Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Estimation of Polyphenol Intake
2.5. Anthropometric Measurements and Outcome Ascertainment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Maghsoudi, Z.; Ghiasvand, R.; Salehi-Abargouei, A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2016, 19, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Rezagholizadeh, F.; Djafarian, K.; Khosravi, S.; Shab-Bidar, S. A posteriori healthy dietary patterns may decrease the risk of central obesity: Findings from a systematic review and meta-analysis. Nutr. Res. 2017, 41, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Shen, Y.X.; Liu, Y. Empirically derived dietary patterns and hypertension likelihood: A meta-analysis. Kidney Blood Press Res. 2016, 41, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Beidokhti, M.N.; Jager, A.K. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. J. Ethnopharmacol. 2017, 201, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Missbach, B.; Stelmach-Mardas, M.; Boeing, H. An umbrella review of nuts intake and risk of cardiovascualr disease. Curr. Pharm. Des. 2017, 23, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Sciacca, S.; Pajak, A.; Martinez-Gonzalez, M.A.; Giovannucci, E.L.; Galvano, F. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: A dose-response meta-analysis. Eur. J. Epidemiol. 2016, 31, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol consumption and mortality in patients with cardiovascular disease: A meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Rienks, J.; Barbaresko, J.; Nothlings, U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 415. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Costa, L.G.; Lean, M.E.; Crozier, A. Polyphenols and health: What compounds are involved? Nutr. Metab. Cardiovasc. Dis. 2010, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Sohrab, G.; Hosseinpour-Niazi, S.; Hejazi, J.; Yuzbashian, E.; Mirmiran, P.; Azizi, F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int. J. Food Sci. Nutr. 2013, 64, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Association between polyphenol intake and hypertension in adults and older adults: A population-based study in Brazil. PLoS ONE 2016, 11, e0165791. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenols are inversely associated with metabolic syndrome in polish adults of the hapiee study. Eur. J. Nutr. 2017, 56, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of hypertension in the polish arm of the hapiee study. Eur. J. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (meal) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy eating, lifestyle and aging (meal) study cohort. Mediterr. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in italian adults living in sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for italian adults living in sicily, southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. Tabelle di Composizione Degli Alimenti; Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione: Roma, Italy, 2009. [Google Scholar]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy eating, aging and lifestyle (meal) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-explorer 3.0: A major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Bognar, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); Federal Research Centre for Nutrition: Karlsruhe, Germany, 2002.
- Willett, W. Reproducibility and validity of food frequency questionnaire. In Nutritional Epidemiology, 2nd ed.; Press, O.U.: Norman, OK, USA, 1998. [Google Scholar]
- Buscemi, S.; Marventano, S.; Antoci, M.; Cagnetti, A.; Castorina, G.; Galvano, F.; Marranzano, M.; Mistretta, A. Coffee and metabolic impairment: An updated review of epidemiological studies. NFS J. 2016, 3, 1–7. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.A.; Howe, P.R.; Buckley, J.D.; Bryan, J.; Coates, A.M. Nut consumption for vascular health and cognitive function. Nutr. Res. Rev. 2014, 27, 131–158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, R.; Sugiura, Y.; Otsuka, K.; Katsuragi, Y.; Hashiguchi, T. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults. Int. J. Food Sci. Nutr. 2015, 66, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Biswas, S.K.; Kirkham, P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006, 72, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Salomone, F.; Godos, J.; Pluchinotta, F.; Del Rio, D.; Mistretta, A.; Grosso, G. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2016, 35, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Bes-Rastrollo, M.; Galvano, F.; Martinez-Gonzalez, M.A. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension: A dose-response meta-analysis. Nutrients 2017, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Briasoulis, A.; Agarwal, V.; Messerli, F.H. Alcohol consumption and the risk of hypertension in men and women: A systematic review and meta-analysis. J. Clin. Hypertens. 2012, 14, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.L.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacosa, A.; Adam-Blondon, A.F.; Baer-Sinnott, S.; Barale, R.; Bavaresco, L.; Di Gaspero, G.; Dugo, L.; Ellison, R.C.; Gerbi, V.; Gifford, D.; et al. Alcohol and wine in relation to cancer and other diseases. Eur. J. Cancer Prev. 2012, 21, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamsson, V.; Reumark, A.; Fredriksson, I.B.; Hammarstrom, E.; Vessby, B.; Johansson, G.; Riserus, U. Effects of a healthy nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: A randomized controlled trial (nordiet). J. Intern. Med. 2011, 269, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomazella, M.C.; Goes, M.F.; Andrade, C.R.; Debbas, V.; Barbeiro, D.F.; Correia, R.L.; Marie, S.K.; Cardounel, A.J.; daLuz, P.L.; Laurindo, F.R. Effects of high adherence to Mediterranean or low-fat diets in medicated secondary prevention patients. Am. J. Cardiol. 2011, 108, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Hu, F.B.; Estruch, R.; Buil-Cosiales, P.; Corella, D.; Salas-Salvado, J.; Covas, M.I.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; et al. Effect of the Mediterranean diet on blood pressure in the predimed trial: Results from a randomized controlled trial. BMC Med. 2013, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storniolo, C.E.; Casillas, R.; Bullo, M.; Castaner, O.; Ros, E.; Saez, G.T.; Toledo, E.; Estruch, R.; Ruiz-Gutierrez, V.; Fito, M.; et al. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur. J. Nutr. 2017, 56, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Estruch, R. Nut consumption and age-related disease. Maturitas 2016, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Bullo, M.; Salas-Salvado, J.; Corella, D.; Fito, M.; Gea, A.; Gomez-Gracia, E.; Lapetra, J.; et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the predimed population. Br. J. Nutr. 2015, 113 (Suppl. S2), S121–S130. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; et al. Mediterranean way of drinking and longevity. Crit. Rev. Food Sci. Nutr. 2016, 56, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Gepner, Y.; Henkin, Y.; Schwarzfuchs, D.; Golan, R.; Durst, R.; Shelef, I.; Harman-Boehm, I.; Spitzen, S.; Witkow, S.; Novack, L.; et al. Differential effect of initiating moderate red wine consumption on 24-h blood pressure by alcohol dehydrogenase genotypes: Randomized trial in type 2 diabetes. Am. J. Hypertens. 2016, 29, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Bawaked, R.A.; Schroder, H.; Ribas-Barba, L.; Cardenas, G.; Pena-Quintana, L.; Perez-Rodrigo, C.; Fito, M.; Serra-Majem, L. Dietary flavonoids of spanish youth: Intakes, sources, and association with the Mediterranean diet. PeerJ 2017, 5, e3304. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; de Gaetano, G.; Investigators, M.-S.S. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the moli-sani study. Br. J. Clin. Pharmacol. 2017, 83, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remon, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martinez-Gonzalez, M.A.; Fito, M.; Corella, D.; Salas-Salvado, J.; Lamuela-Raventos, R.M.; Estruch, R.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the predimed trial. Br. J. Clin. Pharmacol. 2017, 83, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N.; Hjartaker, A.; Engeset, D.; Skeie, G.; Overvad, K.; et al. Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the european prospective investigation into cancer and nutrition (epic) study. Br. J. Nutr. 2013, 109, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Federico, A.; Dallio, M.; Scazzina, F. Mediterranean diet and nonalcoholic fatty liver disease: Molecular mechanisms of protection. Int. J. Food Sci. Nutr. 2016, 68, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Zappala, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Mistretta, A.; Marventano, S.; Purrello, A.; Vitaglione, P.; Calabrese, G.; Drago, F.; Galvano, F. Beneficial effects of the Mediterranean diet on metabolic syndrome. Curr. Pharm. Des. 2014, 20, 5039–5044. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Marventano, S.; Castellano, S.; Nolfo, F.; Rametta, S.; Giorgianni, G.; Matalone, M.; Marranzano, M.; Mistretta, A. Role of anthropometric factors, self-perception, and diet on weight misperception among young adolescents: A cross-sectional study. Eat. Weight Disord. 2016. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, A.; Marventano, S.; Antoci, M.; Cagnetti, A.; Giogianni, G.; Nolfo, F.; Rametta, S.; Pecora, G.; Marranzano, M. Mediterranean diet adherence and body composition among southern Italian adolescents. Obes. Res. Clin. Pract. 2017, 11, 215–226. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Mulè, S.; Zappalà, G.; Privitera, G.; Maugeri, G.; Pecora, F.; Marranzano, M. Higher adherence to the Mediterranean diet is inversely associated with having hypertension: Is low salt intake a mediating factor? Int. J. Food Sci. Nutr. 2017, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Grosso, G.; Pajak, A.; Mistretta, A.; Marventano, S.; Raciti, T.; Buscemi, S.; Drago, F.; Scalfi, L.; Galvano, F. Protective role of the Mediterranean diet on several cardiovascular risk factors: Evidence from sicily, southern Italy. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Giorgianni, G.; Raciti, T.; Galvano, F.; Mistretta, A. Mediterranean diet adherence rates in sicily, southern Italy. Public Health Nutr. 2014, 17, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Galvano, F.; Pajak, A.; Mistretta, A. Factors associated with metabolic syndrome in a Mediterranean population: Role of caffeinated beverages. J. Epidemiol. 2014, 24, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Gatenby, P.; Gerbi, V.; Janssens, J.; Johnston, B.; Kas, K.; La Vecchia, C.; Mainguet, P.; et al. Cancer prevention in europe: The Mediterranean diet as a protective choice. Eur. J. Cancer Prev. 2013, 22, 90–95. [Google Scholar] [CrossRef] [PubMed]
Phenolic Acid Intake | p | ||||
---|---|---|---|---|---|
Q1 (Median = 120.36) | Q2 (Median = 205.39) | Q3 (Median = 307.70) | Q4 (Median = 522.26) | ||
Sex, n (%) | 0.919 | ||||
Male | 186 (41.1) | 197 (40.5) | 215 (42.3) | 206 (42.2) | |
Female | 267 (58.9) | 290 (59.5) | 293 (57.7) | 282 (57.8) | |
Educational level, n (%) | <0.001 | ||||
Low | 150 (33.1) | 161 (33.1) | 198 (39.0) | 188 (38.5) | |
Medium | 141 (31.1) | 218 (44.8) | 177 (34.8) | 184 (37.7) | |
High | 162 (35.8) | 108 (22.2) | 133 (26.2) | 116 (23.8) | |
Occupational level, n (%) | 0.046 | ||||
Unemployed | 94 (22.8) | 110 (27.0) | 134 (29.7) | 123 (31.9) | |
Low | 69 (16.7) | 75 (18.4) | 67 (14.9) | 55 (14.2) | |
Medium | 111 (26.9) | 95 (23.3) | 131 (29.0) | 103 (26.7) | |
High | 139 (33.7) | 128 (31.4) | 119 (26.4) | 105 (27.2) | |
Smoking status, n (%) | 0.034 | ||||
Non smoker | 298 (65.8) | 289 (59.3) | 316 (62.2) | 292 (59.8) | |
Ex-smoker | 85 (18.8) | 131 (26.9) | 132 (26.0) | 117 (24.0) | |
Current smoker | 70 (15.5) | 67 (13.8) | 60 (11.8) | 79 (16.2) | |
Physical activity, n (%) | 0.585 | ||||
Low | 85 (21.5) | 87 (19.1) | 75 (16.4) | 82 (19.5) | |
Medium | 190 (48.0) | 218 (47.9) | 234 (51.3) | 214 (50.8) | |
High | 121 (30.6) | 150 (33.0) | 147 (32.2) | 125 (29.7) | |
Alcohol intake, n (%) | <0.001 | ||||
No | 110 (24.2) | 108 (22.2) | 97 (19.1) | 60 (12.3) | |
Moderate | 324 (71.4) | 319 (65.5) | 290 (57.1) | 273 (55.9) | |
Regular | 20 (4.4) | 60 (12.3) | 121 (23.8) | 155 (31.8) | |
Age (years), mean (SD) | 47.4 (19.3) | 48.7 (18.2) | 48.0 (16.0) | 49.5 (16.9) | 0.296 |
Sodium (mg/day), mean (SD) | 2669 (864.2) | 2868 (1074.2) | 2793.2 (1174.3) | 3093.8 (1224.1) | <0.001 |
Potassium(mg/day), mean (SD) | 2892 (848.8) | 3471 (1027.1) | 3892.1(1306.1) | 4392.4 (1713.6) | <0.001 |
Magnesium (mg/day), mean (SD) | 311.1 (87.9) | 382.5 (109.5) | 416.2 (128.6) | 467.5 (172.7) | <0.001 |
Calcium (mg/day), mean (SD) | 690.5 (258.3) | 755.6 (264.7) | 808.3 (331.0) | 951.6 (400.5) | <0.001 |
High adherence to the Mediterranean diet (high) | 40 (14.5) | 102 (37.1) | 82 (29.8) | 51 (18.5) | <0.001 |
Phenolic Acid Intake | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend | |
Phenolic acids, mean (range), mg/day | 112.12 (19.52, 156.19) | 204.05 (156.28, 248.85) | 311.00 (248.93, 385.09) | 807.81 (386.07, 8361.62) | |
No. of cases | 224 | 278 | 257 | 217 | |
Model 1, OR (95% CI) a | 1 | 1.27 (0.95, 1.70) | 0.97 (0.73, 1.29) | 0.72 (0.52, 0.98) | |
Model 2, OR (95% CI) b | 1 | 1.16 (0.80, 1.67) | 0.86 (0.59, 1.24) | 0.74 (0.48, 1.13) | |
Model 3, OR (95% CI) c | 1 | 1.08 (0.73, 1.60) | 0.74 (0.49, 1.10) | 0.65 (0.43, 0.98) | 0.056 |
Hydroxybenzoic acids, mean (range), mg/day | 12.81 (0.00, 47.36) | 64.18 (47.73, 81.36) | 136.38 (81.50, 258.37) | 617.46 (258.59, 8265.42) | |
No. of cases | 231 | 282 | 241 | 222 | |
Model 1, OR (95% CI) a | 1 | 1.49 (1.10, 2.00) | 1.13 (0.84, 1.52) | 0.85 (0.63, 1.15) | |
Model 2, OR (95% CI) b | 1 | 1.25 (0.89, 1.76) | 0.78 (0.53, 1.13) | 0.93 (0.64, 1.35) | |
Model 3, OR (95% CI) c | 1 | 1.21 (0.84, 1.75) | 0.79 (0.52, 1.19) | 0.93 (0.62, 1.40) | 0.237 |
Hydroxycinammic acid, mean (range), mg/day | 62.18 (14.72, 84.14) | 106.72 (84.14, 128.85) | 156.65 (128.87, 191.00) | 271.05 (191.06, 836.62) | |
No. of cases | 223 | 261 | 267 | 225 | |
Model 1, OR (95% CI) a | 1 | 1.17 (0.87, 1.57) | 1.01 (0.75, 1.37) | 0.85 (0.62, 1.17) | |
Model 2, OR (95% CI) b | 1 | 0.96 (0.66, 1.39) | 0.74 (0.50, 1.09) | 0.71 (0.46, 1.11) | |
Model 3, OR (95% CI) c | 1 | 0.82 (0.55, 1.21) | 0.61 (0.40, 0.94) | 0.52 (0.32, 0.85) | <0.001 |
Hydroxyphenylacetic acid, mean (range), mg/day | 0.03 (0.00, 0.09) | 0.15 (0.09, 0.23) | 0.36 (0.23, 0.48) | 1.31 (0.48, 13.52) | |
No. of cases | 226 | 264 | 248 | 238 | |
Model 1, OR (95% CI) a | 1 | 1.34 (1.00, 1.81) | 1.18 (0.88, 1.60) | 1.00 (0.73, 1.36) | |
Model 2, OR (95% CI) b | 1 | 1.15 (0.80, 1.65) | 0.98 (0.68, 1.42) | 0.70 (0.46, 1.08) | |
Model 3, OR (95% CI) c | 1 | 0.95 (0.65, 1.39) | 0.85 (0.57, 1.27) | 0.61 (0.39, 0.97) | <0.001 |
Caffeic acid, mean (range), mg/day | 0.41 (0.00, 0.60) | 0.79 (0.60, 1.00) | 1.43 (1.00, 2.10) | 4.01 (2.11, 10.33) | |
No. of cases | 243 | 229 | 250 | 254 | |
Model 1, OR (95% CI) a | 1 | 0.71 (0.52, 0.95) | 0.82 (0.61, 1.10) | 0.88 (0.64, 1.22) | |
Model 2, OR (95% CI) b | 1 | 0.86 (0.59, 1.26) | 0.92 (0.62, 1.37) | 0.70 (0.40, 1.22) | |
Model 3, OR (95% CI) c | 1 | 0.99 (0.67, 1.50) | 0.94 (0.61, 1.46) | 0.83 (0.46, 1.50) | 0.041 |
Cinnamic acid, mean (range), mg/day | 0.02 (0.00, 0.08) | 0.12 (0.08, 0.19) | 0.28 (0.20, 0.43) | 1.17 (0.43, 13.62) | |
No. of cases | 246 | 239 | 220 | 271 | |
Model 1, OR (95% CI) a | 1 | 0.83 (0.61, 1.12) | 0.88 (0.65, 1.20) | 0.90 (0.67, 1.22) | |
Model 2, OR (95% CI) b | 1 | 0.70 (0.49, 0.99) | 0.58 (0.40, 0.83) | 0.81 (0.56, 1.16) | |
Model 3, OR (95% CI) c | 1 | 0.68 (0.47, 0.98) | 0.56 (0.38, 0.84) | 0.74 (0.50, 1.10) | 0.631 |
Vanillic acid, mean (range), mg/day | 0.05 (0.00, 0.08) | 0.14 (0.08, 0.22) | 0.35 (0.22, 0.54) | 0.99 (0.54, 5.02) | |
No. of cases | 239 | 263 | 238 | 236 | |
Model 1, OR (95% CI) a | 1 | 1.33 (0.98, 1.79) | 0.95 (0.70, 1.28) | 0.93 (0.68, 1.27) | |
Model 2, OR (95% CI) b | 1 | 1.26 (0.87, 1.83) | 0.88 (0.60, 1.30) | 0.75 (0.47, 1.18) | |
Model 3, OR (95% CI) c | 1 | 1.11 (0.75, 1.64) | 0.91 (0.60, 1.39) | 0.75 (0.46, 1.23) | 0.427 |
Ferulic acid, mean (range), mg/day | 0.55 (0.00, 0.93) | 1.38 (0.93, 1.85) | 2.69 (1.85, 4.04) | 6.96 (4.05, 20.77) | |
No. of cases | 244 | 248 | 279 | 205 | |
Model 1, OR (95% CI) a | 1 | 0.93 (0.69, 1.25) | 1.19 (0.88, 1.60) | 0.69 (0.50, 0.95) | |
Model 2, OR (95% CI) b | 1 | 1.14 (0.79, 1.64) | 1.44 (1.01, 2.07) | 0.78 (0.51, 1.18) | |
Model 3, OR (95% CI) c | 1 | 1.25 (0.84, 1.86) | 1.76 (1.18, 2.61) | 0.82 (0.52, 1.30) | 0.398 |
Food group intake, OR (95% CI) a | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Coffee b | 1 | 0.85 (0.51, 1.44) | 1.03 (0.66, 1.62) | 0.70 (0.45, 1.08) |
Nuts c | 1 | 1.19 (0.90, 1.59) | 1.07 (0.69, 1.67) | 1.24 (0.73, 2.12) |
Tea d | 1 | 1.12 (0.86, 1.47) | 0.75 (0.48, 1.17) | 0.45 (0.17, 1.14) |
Olive oil e | 1 | 0.53 (0.22, 1.23) | 0.50 (0.22, 1.10) | 0.63 (0.29, 1.37) |
Red wine f | 1 | 0.75 (0.53, 1.06) | 1.13 (0.52, 2.45) | 0.74 (0.24, 2.25) |
White wine f | 1 | 0.72 (0.54, 0.95) | 1.25 (0.38, 4.11) | - |
Beer g | 1 | 0.83 (0.58, 1.20) | 0.51 (0.32, 0.81) | 0.32 (0.15, 0.68) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1069. https://doi.org/10.3390/nu9101069
Godos J, Sinatra D, Blanco I, Mulè S, La Verde M, Marranzano M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients. 2017; 9(10):1069. https://doi.org/10.3390/nu9101069
Chicago/Turabian StyleGodos, Justyna, Dario Sinatra, Isabella Blanco, Serena Mulè, Melania La Verde, and Marina Marranzano. 2017. "Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort" Nutrients 9, no. 10: 1069. https://doi.org/10.3390/nu9101069
APA StyleGodos, J., Sinatra, D., Blanco, I., Mulè, S., La Verde, M., & Marranzano, M. (2017). Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients, 9(10), 1069. https://doi.org/10.3390/nu9101069