Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients
Abstract
:1. Background
2. Methods
3. Results
Participants and Recruitment
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martin, K.J.; Gonzalez, E.A. Prevention and control of phosphate retention/hyperphosphatemia in CKD-MBD: What is normal, when to start, and how to treat? Clin. J. Am. Soc. Nephrol. 2011, 6, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Delmez, J.; Slatopolsky, E. Hyperphosphatemia, its consequence and treatment in patients with chronic renal failure. Am. J. Kidney Dis. 1992, 4, 313–317. [Google Scholar]
- Lowrie, E.G.; Lew, N.L. Death risk in haemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 1990, 15, 458–482. [Google Scholar] [CrossRef]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.; Korevaar, J.C.; Boeschoten, E.W.; Dekker, F.W.; Bos, W.J.; Krediet, R.T. The Kidney Disease Outcomes Quality Initiative (K/DOQI) guideline for bone metabolism and disease in CKD: Association with mortality in dialysis patients. Am. J. Kidney Dis. 2005, 46, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Ansell, D. Serum phosphate and outcomes in PD patients. Nephrol. Dial. Transplant. 2007, 22, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 113, S1–S130. [Google Scholar]
- Blayney, M.J.; Tentori, F. Trends and consequences of mineral bone disorder in haemodialysis patients: Lessons from the Dialysis Outcomes and Practice Patterns Study (DOPPS). J. Ren. Care 2009, 35, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Young, E.W.; Akiba, T.; Albert, J.M.; McCarthy, J.T.; Kerr, P.G.; Mendelssohn, D.C.; Jadoul, M. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2004, 44, 34–38. [Google Scholar] [CrossRef]
- Al Aly, Z.; González, E.A.; Martin, K.J.; Gellens, M.E. Achieving K/DOQI laboratory target values for bone and mineral metabolism: An uphill battle. Am. J. Nephrol. 2004, 24, 422–426. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Piccoli, G.B.; Cupisti, A. The “phosphorous pyramid”: A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Coladonato, J.A. Control of Hyperphosphatemia among Patients with ESRD. J. Am. Soc. Nephrol. 2005, 16, S107–S114. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.; McCormick, B.; Wagner, J.; Biyani, M.; Lavoie, S.; Imtiaz, R.; Zimmerman, D. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: A prospective cohort study. BMC Nephrol. 2015, 16. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A. Hyperphosphatemia in dialysis patients: Beyond nonadherence to diet and binders. Am. J. Kidney Dis. 2016, 67, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A.; Ravella, S.; Kapoian, T. The phosphate content of prescription medication: A new consideration. Ther. Innov. Regul. Sci. 2015, 49, 886–889. [Google Scholar] [CrossRef]
- Shires, R.; Teitelbaum, S.L.; Bergfeld, M.A.; Fallon, M.D.; Slatopolsky, E.; Avioli, L.V. The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostatsis in the rat. J. Lab. Clin. Med. 1981, 97, 231–240. [Google Scholar] [PubMed]
- Hough, S.; Avioli, L.V.; Bergfeld, M.A.; Fallon, M.D.; Slatopolsky, E.; Teitelbaum, S.L. Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced mellitus in the rat by insulin therapy. Endocrinology 1981, 108, 2228–2234. [Google Scholar] [CrossRef] [PubMed]
- Laurain, E.; Thilly, N.; Boini, S.; Kessler, M.; Briancon, S.; Frimat, L. Hyperphosphatemia in chronic kidney disease: patient characteristics and dialysis mortality during the first year of dialysis. J. Nephrol. Ther. 2012, S3. [Google Scholar] [CrossRef]
- Marks, J.; Debnam, E.S.; Unwin, R.J. Phosphate homeostasis and the renal-gastrointestinal axis. Am. J. Physiol. Ren. Physiol. 2010, 299, F285–F296. [Google Scholar] [CrossRef] [PubMed]
- Nemere, I. The ins and outs of phosphate homeostasis. Kidney Int. 2007, 72, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Tanaka, A.; Nakamura, T.; Fukuwatari, T.; Shibata, K.; Shimada, N.; Ebihara, I.; Koide, H. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 2004, 65, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Ishimura, E.; Nishizawa, Y.; Inaba, M.; Matsumoto, N.; Emoto, M.; Kawagishi, T.; Shoji, S.; Okuno, S.; Kim, M.; Miki, T.; et al. Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. Kidney Int. 1999, 55, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, A.; Ersoy, F.F.; Passadakis, P.S.; Tam, P.; Evaggelos, D.M.; Katopodis, K.P.; Özener, Ç.; Akçiçek, F.; Çamsari, T.; Ateş, K.; et al. Phosphorus control in peritoneal dialysis patients. Kidney Int. 2008, 73, S152–S158. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Detel, D.; Baticic, L.; Varljen, J. The Influence of Age on Intestinal Dipeptidyl Peptidase IV (DPP IV/CD26), Disaccharidases, and Alkaline Phosphatase Enzyme Activity in C57BL/6 Mice. Exp. Aging Res. 2006, 1, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, A.P.; Contesse, S.A.; Bajo, M.A.; Rodrigues, A.; Peso, G.D.; Ossorio, M.; Cabrita, A.; Selgas, R. Peritoneal membrane phosphate transport status: A cornerstone in phosphate handling in peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 591–597. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall | PO4 ≥ 1.78 mmol/L | PO4 < 1.78 mmol/L |
---|---|---|---|
N | 60 | 20 | 40 |
Sex (Female) | 22 | 10 (50%) | 12 (30%) |
Age years (SD) | 62.3 ± 13.9 | 57.8 ± 14.1 | 64.6 ± 13.4 |
Race (N) | Caucasian (51), Aboriginal (1), African American (3), Asian (5) | Caucasian (17), African American (3) | Caucasian (34), Aboriginal (1), Asian (5) |
Etiology of ESKD | DM (18), PCKD (8), GN (6), Other (28) | DM (9), PCKD (4), GN (1), Other (6) | DM (9), PCKD (4), GN (5), Other (22) |
Body Mass Index | 28.4 ± 5.4 | 29.8 ± 7.1 | 27.6 ± 4.3 |
DM | 30 (50%) | 15 (75%) | 15 (37.5%) |
P intake median (IQR)–3 day (mg) | 3024.6 (2453.3, 3754.7) | 2648.9 (2082.6, 3511.0) | 3149.7 (2498.4, 3878.0) |
Phosphate Index | 2.373 ± 0.419 | 2.376 ± 0.395 | 2.372 ± 0.44 |
P excretion (median, IQR) 3-day (mg) | 1387.0 (1096.5, 1858.5) | 1710.0 (1159.0, 2128.6) | 1373.0 (1072.6, 1697.9) |
Total daily Ca intake (median, IQR) | 2000 (1166.1, 3500.0) | 3000 (1500.0, 4183.3) | 1500 (1000, 3000) |
% P Absorption | 0.54 ± 0.29 | 0.66 ± 0.35 | 0.47 ± 0.24 |
GFR mL/min | 4.15 ± 3.2 | 3.3 ± 3.1 | 4.6 ± 3.2 |
Calcitriol Dose (weekly dose, µg) | (n = 29) median 0.75, range 0.75–3 | (n = 10) median 1.25, range 0.75–3 | (n = 19) median 0.75, range 0.75–3 |
Serum Ca (mmol/L) | 2.3 ± 0.15 | 2.3 ± 0.16 | 2.3 ± 0.15 |
Serum Alb (g/L) | 31.4 ± 3.9 | 31.2±4.4 | 31.6 ± 3.6 |
Serum HCO3 (mmol/L) | 24.6 ± 6 | 23.8± 3.0 | 25.1 ± 3.1 |
Serum PO4 (mmol/L) | 1.7 ± 0.45 | 2.2 ± 0.3 | 1.44 ± 0.25 |
PTH (pmol/L) | 34.57 ± 34.65 | 43.2 ± 34.5 | 30.2 ± 34.3 |
PTH by Quintile | |||
Q1 | 12 | 2 | 10 |
Q2 | 12 | 4 | 8 |
Q3 | 12 | 4 | 8 |
Q4 | 12 | 4 | 8 |
Q5 | 12 | 6 | 6 |
Dialysate CrCl (weekly) | 34.77 ± 15.56 | 36.89 ± 17.87 | 33.61 ± 14.39 |
Dialysate Kt/V (weekly) | 1.33 ± 0.56 | 1.406 ± 0.62 | 1.29 ± 0.53 |
Variable | OR | 95% CI Lower | Upper | p Value |
---|---|---|---|---|
Age years (per decade) | 0.69 | 0.45 | 1.03 | 0.07 |
Gender (Female) | 0.43 | 0.14 | 1.29 | 0.13 |
Diabetes Mellitus | 5.00 | 1.59 | 18.03 | 0.005 |
Body Mass Index | 5.82 | 0.53 | 75.90 | 0.15 |
P intake (mg) | 0.05 | 0.0002 | 0.72 | 0.03 |
PO4 excretion (mg) | 5.63 | 0.68 | 52.86 | 0.11 |
Ca carbonate intake (mg) | 9.20 | 0.78 | 129.37 | 0.08 |
Serum Ca (mmol/L) | 4.61 | 0.32 | 78.68 | 0.26 |
Serum PTH (pmol/L) | 10.18 | 0.35 | 657.13 | 0.18 |
Serum PTH (by quintile) | 0.75 | 0.50 | 1.11 | 0.15 |
Serum Alb (g/L) | 1.03 | 0.89 | 1.19 | 0.69 |
Serum HCO3 (mmol/L) | 0.87 | 0.72 | 1.04 | 0.15 |
GFR (mL/min) | 0.22 | 0.024 | 1.66 | 0.15 |
Calcitriol (µg) | 1.70 | 0.21 | 12.96 | 0.60 |
Dialysate Kt/V | 2.24 | 0.26 | 21.05 | 0.46 |
Dialysate CrCl | 2.84 | 0.20 | 43.71 | 0.44 |
Variable | Adjusted OR | 95% CI Lower | Upper | p Value |
---|---|---|---|---|
Age (per decade) | 0.023 | 0.00065 | 0.455 | 0.012 |
DM | 11.40 | 2.82 | 61.55 | 0.0003 |
GFR (per mL/min) | 0.052 | 0.0025 | 0.66 | 0.022 |
Variable | No DM | DM | p Value |
---|---|---|---|
N | 30 | 30 | |
Women | 12 (40%) | 10 (40%) | 0.79 |
Age years (SD) | 60.9 ± 15.7 | 63.7 ± 12.0 | 0.44 |
Body Mass Index | 26.7 ± 3.8 | 29. 9 ± 6.3 | 0.02 |
PO4 > 1.78 mmol/L | 5 | 15 | 0.006 |
P intake median (IQR), 3-day (mg) | 3048.1 (2473.1, 3726.6) | 2980.3 (2307.8, 4098.1) | 0.71 |
Phosphate Index | 2.410 ± 0.474 | 2.336 ± 0.367 | 0.503 |
PO4 excretion (median, IQR), 3-day (mg) | 1296 (1059.4, 1660.6) | 1627.9 (1163.3, 2102.4) | 0.035 |
Total daily Ca carbonate intake (median, IQR) (mg) | 1500 (958.3, 2750) | 2875 (1333.3, 4045.8) | 0.08 |
% Phosphate Absorption | 0.48 ± 0.24 | 0.59 ± 0.33 | 0.13 |
GFR mL/min | 3.7 ± 3.4 | 4.7 ± 3.0 | 0.23 |
Calcitriol Dose (weekly dose, µg) | N = 15 Median 0.75 (0.75, 1.5) | N = 13 Median 0.75 (0.75, 1.5) | 0.6 |
Serum Ca (mmol/L) | 2.3 ± 0.15 | 2.3 ± 0.16 | 0.98 |
Serum PO4 (mmol/L) | 1.6 ± 0.3 | 1.8 ± 0.5 | 0.06 |
PTH (pmol/L) | 34.4 ± 38.6 | 34.8 ± 30.9 | 0.96 |
<15 pmol/L (N = 15) | 7 | 8 | |
>100 pmol/L (N = 3) | 1 | 2 | |
Dialysate CrCL (weekly) | 33.7 ± 15.1 | 35.7 ± 16.2 | 0.64 |
Dialysate Kt/V (weekly) | 1.36 ± 0.6 | 1.3 ± 0.6 | 0.73 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imtiaz, R.; Hawken, S.; McCormick, B.B.; Leung, S.; Hiremath, S.; Zimmerman, D.L. Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients. Nutrients 2017, 9, 152. https://doi.org/10.3390/nu9020152
Imtiaz R, Hawken S, McCormick BB, Leung S, Hiremath S, Zimmerman DL. Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients. Nutrients. 2017; 9(2):152. https://doi.org/10.3390/nu9020152
Chicago/Turabian StyleImtiaz, Rameez, Steven Hawken, Brendan B. McCormick, Simon Leung, Swapnil Hiremath, and Deborah L. Zimmerman. 2017. "Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients" Nutrients 9, no. 2: 152. https://doi.org/10.3390/nu9020152
APA StyleImtiaz, R., Hawken, S., McCormick, B. B., Leung, S., Hiremath, S., & Zimmerman, D. L. (2017). Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients. Nutrients, 9(2), 152. https://doi.org/10.3390/nu9020152