A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials
Abstract
:1. Introduction
2. Relevant Sections
2.1. What Are Fine Chemicals?
2.2. The Use of Heterogeneous Catalysts in the Production of Fine Chemicals
Why Are Catalysts Used?
2.3. Catalyst Selection
2.4. Mesoporous Materials and Their Uses as Catalysts in the Production of Fine Chemicals
2.4.1. Background
2.4.2. Types of Mesoporous Catalysts
Organo-Silica Based
Types of (Organo) Silica Structures
- MCM-41 (M41S) [57]
- SBA-15 [69]
Metal–Organic Frameworks
- Solid acid-base catalysts;
- Inherent metal framework (centres) catalyst sites;
- Metal catalyst confinement (surface anchoring);
- Post-synthesis functional composites;
- Precursors/sacrificial templates.
Zeolites
Types of Zeolites
ZIFs
Carbon-Based
- Activation methods;
- Catalytic activation methods (using metal ions);
- Template methods.
2.5. Microporous Materials and Their Uses as Catalysts in the Production of Fine Chemicals
2.5.1. Background
2.5.2. Types of Microporous Catalysts
Zeolites
- Hydrothermal synthesis;
- Solvothermal synthesis;
- Ionothermal synthesis;
- F-synthesis;
- Microwave-assisted hydrothermal synthesis;
- Microemulsion-based hydrothermal synthesis;
- Dry-gel conversion synthesis;
- Combinational synthesis.
- The use of H-Beta-25 in the transformation of glucose to methyl levulinate [204];
- The use of Sn-Beta zeolite in the production of methyl lactate from glucose [205];
- The use of H-beta zeolite catalysts in the prins cyclization of (−)-isopulegol [206];
- The use of H and Fe-modified beta zeolites in the production of trans-carveol from α-pinene oxide [207].
Activated Carbons
Aluminophosphate
MOFs
Metal Oxides
Polymer-Supported Catalysts
2.6. Comparison between Mesoporous and Microporous Structures and Their Uses as Catalysts in the Production of Fine Chemicals
2.7. Synthesis and Modification
2.7.1. Ion-Exchange
2.7.2. Evaporation Impregnation
2.7.3. Deposition Precipitations
2.7.4. Physicochemical Characterisation
2.7.5. Acid Preparation
2.7.6. Base Preparation
2.7.7. Comparison
2.7.8. Impregnation
2.7.9. Oxygen Doping
3. Conclusions
4. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Panizza, M. Chapter 13–Fine chemical industry, pulp and paper industry, petrochemical industry and pharmaceutical industry. In Electrochemical Water and Wastewater Treatment; Martínez-Huitle, C.A., Rodrigo, M.A., Scialdone, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Studer, M. The role of catalysis for the clean production of fine chemicals. Appl. Catal. A Gen. 1999, 189, 191–204. [Google Scholar] [CrossRef]
- Busacca, C.A.; Fandrick, D.R.; Song, J.J.; Senanayake, C.H. The Growing Impact of Catalysis in the Pharmaceutical Industry. Adv. Synth. Catal. 2011, 353, 1825–1864. [Google Scholar] [CrossRef]
- Hayler, J.D.; Leahy, D.K.; Simmons, E.M. A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics 2019, 38, 36–46. [Google Scholar] [CrossRef]
- Shokouhimehr, M. Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics. Catalysts 2015, 5, 534–560. [Google Scholar] [CrossRef]
- de Sousa, L.B.; Speranza, J.T.; Condotta, R.; Cella, R. Heterogeneous catalyzed isomerization of turpentine oil by ordered mesoporous materials like M41S structures. Can. J. Chem. Eng. 2023, 101, 4106–4117. [Google Scholar] [CrossRef]
- Malet-Sanz, L.; Susanne, F. Continuous Flow Synthesis. A Pharma Perspective. J. Med. Chem. 2012, 55, 4062–4098. [Google Scholar] [CrossRef] [PubMed]
- Porta, R.; Benaglia, M.; Puglisi, A. Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org. Process. Res. Dev. 2016, 20, 2–25. [Google Scholar] [CrossRef]
- Bulk Chemicals vs. Fine Chemicals: The Difference. Available online: https://capitalresin.com/bulk-chemicals-vs-fine-chemicals-the-difference/#:~:text=Fine%20chemicals%20are%20more%20complex,surface%2Dlevel%20differences%2C%20however (accessed on 11 May 2023).
- Anonymous. Global Chemicals Export Value by Segment. Available online: https://www.statista.com/statistics/1380198/global-chemicals-export-value-by-segment/ (accessed on 11 May 2023).
- Things You Should Know about Fine Chemicals. Available online: https://www.qinmuchem.com/news/things-you-should-know-about-fine-chemicals.html (accessed on 11 May 2023).
- Pollak, P. Fine Chemicals the Industry and the Business, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ballini, R. Eco-Friendly Synthesis of Fine Chemicals; Royal Society of Chemistry: London, UK, 2009. [Google Scholar]
- Schwanke, A.J.; Balzer, R.; Pergher, S. Microporous and mesoporous materials from natural and inexpensive sources. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Mallick, K.K.; Winnett, J. 6-3D bioceramic foams for bone tissue engineering. In Bone Substitute Biomaterials; Mallick, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Singh, B.K.; Kim, Y.; Kwon, S.; Na, K. Synthesis of Mesoporous Zeolites and Their Opportunities in Heterogeneous Catalysis. Catalysts 2021, 11, 1541. [Google Scholar] [CrossRef]
- Zu, L.; Zhang, W.; Qu, L.; Liu, L.; Li, W.; Yu, A.; Zhao, D. Mesoporous Materials for Electrochemical Energy Storage and Conversion. Adv. Energy Mater. 2020, 10, 2152. [Google Scholar] [CrossRef]
- Sánchez-Antonio, O.; Romero-Sedglach, K.A.; Vázquez-Orta, E.C.; Juaristi, E. New Mesoporous Silica-Supported Organocatalysts Based on (2S)-(1,2,4-Triazol-3-yl)-Proline: Efficient, Reusable, and Heterogeneous Catalysts for the Asymmetric Aldol Reaction. Molecules 2020, 25, 4532. [Google Scholar] [CrossRef]
- Xie, Y.; Sharma, K.K.; Anan, A.; Wang, G.; Biradar, A.V.; Asefa, T. Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. J. Catal. 2009, 265, 131–140. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis. Adv. Synth. Catal. 2006, 348, 1391–1412. [Google Scholar] [CrossRef]
- Scatena, G.S.; de la Torre, A.F.; Cass, Q.B.; Rivera, D.G.; Paixão, M.W. Multicomponent Approach to Silica-Grafted Peptide Catalysts: A 3 D Continuous-Flow Organocatalytic System with On-line Monitoring of Conversion and Stereoselectivity. ChemCatChem 2014, 6, 3208–3214. [Google Scholar] [CrossRef]
- Puglisi, A.; Benaglia, M.; Annunziata, R.; Chiroli, V.; Porta, R.; Gervasini, A. Chiral Hybrid Inorganic–Organic Materials: Synthesis, Characterization, and Application in Stereoselective Organocatalytic Cycloadditions. J. Org. Chem. 2013, 78, 11326–11334. [Google Scholar] [CrossRef] [PubMed]
- Brühwiler, D. Postsynthetic functionalization of mesoporous silica. Nanoscale 2010, 2, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.M.; Gao, J.S.; Yang, Q.H.; Li, C. Large-pore mesoporous ethane-silicas as efficient heterogeneous asymmetric catalysts. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 170, pp. 1252–1259. [Google Scholar] [CrossRef]
- Martín, N.; Cirujano, F.G. Organic synthesis of high added value molecules with MOF catalysts. Org. Biomol. Chem. 2020, 18, 8058–8073. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.R.; Park, J.-W.; Kim, H.; Ji, H.; Lim, S.H.; Jun, C.-H. A one-step co-condensation method for the synthesis of well-defined functionalized mesoporous SBA-15 using trimethallylsilanes as organosilane sources. Chem. Commun. 2015, 51, 17084–17087. [Google Scholar] [CrossRef] [PubMed]
- Ferré, M.; Pleixats, R.; Man, M.W.C.; Cattoën, X. Recyclable organocatalysts based on hybrid silicas. Green Chem. 2016, 18, 881–922. [Google Scholar] [CrossRef]
- Putz, A.-M.; Almásy, L.; Len, A.; Ianăşi, C. Functionalized silica materials synthesized via co-condensation and post-grafting methods. Full-Nanotub. Carbon Nanostruct. 2019, 27, 323–332. [Google Scholar] [CrossRef]
- Liang, J.; Liang, Z.; Zou, R.; Zhao, Y. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Adv. Mater. 2017, 29, 1139. [Google Scholar] [CrossRef]
- Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77, 1–45. [Google Scholar] [CrossRef]
- Brunel, D.; Blanc, A.C.; Galarneau, A.; Fajula, F. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals. Catal. Today 2002, 73, 139–152. [Google Scholar] [CrossRef]
- Jayakumar, M.; Karmegam, N.; Gundupalli, M.P.; Gebeyehu, K.B.; Asfaw, B.T.; Chang, S.W.; Balasubramani, R.; Awasthi, M.K. Heterogeneous base catalysts: Synthesis and application for biodiesel production—A review. Bioresour. Technol. 2021, 331, 125054. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Schumacher, K.; von Hohenesche, C.D.F.; Grün, M.; Unger, K. MCM-41, MCM-48 and related mesoporous adsorbents: Their synthesis and characterisation. Colloids Surf. A Physicochem. Eng. Asp. 2001, 187–188, 109–116. [Google Scholar] [CrossRef]
- Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009, 117, 1–9. [Google Scholar] [CrossRef]
- Vajglová, Z.; Kumar, N.; Peurla, M.; Eränen, K.; Mäki-Arvela, P.; Murzin, D.Y. Cascade transformations of (±)-citronellal to menthol over extruded Ru-MCM-41 catalysts in a continuous reactor. Catal. Sci. Technol. 2020, 10, 8108–8119. [Google Scholar] [CrossRef]
- Endud, S.; Wong, K.-L. Mesoporous silica MCM-48 molecular sieve modified with SnCl2 in alkaline medium for selective oxidation of alcohol. Microporous Mesoporous Mater. 2007, 101, 256–263. [Google Scholar] [CrossRef]
- Huo, Q.; Margolese, D.I.; Ciesla, U.; Feng, P.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schüth, F.; Stucky, G.D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, 317–321. [Google Scholar] [CrossRef]
- Huo, Q.; Margolese, D.I.; Ciesla, U.; Demuth, D.G.; Feng, P.; Gier, T.E.; Sieger, P.; Firouzi, A.; Chmelka, B.F. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater. 1994, 6, 1176–1191. [Google Scholar] [CrossRef]
- Parida, N.; Badamali, S.K. Facile synthesis and catalytic activity of nanoporous SBA-1. J. Porous Mater. 2022, 29, 161–167. [Google Scholar] [CrossRef]
- Huo, Q.; Leon, R.; Petroff, P.M.; Stucky, G.D. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science 1995, 268, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Kot, M.; Kiderys, A.; Janiszewska, E.; Pietrowski, M.; Yang, C.-M.; Zieliński, M. Hydrogenation of toluene over nickel nanoparticles supported on SBA-3 and AlSBA-3 materials. Catal. Today 2020, 356, 64–72. [Google Scholar] [CrossRef]
- Lu, G.Q.; Zhao, X.S. Nanoporous Materials: Science and Engineering; World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Ge, S.; Geng, W.; He, X.; Zhao, J.; Zhou, B.; Duan, L.; Wu, Y.; Zhang, Q. Effect of framework structure, pore size and surface modification on the adsorption performance of methylene blue and Cu2+ in mesoporous silica. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 154–162. [Google Scholar] [CrossRef]
- Mayoral, A.; Blanco, R.M.; Diaz, I. Location of enzyme in lipase-SBA-12 hybrid biocatalyst. J. Mol. Catal. B Enzym. 2013, 90, 23–25. [Google Scholar] [CrossRef]
- Kumar, A.; Nepak, D.; Srinivas, D. Direct synthesis of amides from amines using mesoporous Mn-SBA-12 and Mn-SBA-16 catalysts. Catal. Commun. 2013, 37, 36–40. [Google Scholar] [CrossRef]
- Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 2003, 27, 73–79. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, X.; Dai, X.; Qin, Y.; Duan, A.; Yu, Y.; Zhuo, H.; Zhao, H.; Zhang, P.; Jiang, Y.; et al. Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Res. 2016, 9, 3099–3115. [Google Scholar] [CrossRef]
- Sankar, E.S.; Reddy, K.S.; Jyothi, Y.; Raju, B.D.; Rao, K.S.R. Alcoholysis of Furfuryl Alcohol into n-Butyl Levulinate Over SBA-16 Supported Heteropoly Acid Catalyst. Catal. Lett. 2017, 147, 2807–2816. [Google Scholar] [CrossRef]
- Kleitz, F.; Liu, D.; Anilkumar, G.M.; Park, I.-S.; Solovyov, L.A.; Shmakov, A.N.; Ryoo, R. Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica: Synthesis and Structure. J. Phys. Chem. B 2003, 107, 14296–14300. [Google Scholar] [CrossRef]
- Kalbasi, R.J.; Zirakbash, A. Synthesis, characterization and drug release studies of poly(2-hydroxyethyl methacrylate)/KIT-5 nanocomposite as an innovative organic–inorganic hybrid carrier system. RSC Adv. 2015, 5, 12463–12471. [Google Scholar] [CrossRef]
- Bejblová, M.; Procházková, D.; Čejka, J. Acylation Reactions over Zeolites and Mesoporous Catalysts. ChemSusChem 2009, 2, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Kleitz, F.; Choi, S.H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 17, 2136–2137. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.; Palanichamy, M. Mesoporous cubic Ia3d materials for the preparation of fine chemicals: Synthesis of jasminaldehyde. Microporous Mesoporous Mater. 2013, 168, 126–131. [Google Scholar] [CrossRef]
- Kim, S.-S.; Pauly, T.R.; Pinnavaia, T.J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem. Commun. 2000, 17, 1661–1662. [Google Scholar] [CrossRef]
- Kleitz, F. Ordered mesoporous materials. In Handbook of Heterogeneous Catalysis Anonymous; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Shimizu, T.; Ota, M.; Sato, Y.; Inomata, H. Effect of pore structure on catalytic properties of mesoporous silica supported rhodium catalysts for the hydrogenation of cinnamaldehyde. Chem. Eng. Res. Des. 2015, 104, 174–179. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, L.; Zhang, J.; Anpo, M. Novel synthesis of high hydrothermal stability and long-range order MCM-48 with a convenient method. Microporous Mesoporous Mater. 2005, 86, 314–322. [Google Scholar] [CrossRef]
- Sayari, A. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater. 1996, 8, 1840–1852. [Google Scholar] [CrossRef]
- Vinu, A.; Murugesan, V.; Hartmann, M. Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chem. Mater. 2003, 15, 1385–1393. [Google Scholar] [CrossRef]
- Kumar, N.; Mäki-Arvela, P.; Hajek, J.; Salmi, T.; Murzin, D.; Heikkilä, T.; Laine, E.; Laukkanen, P.; Väyrynen, J. Physico-chemical and catalytic properties of Ru–MCM-41 mesoporous molecular sieve catalyst: Influence of Ru modification methods. Microporous Mesoporous Mater. 2004, 69, 173–179. [Google Scholar] [CrossRef]
- da Silva, K.A.; Robles-Dutenhefner, P.A.; Sousa, E.M.; Kozhevnikova, E.F.; Kozhevnikov, I.V.; Gusevskaya, E.V. Cyclization of (+)-citronellal to (−)-isopulegol catalyzed by H3PW12O40/SiO2. Catal. Commun. 2004, 5, 425–429. [Google Scholar] [CrossRef]
- Makiarvela, P.; Mäki-Arvela, P.; Kumar, N.; Nieminen, V.; Sjöholm, R.; Salmi, T.; Murzin, D.Y. Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. J. Catal. 2004, 225, 155–169. [Google Scholar] [CrossRef]
- Nie, Y.; Niah, W.; Jaenicke, S.; Chuah, G.-K. A tandem cyclization and hydrogenation of (±)-citronellal to menthol over bifunctional Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. J. Catal. 2007, 248, 1–10. [Google Scholar] [CrossRef]
- Balu, A.M.; Campelo, J.M.; Luque, R.; Romero, A.A. One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Org. Biomol. Chem. 2010, 8, 2845–2849. [Google Scholar] [CrossRef] [PubMed]
- Stekrova, M.; Mäki-Arvela, P.; Leino, E.; Valkaj, K.M.; Eränen, K.; Aho, A.; Smeds, A.; Kumar, N.; Volcho, K.P.; Salakhutdinov, N.F.; et al. Two-step synthesis of monoterpenoid dioxinols exhibiting analgesic activity from isopulegol and benzaldehyde over heterogeneous catalysts. Catal. Today 2017, 279, 56–62. [Google Scholar] [CrossRef]
- Stekrova, M.; Mäki-Arvela, P.; Kumar, N.; Behravesh, E.; Aho, A.; Balme, Q.; Volcho, K.P.; Salakhutdinov, N.F.; Murzin, D.Y. Prins cyclization: Synthesis of compounds with tetrahydropyran moiety over heterogeneous catalysts. J. Mol. Catal. A Chem. 2015, 410, 260–270. [Google Scholar] [CrossRef]
- Kumar, N.; Kubicka, D.; Garay, A.L.; Mäki-Arvela, P.; Heikkilä, T.; Salmi, T.; Murzin, D.Y. Synthesis of Ru-modified MCM-41 Mesoporous Material, Y and Beta Zeolite Catalysts for Ring Opening of Decalin. Top. Catal. 2009, 52, 380–386. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shi, J.-L.; Yan, J.-N.; Zhao, X.-G.; Chen, H.-G. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation. Appl. Catal. A Gen. 2004, 263, 213–217. [Google Scholar] [CrossRef]
- Bhanja, P.; Modak, A.; Chatterjee, S.; Bhaumik, A. Bifunctionalized Mesoporous SBA-15: A New Heterogeneous Catalyst for the Facile Synthesis of 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2017, 5, 2763–2773. [Google Scholar] [CrossRef]
- Tong, P.; Liang, J.; Jiang, X.; Li, J. Research Progress on Metal-Organic Framework Composites in Chemical Sensors. Crit. Rev. Anal. Chem. 2020, 50, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627. [Google Scholar] [CrossRef] [PubMed]
- Nuri, A.; Vucetic, N.; Smått, J.-H.; Mansoori, Y.; Mikkola, J.-P.; Murzin, D.Y. Pd Supported IRMOF-3: Heterogeneous, Efficient and Reusable Catalyst for Heck Reaction. Catal. Lett. 2019, 149, 1941–1951. [Google Scholar] [CrossRef]
- Herbst, A.; Janiak, C. MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm 2017, 19, 4092–4117. [Google Scholar] [CrossRef]
- Pendashteh, A.; Vilela, S.M.; Krivtsov, I.; Ávila-Brande, D.; Palma, J.; Horcajada, P.; Marcilla, R. Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources 2019, 427, 299–308. [Google Scholar] [CrossRef]
- Li, Q.; Kim, H. Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process. Technol. 2012, 100, 43–48. [Google Scholar] [CrossRef]
- Nguyen, L.T.L.; Le, K.K.A.; Truong, H.X.; Phan, N.T.S. Metal–organic frameworks for catalysis: The Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2012, 2, 521–528. [Google Scholar] [CrossRef]
- Babarao, R.; Jiang, Y.; Medhekar, N.V. Postcombustion CO2 Capture in Functionalized Porous Coordination Networks. J. Phys. Chem. C 2013, 117, 26976–26987. [Google Scholar] [CrossRef]
- Goswami, S.; Miller, C.E.; Logsdon, J.L.; Buru, C.T.; Wu, Y.-L.; Bowman, D.N.; Islamoglu, T.; Asiri, A.M.; Cramer, C.J.; Wasielewski, M.R.; et al. Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Appl. Mater. Interfaces 2017, 9, 19535–19540. [Google Scholar] [CrossRef]
- García-García, P.; Corma, A. Hf-based Metal-Organic Frameworks in Heterogeneous Catalysis. Isr. J. Chem. 2018, 58, 1062–1074. [Google Scholar] [CrossRef]
- Hamon, L.; Heymans, N.; Llewellyn, P.L.; Guillerm, V.; Ghoufi, A.; Vaesen, S.; Maurin, G.; Serre, C.; De Weireld, G.; Pirngruber, G.D. Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: Experimental and modelling approaches. Dalton Trans. 2012, 41, 4052–4059. [Google Scholar] [CrossRef] [PubMed]
- Opanasenko, M.; Dhakshinamoorthy, A.; Hwang, Y.K.; Chang, J.; Garcia, H.; Čejka, J. Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem 2013, 6, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Dissegna, S.; Epp, K.; Heinz, W.R.; Kieslich, G.; Fischer, R.A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.-W.; Tian, H.-R.; Li, X.-H.; Liu, S.-M.; Lu, Y.; Sun, Z.-X.; Liu, T. Polyoxometalate-Based Metal-Organic Framework Fractal Crystals. Matter 2020, 2, 250–260. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef]
- Hao, M.; Qiu, M.; Yang, H.; Hu, B.; Wang, X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total. Environ. 2021, 760, 143333. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Mayoral, E.; Godino-Ojer, M.; Matos, I.; Bernardo, M. Opportunities from Metal Organic Frameworks to Develop Porous Carbons Catalysts Involved in Fine Chemical Synthesis. Catalysts 2023, 13, 541. [Google Scholar] [CrossRef]
- Wilson, K.; Lee, A.F. Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Konnerth, H.; Matsagar, B.M.; Chen, S.S.; Prechtl, M.H.; Shieh, F.-K.; Wu, K.C.-W. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416, 213319. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Opanasenko, M.; Čejka, J.; Garcia, H. Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal. Sci. Technol. 2013, 3, 2509–2540. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations. J. Mater. Chem. A 2016, 4, 5247–5257. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Cai, G.; Wang, Y.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: The role of catalyst wettability. Green Chem. 2016, 18, 1212–1217. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Wang, C.; Feng, C.; Shang, N.; Gao, S.; Wang, C. Palladium nanoparticles embedded in metal–organic framework derived porous carbon: Synthesis and application for efficient Suzuki–Miyaura coupling reactions. RSC Adv. 2016, 6, 37118–37123. [Google Scholar] [CrossRef]
- Van Nguyen, C.; Boo, J.R.; Liu, C.-H.; Ahamad, T.; Alshehri, S.M.; Matsagar, B.M.; Wu, K.C.-W. Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. Catal. Sci. Technol. 2020, 10, 1498–1506. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, H.; Bai, C.; Liao, S.; Li, Y. Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts. ACS Catal. 2015, 5, 1850–1856. [Google Scholar] [CrossRef]
- Yao, X.; Bai, C.; Chen, J.; Li, Y. Efficient and selective green oxidation of alcohols by MOF-derived magnetic nanoparticles as a recoverable catalyst. RSC Adv. 2016, 6, 26921–26928. [Google Scholar] [CrossRef]
- Tang, B.; Song, W.-C.; Yang, E.-C.; Zhao, X.-J. MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds. RSC Adv. 2017, 7, 1531–1539. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry, and Use. J. Chromatogr. Sci. 1974, 13, 18A. [Google Scholar]
- Rosas-Arbelaez, W.; Fijneman, A.J.; Friedrich, H.; Palmqvist, A.E.C. Hierarchical micro-/mesoporous zeolite microspheres prepared by colloidal assembly of zeolite nanoparticles. RSC Adv. 2020, 10, 36459–36466. [Google Scholar] [CrossRef]
- Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 2003, 216, 298–312. [Google Scholar] [CrossRef]
- Primo, A.; Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 2014, 43, 7548–7561. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Y.; Wang, X.; Zhang, Y.; Tang, Y.; Yang, P.; Xu, F.; Wang, Y.; Wang, X.; Zhang, Y.; et al. A Novel Hierarchical Nanozeolite Composite as Sorbent for Protein Separation in Immobilized Metal-Ion Affinity Chromatography. Adv. Mater. 2003, 15, 1751–1753. [Google Scholar] [CrossRef]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- García-Martínez, J.; Li, K.; Davis, M.E. Mesoporous Zeolites–Preparation, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Huber, G.W.; Corma, A.; Huber, G.W.; Corma, A. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem. Int. Ed. 2007, 46, 7184–7201. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Huber, G.W.; Sauvanaud, L.; Oconnor, P. Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal. 2007, 247, 307–327. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Jeong, J.; Ryu, S.; Lee, H.W.; Jung, J.S.; Siddiqui, M.Z.; Jung, S.-C.; Jeon, J.-K.; Jae, J.; Park, Y.-K. Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites. Energy Convers. Manag. 2019, 195, 727–737. [Google Scholar] [CrossRef]
- Carlson, T.R.; Tompsett, G.A.; Conner, W.C.; Huber, G.W. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top. Catal. 2009, 52, 241–252. [Google Scholar] [CrossRef]
- Clark, J.H.; Deswarte, F.E.I.; Farmer, T.J. The integration of green chemistry into future biorefineries. Biofuels, Bioprod. Biorefining 2008, 3, 72–90. [Google Scholar] [CrossRef]
- Erdmenger, T.; Guerrero-Sanchez, C.; Vitz, J.; Hoogenboom, R.; Schubert, U.S. Recent developments in the utilization of green solvents in polymer chemistry. Chem. Soc. Rev. 2010, 39, 3317–3333. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Ji, Y.; Chen, F.; Xiao, F.-S. Mesoporous zeolites for biofuel upgrading and glycerol conversion. Front. Chem. Sci. Eng. 2018, 12, 132–144. [Google Scholar] [CrossRef]
- Egeblad, K.; Christensen, C.H.; Kustova, M.; Christensen, C.H. Templating Mesoporous Zeolites. Chem. Mater. 2008, 20, 946–960. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, H.; Yuan, P.; Li, T.; Yu, C.; Bi, H.; Bao, X. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. J. Catal. 2014, 319, 200–210. [Google Scholar] [CrossRef]
- Groen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 2006, 16, 2121–2131. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications. Chem. Rev. 2006, 106, 896–910. [Google Scholar] [CrossRef] [PubMed]
- van Donk, S.; Janssen, A.H.; Bitter, J.H.; de Jong, K.P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catal. Rev. 2003, 45, 297–319. [Google Scholar] [CrossRef]
- Madsen, C.; Jacobsen, C.J.H. Nanosized zeolite crystals—Convenient control of crystal size distribution by confined space synthesis. Chem. Commun. 1999, 8, 673–674. [Google Scholar] [CrossRef]
- Schmidt, I.; Madsen, C.; Jacobsen, C.J.H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites. Inorg. Chem. 2000, 39, 2279–2283. [Google Scholar] [CrossRef]
- Jacobsen, C.J.; Madsen, C.; Janssens, T.V.; Jakobsen, H.J.; Skibsted, J. Zeolites by confined space synthesis—Characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous Mesoporous Mater. 2000, 39, 393–401. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Kaneko, K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating. J. Phys. Chem. B 2003, 107, 10974–10976. [Google Scholar] [CrossRef]
- Kim, S.-S.; Shah, J.; Pinnavaia, T.J. Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite. Chem. Mater. 2003, 15, 1664–1668. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Kaneko, K. ZSM-5 Monolith of Uniform Mesoporous Channels. J. Am. Chem. Soc. 2003, 125, 6044–6045. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Hanzawa, Y.; Kaneko, K. Template synthesis and characterization of mesoporous zeolites. Colloids Surf. A Physicochem. Eng. Asp. 2004, 241, 75–80. [Google Scholar] [CrossRef]
- Xiao, F.S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D.S.; Schlögl, R.; Yokoi, T.; et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew. Chem.-Int. Ed. 2006, 45, 3090–3093. [Google Scholar] [CrossRef]
- Wang, H.; Pinnavaia, T.J. MFI Zeolite with Small and Uniform Intracrystal Mesopores. Angew. Chem. 2006, 118, 7765–7768. [Google Scholar] [CrossRef]
- Naydenov, V.; Tosheva, L.; Sterte, J. Vanadium modified AlPO-5 spheres through resin macrotemplating. Microporous Mesoporous Mater. 2003, 66, 321–329. [Google Scholar] [CrossRef]
- Valtchev, V.; Smaihi, M.; Faust, A.C.; Vidal, L. Dual templating function of Equisetum arvense in the preparation of zeolite macrostructures. Stud. Surf. Sci. Catal. 2004, 154, 588–592. [Google Scholar] [CrossRef]
- Corma, A.; Fornes, V.; Rey, F. Delaminated Zeolites: An Efficient Support for Enzymes. Adv. Mater. 2002, 14, 71–74. [Google Scholar] [CrossRef]
- Corma, A.; Fornes, V.; Pergher, S.B.; Maesen, T.L.M.; Buglass, J.G. Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396, 353–356. [Google Scholar] [CrossRef]
- Nielsen, M.; Brogaard, R.Y.; Falsig, H.; Beato, P.; Swang, O.; Svelle, S. Kinetics of Zeolite Dealumination: Insights from H-SSZ-13. ACS Catal. 2015, 5, 7131–7139. [Google Scholar] [CrossRef]
- Poliakoff, M.; Licence, P. Green chemistry. Nature 2007, 450, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Xu, H.; Xue, T.; Jiang, J.-G.; Wu, H.-H.; He, M.; Wu, P. Postsynthesis of high silica beta by cannibalistic dealumination of OSDA-free beta and its catalytic applications. Inorg. Chem. Front. 2021, 8, 1574–1587. [Google Scholar] [CrossRef]
- Pilar, R.; Moravkova, J.; Sadovska, G.; Sklenak, S.; Brabec, L.; Pastvova, J.; Sazama, P. Controlling the competitive growth of zeolite phases without using an organic structure-directing agent. Syn-thesis of Al-rich*BEA. Microporous Mesoporous Mater. 2022, 333, 111726. [Google Scholar] [CrossRef]
- Agostini, G.; Lamberti, C.; Palin, L.; Milanesio, M.; Danilina, N.; Xu, B.; Janousch, M.; van Bokhoven, J.A. In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst. J. Am. Chem. Soc. 2010, 132, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Oleksiak, M.D.; Muraoka, K.; Hsieh, M.F.; Conato, M.T.; Shimojima, A.; Okubo, T.; Chaikittisilp, W.; Rimer, J.D. Back Cover: Organic-Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q4 (nAl) Si Speciation. Angew. Chem. Int. Ed. 2017, 56, 13532. [Google Scholar] [CrossRef]
- Meng, B.; Ren, S.; Li, Z.; Nie, S.; Zhang, X.; Song, W.; Guo, Q.; Shen, B. A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+. Microporous Mesoporous Mater. 2021, 323, 111248. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Song, M.; Lu, T.; Wang, W.; Wang, Z.; Yan, W.; Cheng, P.; Zhao, Z. Accelerated synthesis of Al-rich zeolite beta via different radicalized seeds in the absence of organic templates. Microporous Mesoporous Mater. 2021, 310, 110633. [Google Scholar] [CrossRef]
- Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. J. Earth Planet. Mater. 1954, 39, 92–96. [Google Scholar]
- He, Z.; Wu, J.; Gao, B.; He, H. Hydrothermal Synthesis and Characterization of Aluminum-Free Mn-β Zeolite: A Catalyst for Phenol Hydroxylation. ACS Appl. Mater. Interfaces 2015, 7, 2424–2432. [Google Scholar] [CrossRef]
- Grass, J.-P.; Klühspies, K.; Reiprich, B.; Schwieger, W.; Inayat, A. Layer-Like Zeolite X as Catalyst in a Knoevenagel Condensation: The Effect of Different Preparation Pathways and Cation Exchange. Catalysts 2021, 11, 474. [Google Scholar] [CrossRef]
- Zhang, F.; Yuan, C.; Wang, J.; Kong, Y.; Zhu, H.; Wang, C. Synthesis of fructone over dealmuinated USY supported heteropoly acid and its salt catalysts. J. Mol. Catal. A Chem. 2006, 247, 130–137. [Google Scholar] [CrossRef]
- Wang, Q.; Han, W.; Lyu, J.; Zhang, Q.; Guo, L.; Li, X. In situ encapsulation of platinum clusters within H-ZSM-5 zeolite for highly stable benzene methylation catalysis. Catal. Sci. Technol. 2017, 7, 6140–6150. [Google Scholar] [CrossRef]
- Kostrab, G.; Mravec, D.; Bajus, M.; Janotka, I.; Sugi, Y.; Cho, S.; Kim, J. tert-Butylation of toluene over mordenite and cerium-modified mordenite catalysts. Appl. Catal. A Gen. 2006, 299, 122–130. [Google Scholar] [CrossRef]
- Pellet, R.; Casey, D.; Huang, H.; Kessler, R.; Kuhlman, E.; Oyoung, C.; Sawicki, R.; Ugolini, J. Isomerization of n-Butene to Isobutene by Ferrierite and Modified Ferrierite Catalysts. J. Catal. 1995, 157, 423–435. [Google Scholar] [CrossRef]
- da Silva, J.F.; Ferracine, E.D.d.S.; Cardoso, D. Improved accessibility of Na-LTA zeolite catalytic sites for the Knoevenagel condensation reaction. Microporous Mesoporous Mater. 2022, 331, 111640. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts Chem. Res. 2009, 43, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Kouser, S.; Hezam, A.; Khadri, M.J.N.; Khanum, S.A. A review on zeolite imidazole frameworks: Synthesis, properties, and applications. J. Porous Mater. 2022, 29, 663–681. [Google Scholar] [CrossRef]
- Yang, T.; Chung, T.-S. Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J. Mater. Chem. A 2013, 1, 6081–6090. [Google Scholar] [CrossRef]
- Gross, A.F.; Sherman, E.; Vajo, J.J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 2012, 41, 5458–5460. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Pan, Y.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H.; Lai, Z. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, Q. Surfactants as Promising Media for the Preparation of Crystalline Inorganic Materials. Angew. Chem. Int. Ed. 2015, 54, 11616–11623. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Masel, R.I. Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. [Google Scholar] [CrossRef]
- Martins, G.A.V.; Byrne, P.J.; Allan, P.; Teat, S.J.; Slawin, A.M.Z.; Li, Y.; Morris, R.E. The use of ionic liquids in the synthesis of zinc imidazolate frameworks. Dalton Trans. 2010, 39, 1758–1762. [Google Scholar] [CrossRef]
- Yang, L.; Lu, H. Microwave-assisted Ionothermal Synthesis and Characterization of Zeolitic Imidazolate Framework-8. Chin. J. Chem. 2012, 30, 1040–1044. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J. Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angew. Chem. 2011, 50, 672–675. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, M.; Zhou, M.; Du, Y.; Chen, R. Hierarchical Pd@ZIFs as Efficient Catalysts for p-Nitrophenol Reduction. Ind. Eng. Chem. Res. 2021, 60, 15045–15055. [Google Scholar] [CrossRef]
- Luo, Z.; Chaemchuen, S.; Zhou, K.; Verpoort, F. Ring-Opening Polymerization of l-Lactide to Cyclic Poly(Lactide) by Zeolitic Imidazole Framework ZIF-8 Catalyst. ChemSusChem 2017, 10, 4135–4139. [Google Scholar] [CrossRef]
- Peralta, D.; Chaplais, G.; Simon-Masseron, A.; Barthelet, K.; Chizallet, C.; Quoineaud, A.-A.; Pirngruber, G.D. Comparison of the Behavior of Metal–Organic Frameworks and Zeolites for Hydrocarbon Separations. J. Am. Chem. Soc. 2012, 134, 8115–8126. [Google Scholar] [CrossRef]
- Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A.-A.; Bats, N. Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. J. Am. Chem. Soc. 2010, 132, 12365–12377. [Google Scholar] [CrossRef]
- Thomas, A.; Prakash, M. The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. J. Phys. Chem. C 2020, 124, 26203–26213. [Google Scholar] [CrossRef]
- Denning, S.; Majid, A.A.A.; Lucero, J.M.; Crawford, J.M.; Carreon, M.A.; Koh, C.A. Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67 for Enhanced Methane Storage. ACS Sustain. Chem. Eng. 2021, 9, 9001–9010. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, T.; Chen, Y.; Wang, Q. The Ni/Ni3S2 nanocomposite derived from Ni-ZIF with superior energy storage performance as cathodes for asymmetric supercapacitor and rechargeable aqueous zinc ion battery. J. Alloys Compd. 2022, 891, 161935. [Google Scholar] [CrossRef]
- Dou, J.; Bian, W.; Zheng, X.; Yue, Q.; Song, Q.; Deng, S.; Wang, L.; Tan, W.; Li, W.; Zhou, B. A ZIF-based drug delivery system as three-in-one platform for joint cancer therapy. Mater. Chem. Phys. 2023, 297, 127345. [Google Scholar] [CrossRef]
- Shi, L.; Wu, J.; Qiao, X.; Ha, Y.; Li, Y.; Peng, C.; Wu, R. In Situ Biomimetic Mineralization on ZIF-8 for Smart Drug Delivery. ACS Biomater. Sci. Eng. 2020, 6, 4595–4603. [Google Scholar] [CrossRef]
- Mehdipour-Ataei, S.; Aram, E. Mesoporous Carbon-Based Materials: A Review of Synthesis, Modification, and Applications. Catalysts 2023, 13, 2. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, S.; Yang, C.; Zhang, J.Y.; Su, Y.; Zheng, G.; Fang, X. Controllable States and Porosity of Cu-Carbon for CO2 Electroreduction to Hydrocarbons. Small 2022, 18, 2238. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sharifi, T.; Gao, Y.; Zhang, T.; Ajayan, P.M. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals. Adv. Mater. 2019, 31, e1804257. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Tsujimura, S.; Morishita, T. Templated mesoporous carbons: Synthesis and applications. Carbon 2016, 107, 448–473. [Google Scholar] [CrossRef]
- Mui, E.L.; Ko, D.C.; McKay, G. Production of active carbons from waste tyres—A review. Carbon 2004, 42, 2789–2805. [Google Scholar] [CrossRef]
- Yang, T.; Lua, A.C. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J. Colloid Interface Sci. 2003, 267, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Bergna, D.; Hu, T.; Prokkola, H.; Romar, H.; Lassi, U. Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process. Waste Biomass-Valorization 2020, 11, 2837–2848. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Xu, B.; Chen, Y.; Wei, G.; Cao, G.; Zhang, H.; Yang, Y. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 2010, 124, 504–509. [Google Scholar] [CrossRef]
- Guo, Y.; Rockstraw, D.A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 2006, 44, 1464–1475. [Google Scholar] [CrossRef]
- Xing, Z.; Qi, Y.; Tian, Z.; Xu, J.; Yuan, Y.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D.-E.; Ji, X. Identify the Removable Substructure in Carbon Activation. Chem. Mater. 2017, 29, 7288–7295. [Google Scholar] [CrossRef]
- Smith, M.R.; Bittner, E.W.; Shi, W.; Johnson, J.K.; Bockrath, B.C. Chemical Activation of Single-Walled Carbon Nanotubes for Hydrogen Adsorption. J. Phys. Chem. B 2003, 107, 3752–3760. [Google Scholar] [CrossRef]
- Kyotani, T. Control of pore structure in carbon. Carbon 2000, 38, 269–286. [Google Scholar] [CrossRef]
- Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem. Commun. 2005, 16, 2125–2127. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Katayama, Y.; Tate, M.P.; Hillhouse, H.W.; Miyake, Y. Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. J. Mater. Chem. 2007, 17, 3639–3645. [Google Scholar] [CrossRef]
- Javed, H.; Pani, S.; Antony, J.; Sakthivel, M.; Drillet, J.-F. Synthesis of mesoporous carbon spheres via a soft-template route for catalyst supports in PEMFC cathodes. Soft Matter 2021, 17, 7743–7754. [Google Scholar] [CrossRef] [PubMed]
- Bonneviot, L.; Béland, F.; Danumah, C.; Giasson, S.; Kaliaguine, S. Mesoporous Molecular Sieves; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Corma, A.; Iborra, S.; Miquel, S.; Primo, J. Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts. J. Catal. 1998, 173, 315–321. [Google Scholar] [CrossRef]
- Jaroniec, C.P.; Kruk, M.; Jaroniec, M.; Sayari, A. Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes. J. Phys. Chem. B 1998, 102, 5503–5510. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, L.; Lu, A. Highly Selective Copper Catalyst Supported on Mesoporous Carbon for the Dehydrogenation of Ethanol to Acetaldehyde. ChemCatChem 2015, 7, 2846–2852. [Google Scholar] [CrossRef]
- Liu, X.; Lan, G.; Su, P.; Qian, L.; Reina, T.R.; Wang, L.; Li, Y.; Liu, J. Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of γ-valerolactone. Catal. Today 2020, 351, 75–82. [Google Scholar] [CrossRef]
- Budd, P.M.; Makhseed, S.M.; Ghanem, B.S.; Msayib, K.J.; Tattershall, C.; McKeown, N.B. Microporous polymeric materials. Mater. Today 2004, 7, 40–46. [Google Scholar] [CrossRef]
- Attfield, M.P. Microporous Materials. Sci. Prog. 2002, 85, 319–345. [Google Scholar] [CrossRef]
- CejkaM, J. Introduction to Zeolite Science and Practice, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kumar, N. Microporous Zeolites and Related Nanoporous Materials: Synthesis, Characterization and Application in Catalysis. Catalysts 2021, 11, 382. [Google Scholar] [CrossRef]
- Kamaluddin, H.S.; Basahel, S.N.; Narasimharao, K.; Mokhtar, M. H-ZSM-5 Materials Embedded in an Amorphous Silica Matrix: Highly Selective Catalysts for Propylene in Methanol-to-Olefin Process. Catalysts 2019, 9, 364. [Google Scholar] [CrossRef]
- Kumar, N.; Mäki-Arvela, P.; Diáz, S.F.; Aho, A.; Demidova, Y.; Linden, J.; Shepidchenko, A.; Tenhu, M.; Salonen, J.; Laukkanen, P.; et al. Isomerization of α-Pinene Oxide Over Iron-Modified Zeolites. Top. Catal. 2013, 56, 696–713. [Google Scholar] [CrossRef]
- Vajglová, Z.; Kumar, N.; Peurla, M.; Hupa, L.; Semikin, K.; Sladkovskiy, D.A.; Murzin, D.Y. Effect of the Preparation of Pt-Modified Zeolite Beta-Bentonite Extrudates on Their Catalytic Behavior in n-Hexane Hydroisomerization. Ind. Eng. Chem. Res. 2019, 58, 10875–10885. [Google Scholar] [CrossRef]
- Vajglová, Z.; Gauli, B.; Mäki-Arvela, P.; Kumar, N.; Eränen, K.; Wärnå, J.; Lassfolk, R.; Simakova, I.L.; Prosvirin, I.P.; Peurla, M.; et al. Interactions between Iron and Nickel in Fe–Ni Nanoparticles on Y Zeolite for Co-Processing of Fossil Feedstock with Lignin-Derived Isoeugenol. ACS Appl. Nano Mater. 2023, 6, 10064–10077. [Google Scholar] [CrossRef]
- Vajglová, Z.; Kumar, N.; Mäki-Arvela, P.; Eränen, K.; Peurla, M.; Hupa, L.; Nurmi, M.; Toivakka, M.; Murzin, D.Y. Synthesis and Physicochemical Characterization of Shaped Catalysts of β and Y Zeolites for Cyclization of Citronellal. Ind. Eng. Chem. Res. 2019, 58, 18084–18096. [Google Scholar] [CrossRef]
- Vajglová, Z.; Kumar, N.; Mäki-Arvela, P.; Eränen, K.; Peurla, M.; Hupa, L.; Murzin, D.Y. Effect of Binders on the Physicochemical and Catalytic Properties of Extrudate-Shaped Beta Zeolite Catalysts for Cyclization of Citronellal. Org. Process. Res. Dev. 2019, 23, 2456–2463. [Google Scholar] [CrossRef]
- Aho, A.; Kumar, N.; Eränen, K.; Mäki-Arvela, P.; Salmi, T.; Peurla, M.; Angervo, I.; Hietala, J.; Murzin, D.Y. Catalytic conversion of glucose to methyl levulinate over metal-modified Beta zeolites. React. Kinet. Catal. Lett. 2022, 135, 1971–1986. [Google Scholar] [CrossRef]
- Aho, A.; Kumar, N.; Eränen, K.; Lassfolk, R.; Mäki-Arvela, P.; Salmi, T.; Peurla, M.; Angervo, I.; Hietala, J.; Murzin, D.Y. Improving the methyl lactate yield from glucose over Sn–Al-Beta zeolite by catalyst promoters. Microporous Mesoporous Mater. 2023, 351, 112483. [Google Scholar] [CrossRef]
- Zaykovskaya, A.O.; Kumar, N.; Kholkina, E.A.; Li-Zhulanov, N.S.; Mäki-Arvela, P.; Aho, A.; Peltonen, J.; Peurla, M.; Heinmaa, I.; Kusema, B.T.; et al. Synthesis and physico-chemical characterization of Beta zeolite catalysts: Evaluation of catalytic properties in Prins cyclization of (−)-isopulegol. Microporous Mesoporous Mater. 2020, 302, 110236. [Google Scholar] [CrossRef]
- Stekrova, M.; Kumar, N.; Díaz, S.; Mäki-Arvela, P.; Murzin, D.Y. H- and Fe-modified zeolite beta catalysts for preparation of trans-carveol from α-pinene oxide. Catal. Today 2015, 241, 237–245. [Google Scholar] [CrossRef]
- Ma, H.; Chen, J.-J.; Tan, L.; Bu, J.-H.; Zhu, Y.; Tan, B.; Zhang, C. Nitrogen-Rich Triptycene-Based Porous Polymer for Gas Storage and Iodine Enrichment. ACS Macro Lett. 2016, 5, 1039–1043. [Google Scholar] [CrossRef]
- Hu, X.; Radosz, M.; Cychosz, K.A.; Thommes, M. CO2-Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT). Environ. Sci. Technol. 2011, 45, 7068–7074. [Google Scholar] [CrossRef]
- Yahya, M.A.; Mansor, M.H.; Zolkarnaini, W.A.A.W.; Rusli, N.S.; Aminuddin, A.; Mohamad, K.; Sabhan, F.A.M.; Atik, A.A.A.; Ozair, L.N. A brief review on activated carbon derived from agriculture by-product. In Proceedings of the International Conference on Recent Advancements in Science and Technology 2017 (ICoRAST2017), Melaka, Malaysia, 7–8 November 2017; p. 030023. [Google Scholar]
- Adeleye, A.T.; Akande, A.A.; Odoh, C.K.; Philip, M.; Fidelis, T.T.; Amos, P.I.; Banjoko, O.O. Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J. Ind. Eng. Chem. 2021, 96, 59–75. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Gheni, S.A.; Hamad, K.I.; Mohammed, A.E.; Hmood, H.M.; Mahomood, M.A.; Mohammed, H.R.; Abdulwahab, Z.T.; Ahmed, S.M.; Hassan, A.A. Microporous activated carbon catalyst for an efficient and deactivation resistive supercritical water upgrading process of sour crude oil. Diam. Relat. Mater. 2023, 135, 109887. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef]
- Al-Qayim, K.; Nimmo, W.; Hughes, K.; Pourkashanian, M. Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis. Fuel 2017, 210, 811–825. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Sui, Z.-J.; Li, P.; Chen, D.; Dai, Y.-C.; Yuan, W.-K. Structural characterization of carbon nanofibers formed from different carbon-containing gases. Carbon 2006, 44, 3255–3262. [Google Scholar] [CrossRef]
- Kvande, I.; Zhu, J.; Zhao, T.-J.; Hammer, N.; Rønning, M.; Raaen, S.; Walmsley, J.C.; Chen, D. Importance of Oxygen-Free Edge and Defect Sites for the Immobilization of Colloidal Pt Oxide Particles with Implications for the Preparation of CNF-Supported Catalysts. J. Phys. Chem. C 2010, 114, 1752–1762. [Google Scholar] [CrossRef]
- Kvande, I.; Chen, D.; Zhao, T.-J.; Skoe, I.M.; Walmsley, J.C.; Rønning, M. Hydrogen Oxidation Catalyzed by Pt Supported on Carbon Nanofibers with Different Graphite Sheet Orientations. Top. Catal. 2009, 52, 664–674. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Wang, M.-R.; Lai, Y.-Q.; Li, X.-Y. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries. J. Power Sources 2017, 359, 71–79. [Google Scholar] [CrossRef]
- Abushawish, A.; Almanassra, I.W.; Backer, S.N.; Jaber, L.; Khalil, A.K.; Abdelkareem, M.A.; Sayed, E.T.; Alawadhi, H.; Shanableh, A.; Atieh, M.A. High-efficiency removal of hexavalent chromium from contaminated water using nitrogen-doped activated carbon: Kinetics and isotherm study. Mater. Chem. Phys. 2022, 291, 126758. [Google Scholar] [CrossRef]
- Quan, C.; Jia, X.; Gao, N. Nitrogen-doping activated biomass carbon from tea seed shell for CO2 capture and supercapacitor. Int. J. Energy Res. 2020, 44, 1218–1232. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Ding, C.; Meng, Y.; Wang, J.; Zhang, K.; Liu, P. Nickel–copper catalysts supported by boron and nitrogen co-doped activated carbon for gas phase carbonylation of ethanol. J. Porous Mater. 2023, 30, 1575–1585. [Google Scholar] [CrossRef]
- Pan, S.-F.; Yin, J.-L.; Zhu, X.-L.; Guo, X.-J.; Hu, P.; Yan, X.; Lang, W.-Z.; Guo, Y.-J. P-modified microporous carbon nanospheres for direct propane dehydrogenation reactions. Carbon 2019, 152, 855–864. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, J.L.; Chen, X.Y.; Zhang, Z.J. Design and synthesis of phosphomolybdic acid/silver dual-modified microporous carbon composite for high performance supercapacitors. J. Alloys Compd. 2019, 791, 1005–1014. [Google Scholar] [CrossRef]
- Martínez-Klimov, M.E.; Mäki-Arvela, P.; Vajglova, Z.; Alda-Onggar, M.; Angervo, I.; Kumar, N.; Eränen, K.; Peurla, M.; Calimli, M.H.; Muller, J.; et al. Hydrodeoxygenation of Isoeugenol over Carbon-Supported Pt and Pt–Re Catalysts for Production of Renewable Jet Fuel. Energy Fuels 2021, 35, 17755–17768. [Google Scholar] [CrossRef]
- Wang, D.; Huang, B.; Shi, Z.; Long, H.; Li, L.; Yang, Z.; Dai, M. Influence of cerium doping on Cu–Ni/activated carbon low-temperature CO-SCR denitration catalysts. RSC Adv. 2021, 11, 18458–18467. [Google Scholar] [CrossRef]
- Abdulkareem-Alsultan, G.; Asikin-Mijan, N.; Mustafa-Alsultan, G.; Lee, H.V.; Wilson, K.; Taufiq-Yap, Y.H. Efficient deoxygenation of waste cooking oil over Co3O4–La2O3-doped activated carbon for the production of diesel-like fuel. RSC Adv. 2020, 10, 4996–5009. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Martin, G.; Simakova, I.; Tokarev, A.; Wärnå, J.; Hemming, J.; Holmbom, B.; Salmi, T.; Murzin, D. Kinetics, catalyst deactivation and modeling in the hydrogenation of β-sitosterol to β-sitostanol over microporous and mesoporous carbon supported Pd catalysts. Chem. Eng. J. 2009, 154, 45–51. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Pastore, H.; Coluccia, S.; Marchese, L. Porous aluminophosphates: From Molecular Sieves to Designed Acid Catalysts. Annu. Rev. Mater. Res. 2005, 35, 351–395. [Google Scholar] [CrossRef]
- Corà, F.; Gómez-Hortigüela, L.; Catlow, C.R.A. Aerobic oxidation of hydrocarbons in Mn-doped aluminophosphates: A computational perspective to understand mechanism and selectivity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 2053–2069. [Google Scholar] [CrossRef]
- Gómez-Hortigüela, L.; Corà, F.; Catlow, C.R.A. Complementary mechanistic properties of Fe- and Mn-doped aluminophosphates in the catalytic aerobic oxidation of hydrocarbons. Phys. Chem. Chem. Phys. 2013, 15, 6870–6874. [Google Scholar] [CrossRef] [PubMed]
- Dawaymeh, F.; Elmutasim, O.; Gaber, D.; Gaber, S.; Reddy, K.S.K.; Basina, G.; Polychronopoulou, K.; Al Wahedi, Y.; Karanikolos, G.N. Metal substitution effects of aluminophosphate AlPO4-5 as solid acid catalyst for esterification of acetic acid with ethanol. Mol. Catal. 2021, 501, 111371. [Google Scholar] [CrossRef]
- Nagaraju, N.; Kuriakose, G. A new catalyst for the synthesis of N,N-biphenylurea from aniline and dimethyl carbonate. Green Chem. 2002, 4, 269–271. [Google Scholar] [CrossRef]
- Vijayasankar, A.V.; Mahadevaiah, N.; Bhat, Y.S.; Nagaraju, N. Mesoporous aluminophosphate materials: Influence of method of preparation and iron loading on textural properties and catalytic activity. J. Porous Mater. 2011, 18, 369–378. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ebrahimnia, M.; Shahbazi, M.-A.; Keçili, R.; Ghorbani-Bidkorbeh, F. Microporous metal–organic frameworks: Synthesis and applications. J. Ind. Eng. Chem. 2022, 115, 1–11. [Google Scholar] [CrossRef]
- Pal, A.; Chand, S.; Madden, D.G.; Franz, D.; Ritter, L.; Johnson, A.; Space, B.; Curtin, T.; Das, M.C. A Microporous Co-MOF for Highly Selective CO2 Sorption in High Loadings Involving Aryl C–H···O═C═O Interactions: Combined Simulation and Breakthrough Studies. Inorg. Chem. 2019, 58, 11553–11560. [Google Scholar] [CrossRef]
- Pal, A.; Chand, S.; Elahi, S.M.; Das, M.C. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2from CO2–N2and CO2–CH4gas mixtures with high CO2loading. Dalton Trans. 2017, 46, 15280–15286. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, R.A. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron 2007, 63, 1946–1952. [Google Scholar] [CrossRef]
- Ramish, S.M.; Ghorbani-Choghamarani, A.; Mohammadi, M. Microporous hierarchically Zn-MOF as an efficient catalyst for the Hantzsch synthesis of polyhydroquinolines. Sci. Rep. 2022, 12, 1479. [Google Scholar] [CrossRef]
- Roy, D.; Kumar, P.; Soni, A.; Nemiwal, M. A versatile and microporous Zn-based MOFs as a recyclable and sustainable heterogeneous catalyst for various organic transformations: A review (2015-present). Tetrahedron 2023, 138, 133408. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, B.; Cheng, Y. Microporous exposure on catalytic performance of MoVNbTeOx mixed metal oxides in the oxidative dehydrogenation of ethane. J. Catal. 2023, 426, 308–318. [Google Scholar] [CrossRef]
- Ivan, B.; Popescu, I.; Fechete, I.; Garin, F.; Pârvulescu, V.I.; Marcu, I.-C. The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation. Catal. Sci. Technol. 2016, 6, 6953–6964. [Google Scholar] [CrossRef]
- Kung, H.H. Transition Metal Oxides: Surface Chemistry and Catalysis, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 45. [Google Scholar] [CrossRef]
- Corà, F.; Catlow, C.; Lewis, D. Design of microporous transition metal oxide catalysts and investigation of their synthesis conditions. J. Mol. Catal. A Chem. 2001, 166, 123–134. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034. [Google Scholar] [CrossRef]
- Zhang, Y.; Riduan, S.N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083–2094. [Google Scholar] [CrossRef]
- Widersten, M.; Gurell, A.; Lindberg, D. Structure–function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim. Biophys. Acta 2010, 1800, 316–326. [Google Scholar] [CrossRef]
- Saha, B.; Ambroziak, K.; Sherrington, D.C.; Mbeleck, R.A. A Continuous Process for the Liquid Phase Epoxidation of an Olefinic; London South Bank University: London, UK, 2018. [Google Scholar]
- Saha, B.; Ambroziak, K.; Sherrington, D.C.; Mbeleck, R. Liquid Phase Epoxidation Process. European Patent Number EP2459545, 28 February 2019. [Google Scholar]
- Ambroziak, K.; Mbeleck, R.; He, Y.; Saha, B.; Sherrington, D.C. Investigation of Batch Alkene Epoxidations Catalyzed by Polymer-Supported Mo(VI) Complexes. Ind. Eng. Chem. Res. 2009, 48, 3293–3302. [Google Scholar] [CrossRef]
- Bakala, P.C.; Briot, E.; Salles, L.; Brégeault, J.-M. Comparison of liquid-phase olefin epoxidation over MoOx inserted within mesoporous silica (MCM-41, SBA-15) and grafted onto silica. Appl. Catal. A Gen. 2006, 300, 91–99. [Google Scholar] [CrossRef]
- Bruno, S.M.; Fernandes, J.A.; Martins, L.S.; Gonçalves, I.S.; Pillinger, M.; Ribeiro-Claro, P.; Rocha, J.; Valente, A.A. Dioxomolybdenum(VI) modified mesoporous materials for the catalytic epoxidation of olefins. Catal. Today 2006, 114, 263–271. [Google Scholar] [CrossRef]
- Sakthivel, A.; Zhao, J.; Kühn, F.E. Cyclopentadienyl molybdenum complexes grafted on zeolites—Synthesis and catalytic application. Catal. Lett. 2005, 102, 115–119. [Google Scholar] [CrossRef]
- Bhuiyan, M.R.; Mohammed, M.L.; Saha, B. Greener and Efficient Epoxidation of 1,5-Hexadiene with tert-Butyl Hydroperoxide (TBHP) as an Oxidising Reagent in the Presence of Polybenzimidazole Supported Mo(VI) Catalyst. Reactions 2022, 3, 537–552. [Google Scholar] [CrossRef]
- Mbeleck, R.; Mohammed, M.L.; Ambroziak, K.; Sherrington, D.C.; Saha, B. Efficient epoxidation of cyclododecene and dodecene catalysed by polybenzimidazole supported Mo(VI) complex. Catal. Today 2015, 256, 287–293. [Google Scholar] [CrossRef]
- Saha, B. Catalytic Reactors; De Gruyter: Berlin, Germany, 2016; pp. 1–338. ISBN 978-3-11-033296-4. [Google Scholar]
- Mbeleck, R.; Ambroziak, K.; Saha, B.; Sherrington, D.C. Stability and recycling of polymer-supported Mo(VI) alkene epoxidation catalysts. React. Funct. Polym. 2007, 67, 1448–1457. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Mbeleck, R.; Saha, B. Efficient and selective molybdenum based heterogeneous catalyst for alkene epoxidation using batch and continuous reactors. Polym. Chem. 2015, 6, 7308–7319. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Mbeleck, R.; Patel, D.; Niyogi, D.; Sherrington, D.C.; Saha, B. Greener and efficient epoxidation of 4-vinyl-1-cyclohexene with polystyrene 2-(aminomethyl)pyridine supported Mo(VI) catalyst in batch and continuous reactors. Chem. Eng. Res. Des. 2015, 94, 194–203. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Patel, D.; Mbeleck, R.; Niyogi, D.; Sherrington, D.C.; Saha, B. Optimisation of alkene epoxidation catalysed by polymer supported Mo(VI) complexes and application of artificial neural network for the prediction of catalytic performances. Appl. Catal. A Gen. 2013, 466, 142–152. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Saha, B. Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes. Energies 2022, 15, 2858. [Google Scholar] [CrossRef]
- Li, B.; Xiong, H.; Xiao, Y. Progress on Synthesis and Applications of Porous Carbon Materials. Int. J. Electrochem. Sci. 2020, 15, 1363–1377. [Google Scholar] [CrossRef]
- Annath, H.; Manayil, J.C.; Thompson, J.; Marr, A.C.; Raja, R. Contrasting structure-property relationships in amorphous, hierarchical and microporous aluminophosphate catalysts for Claisen-Schmidt condensation reactions. Appl. Catal. A Gen. 2021, 627, 118376. [Google Scholar] [CrossRef]
- Zallen, R. The Physics of Amorphous Solids; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Goldsmith, B.R.; Peters, B.; Johnson, J.K.; Gates, B.C.; Scott, S.L. Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids. ACS Catal. 2017, 7, 7543–7557. [Google Scholar] [CrossRef]
- Sá, J.; Medlin, J.W. On-the-fly Catalyst Modification: Strategy to Improve Catalytic Processes Selectivity and Understanding. ChemCatChem 2019, 11, 3355–3365. [Google Scholar] [CrossRef]
- Hartmann, M.; Bischof, C.; Luan, Z.; Kevan, L. Preparation and characterization of ruthenium clusters on mesoporous supports. Microporous Mesoporous Mater. 2001, 44–45, 385–394. [Google Scholar] [CrossRef]
- Mercadante, L.; Neri, G.; Milone, C.; Donato, A.; Galvagno, S. Hydrogenation of α,β-unsaturated aldehydes over Ru/Al2O3 catalysts. J. Mol. Catal. A Chem. 1996, 105, 93–101. [Google Scholar] [CrossRef]
- Consonni, M.; Jokic, D.; Murzin, D.Y.; Touroude, R. High Performances of Pt/ZnO Catalysts in Selective Hydrogenation of Crotonaldehyde. J. Catal. 1999, 188, 165–175. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Murzin, D.Y. Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications. Catalysts 2017, 7, 265. [Google Scholar] [CrossRef]
- Lasne, B.; Mäki-Arvela, P.; Aho, A.; Vajglova, Z.; Eränen, K.; Kumar, N.; Sánchez-Velandia, J.E.; Peurla, M.; Mondelli, C.; Pérez-Ramírez, J.; et al. Synthesis of Florol via Prins cyclization over heterogeneous catalysts. J. Catal. 2022, 405, 288–302. [Google Scholar] [CrossRef]
- Saeid, S.; Kråkström, M.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peurla, M.; Mikkola, J.-P.; Maël, L.; Kronberg, L.; Eklund, P.; et al. Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions. Catalysts 2020, 10, 786. [Google Scholar] [CrossRef]
- Wen, J.; Wilkes, G.L. Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach. Chem. Mater. 1996, 8, 1667–1681. [Google Scholar] [CrossRef]
- Ramadhas, A.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Dey, B.; Balasubramanian, P. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresour. Technol. 2020, 310, 123392. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.G.; Dalai, A.K. Waste Cooking OilAn Economical Source for Biodiesel: A Review. Ind. Eng. Chem. Res. 2006, 45, 2901–2913. [Google Scholar] [CrossRef]
- Tiozzo, C.; Bisio, C.; Carniato, F.; Guidotti, M. Grafted non-ordered niobium-silica materials: Versatile catalysts for the selective epoxidation of various unsaturated fine chemicals. Catal. Today 2014, 235, 49–57. [Google Scholar] [CrossRef]
- Vilé, G.; Liu, J.; Zhang, Z. Surface engineering of a Cu-based heterogeneous catalyst for efficient azide–alkyne click cycloaddition. React. Chem. Eng. 2021, 6, 1878–1883. [Google Scholar] [CrossRef]
- Leino, E.; Kumar, N.; Mäki-Arvela, P.; Rautio, A.-R.; Dahl, J.; Roine, J.; Mikkola, J.P. Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate. Catal. Today 2018, 306, 128–137. [Google Scholar] [CrossRef]
- Yamada, Y.; Akita, T.; Ueda, A.; Shioyama, H.; Kobayashi, T. Instruments for preparation of heterogeneous catalysts by an impregnation method. Rev. Sci. Instrum. 2005, 76, 062226. [Google Scholar] [CrossRef]
- Stein, A.; Wang, Z.; Fierke, M.A. Functionalization of Porous Carbon Materials with Designed Pore Architecture. Adv. Mater. 2009, 21, 265–293. [Google Scholar] [CrossRef]
- Wang, J.; Han, W. A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2107166. [Google Scholar] [CrossRef]
MSN Family Group | MSN Structure Type | Pore Symmetry | Pore Volume (cm3g−1) | Pore Size (nm) | References | Example of Use in Fine Chemical Production |
---|---|---|---|---|---|---|
M41S | MCM-41 | 2D hexagonal P6mm | >1 | 1.5–8 | [33,34] | Continuous one-pot synthesis of citronellal to menthol [35] |
MCM-48 | 3D cubic Ia3d | >1 | 2–5 | [33,34] | Oxidation of benzyl alcohol to benzaldehyde [36] | |
Santa Barbara Amorphous (SBA) | SBA-1 | 3D cubic Pm3n | - | 1.5–3 | [37,38] | Oxidation of veratryl alcohol to veratryldehyde [39] |
SBA-3 | 2D hexagonal p6mm | - | 1.5–3.5 | [40] | Hydrogenation of toluene to methylcyclohexane [41] | |
SBA-12 | 3D hexagonal P63/mmc | 0.83 | 3.1 | [42,43,44] | Tandem reaction of aliphatic primary amine to amides [45] | |
SBA-15 | 2D hexagonal p6mm | 1.17 | 6–10 | [34,46] | Hydrogenation of p-nitrophenol to p-aminophenol [47] | |
SBA-16 | 3D cage-like cubic Im3m | 0.91 | 5–15 | [34] | Alcoholysis of 2-furan methanol into n-Butyl Levulinate [48] | |
KIT | KIT-5 | 3D cubic Fm3m | 0.45 | 9.3 | [49,50] | Acylation of 2-methoxynaphthalene to 2-acetyl-6-methoxynaphthalene [51] |
KIT-6 | 3D cubic Ia3d | - | 4–12 | [40,52] | The condensation of benzaldehyde and 1-heptanal to Amylcinnamaldehyde [53] | |
MSU | MSU.H | 2D hexagonal p6mm | - | 7.5–12 | [54,55] | Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol [56] |
Classification of MOF | Example MOF | Structure | Metal Nodes/Clusters | Ligands | Pore Volume 1 (cm3 g−1) | Brunauer, Emmett, and Teller (BET) Surface Area (m2 g−1) | Example of Use in Fine Chemical Production 2,3 |
---|---|---|---|---|---|---|---|
Isoreticular MOFs | IRMOF-3 | Ocothedral crystalline | Zn4O | 2-amino-1,4-benzenedicarboxylate | 1.07 [73] | 996 [74] | Hydrogenation of levulinic acid to γ-valerolactone (GVL) [75] |
Zeolitic Imidazolate Frameworks (ZIFs) | Co-ZIF-9 | Zeolite topological structured (SOD) | ZnN4, CoN4, or CuN4 tetrahedral clusters | Imidazolate | 0.07–0.18 [76] | 1428.37 [77] | Low-temperature liquid phase Knoevenagel reaction [78] |
Porous Coordination Networks (PCNs) | PCN-57 | Zr6O4(OH)4(RCO2)12 | Benzothiadiazole, tetramethyl-triphenylene dicarboxylate (TTDC) | 1.36 [79] | 3300 [80] | Epoxide Ring-Opening to trans-1,2-diols [81] | |
Materials Institute Lavoisier (MIL) MOFs | MIL-100(Cr) | Trimeric chromium(III) octahedral clusters | Benzene-1,3,5-tricarboxylate (BTC) | 0.793 [82] | 1720 [82] | The prins condensation of β-pinene and paraformaldehyde to form [2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol] (nopol) [83] |
Properties | MOFs | Zeolites |
---|---|---|
(Typical) Pore volume (cm3) | >1 | 0.1–0.5 |
Chemical stability | Limited chemical stability, especially towards water, in most cases. | Stable towards solvents, acids, and oxidizing/reducing agents. |
Thermal stability | Unstable above 300 °C | Stable above 450 °C |
BET surface area (m2 g−1) | 1000–10,000 | 200–500 |
Metal-site density | High | Low |
Lewis acidity | Accessible framework metal ions | Accessible framework metal ions |
Brønsted acidity | Through bridging Si(OH)/Al hydroxyl groups. | Possible through an organic linker. |
Basicity | From oxygen atoms within the framework. | Possible through an organic linker. |
Framework Type | Zeolite Name | Symmetry | Type of Channels (Dimensionality | Void Fraction 1 | Framework Density 2 (g/cc) | Framework Density (T/1000 Å3) | Order | Common Reactions Used in the Fine Chemical Industry |
---|---|---|---|---|---|---|---|---|
Beta (BEA) | Zeolite-Beta | Tetraganol | 3D | - | - | 15.1 | Partially disordered | Ortho-selective Phenol Hydroxylation forming catechol [143] |
Faujasite (FAU) | Zeolite-x | Cubic | 3D | 0.5 | 1.31 | 13.3 | Fully ordered | Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate [144] |
FAU | Zeolite-Y | Cubic | 3D | 0.48 | 1.25–1.29 | 13.3 | Fully ordered | Acetalization of ethyl acetoacetate with ethylene glycol to 1,3-Dioxolane-2-acetic acid, 2-methyl-, ethyl ester (fructone) [145] |
MFI | ZSM-5 | Orthorhombic | 3D | - | - | 18.4 | Fully ordered | Benzene methylation to xylene and toluene [146] |
Mordenite (MOR) | Mordenite | Orthorhombic | 2D | 0.28 | 1.7 | 17 | Fully ordered | Para-selective tert-Butylation of toluene to 4-tert-butyltoluene [147] |
FER | Ferrierite | Orthorhombic | 2D | 0.28 | 1.76 | 17.6 | Fully ordered | Isomerization of n-Butene to Isobutene (fine chemical intermediate) [148] |
LTA | Zeolite-A | Cubic | 3D | 0.47 | 1.27 | 14.2 | Fully ordered | Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lantos, J.; Kumar, N.; Saha, B. A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials. Catalysts 2024, 14, 317. https://doi.org/10.3390/catal14050317
Lantos J, Kumar N, Saha B. A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials. Catalysts. 2024; 14(5):317. https://doi.org/10.3390/catal14050317
Chicago/Turabian StyleLantos, Joseph, Narendra Kumar, and Basudeb Saha. 2024. "A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials" Catalysts 14, no. 5: 317. https://doi.org/10.3390/catal14050317