | 2.5–75 μg/mL for 24 h | MN ↑ (significant?) | |||
[100] | Quercetin and rutin | Comet assay | Human hepatoma cell line HepG2 | 0.1, 1 and 5 μg/mL (2 h of treatment) | No induction of SBs (quercetin and rutin alone) |
HepG2 + Aflatoxin B, MMS, Dox | Pre-, co- and post-treatment | DNA damage induced by AFB1, MMS, Dox ↓ in all treatment conditions | |||
[101] | Quercetin | Comet assay, 8-OH–G (HPLC) | Human hepatoma cell line HepG2 cells | 0.1, 1 and 5 μg/mL (24 h of treatment) | No effect |
HepG2 cells + HgCl2 and MeHg | Pre-, co- and post-treatment | DNA damage induced by HgCl2 and MeHg ↓ in pre- and co-treatment | |||
[102] | Quercitrin | Comet assay | Mouse epidermal cell line JB6 + UV(B) | 10, 20 and 80 μM, 30 min | No effect |
10, 20 and 80 μM, 30 min + UV(B) | UV(B)-induced SBs ↓ | ||||
[51] | Galangin, chrysin | Comet assay + FPG, EndoIII | AGS human gastric adenocarcinoma cells | 20 μM (1 h) | Base oxidation ↑ |
[69] | Apigenin | Comet assay: Chrom abs; MN | HaCaT human keratinocytes + UV(B) | 15–25 μg/mL | DNA damage ↓, Chrom abs ↓, MN ↓ |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azqueta, A.; Collins, A. Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016, 8, 785. https://doi.org/10.3390/nu8120785
Azqueta A, Collins A. Polyphenols and DNA Damage: A Mixed Blessing. Nutrients. 2016; 8(12):785. https://doi.org/10.3390/nu8120785
Chicago/Turabian StyleAzqueta, Amaya, and Andrew Collins. 2016. "Polyphenols and DNA Damage: A Mixed Blessing" Nutrients 8, no. 12: 785. https://doi.org/10.3390/nu8120785
APA StyleAzqueta, A., & Collins, A. (2016). Polyphenols and DNA Damage: A Mixed Blessing. Nutrients, 8(12), 785. https://doi.org/10.3390/nu8120785