FeCrAlloy Monoliths Coated with Ni/Al2O3 Applied to the Low-Temperature Production of Ethylene
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Structured Catalysts
2.2. Structured Catalysts Characterization
2.3. Catalytic Behavior in the ODE Reaction
Study of Stability in Reaction
3. Discussion
3.1. Mechanical Stability of the Catalytic Coatings
3.2. Nickel Species Distribution and Its Impact on the Catalytic Behavior
4. Materials and Methods
4.1. Preparation of the Structured Catalysts
4.1.1. Substrates Pre-treatment
4.1.2. Al2O3 Layer Deposition
4.1.3. Incorporation of Nickel
4.2. Preparation of the Powder Catalyst
4.3. Structured Catalysts Characterization
4.4. Catalytic Behavior in the ODE Reaction
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- World Ethylene World Analysis | IHS Markit. Available online: https://www.ihs.com/products/world-petro-chemical-analysis-ethylene.html (accessed on 15 September 2017).
- Armstrong, R.; Hutchings, G.; Taylor, S. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates. Catalysts 2016, 6, 71. [Google Scholar] [CrossRef]
- Ethylene-Chemical Economics Handbook (CEH) | IHS Markit. Available online: https://www.ihs.com/products/ethylene-chemical-economics-handbook.html (accessed on 7 October 2017).
- Zhu, H.; Rosenfeld, D.C.; Harb, M.; Anjum, D.H.; Hedhili, M.N.; Ould-Chikh, S.; Basset, J.M. Ni-M-O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catal. 2016, 6, 2852–2866. [Google Scholar] [CrossRef]
- Santander, J.A.; Boldrini, D.E.; Pedernera, M.N.; Tonetto, G.M. NiNbO catalyst deposited on anodized aluminum monoliths for the oxidative dehydrogenation of ethane. Can. J. Chem. Eng. 2017, 95, 1554–1561. [Google Scholar] [CrossRef]
- Fung, V.; Tao, F.F.; Jiang, D. Understanding oxidative dehydrogenation of ethane on Co3O4 nanorods from density functional theory. Catal. Sci. Technol. 2016, 127, 113–131. [Google Scholar] [CrossRef]
- Gaffney, A.M.; Mason, O.M. Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catal. Today 2017, 285, 159–165. [Google Scholar] [CrossRef]
- Baroi, C.; Gaffney, A.M.; Fushimi, R. Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst. Catal. Today 2017. [Google Scholar] [CrossRef]
- Bañares, M.A. Supported metal oxide and other catalysts for ethane conversion: A review. Catal. Today 1999, 51, 319–348. [Google Scholar] [CrossRef]
- Gärtner, C.A.; van Veen, A.C.; Lercher, J.A. Oxidative dehydrogenation of ethane: Common principles and mechanistic aspects. ChemCatChem 2013, 5, 3196–3217. [Google Scholar] [CrossRef]
- Heracleous, E.; Lee, A.F.; Wilson, K.; Lemonidou, A.A. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies. J. Catal. 2005, 231, 159–171. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Jing, Y.; Xie, Y. Support effects on the catalytic behavior of NiO/Al2O3 for oxidative dehydrogenation of ethane to ethylene. Appl. Catal. A Gen. 2003, 240, 143–150. [Google Scholar] [CrossRef]
- Sanchis, R.; Delgado, D.; Agouram, S.; Soriano, M.D.; Vázquez, M.I.; Rodríguez-Castellón, E.; Solsona, B.; Nieto, J.M.L. NiO diluted in high surface area TiO2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Appl. Catal. A Gen. 2017, 536, 18–26. [Google Scholar] [CrossRef]
- Nakamura, K.-I.; Miyake, T.; Konishi, T.; Suzuki, T. Oxidative dehydrogenation of ethane to ethylene over NiO loaded on high surface area MgO. J. Mol. Catal. A Chem. 2006, 260, 144–151. [Google Scholar] [CrossRef]
- Sakitani, K.; Nakamura, K.; Ikenaga, N.; Miyake, T.; Suzuki, T. Oxidative Dehydrogenation of Ethane over NiO-loaded High Surface Area ZrO2 Catalysts. J. Jpn. Petrol. Inst. 2010, 53, 327–335. [Google Scholar] [CrossRef]
- Solsona, B.; Concepción, P.; Lopez Nieto, J.M.; Dejoz, A.M.; Cecilia, J.A.; Agouram, S.; Soriano Rodriguez, D.; Torres, V.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Nickel oxide supported on Porous Clay Heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catal. Sci. Technol. 2015, 6, 3419–3429. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A.A. Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene—Effect of promoting metal Me. J. Catal. 2010, 270, 67–75. [Google Scholar] [CrossRef]
- Zhu, H.; Dong, H.; Laveille, P.; Saih, Y.; Caps, V.; Basset, J.M. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal. Today 2014, 228, 58–64. [Google Scholar] [CrossRef]
- Nieto, J.M.L.; Solsona, B.; Grasselli, R.K.; Concepción, P. Promoted NiO catalysts for the oxidative dehydrogenation of ethane. Top. Catal. 2014, 57, 1248–1255. [Google Scholar] [CrossRef]
- Govender, S.; Friedrich, H. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts 2017, 7, 62. [Google Scholar] [CrossRef]
- Ávila, P.; Montes, M.; Miró, E.E. Monolithic Reactors for Environmental Applications: A Review on Preparation Technologies. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- Bortolozzi, J.P.; Gutierrez, L.B.; Ulla, M.A. Efficient structured catalysts for ethylene production through the ODE reaction: Ni and Ni-Ce on ceramic foams. Catal. Commun. 2014, 43, 197–201. [Google Scholar] [CrossRef]
- Brussino, P.; Bortolozzi, J.P.; Milt, V.G.; Banús, E.D.; Ulla, M.A. NiCe/γ-Al2O3 coated onto cordierite monoliths applied to Oxidative Dehydrogenation of Ethane (ODE). Catal. Today 2016, 273, 259–265. [Google Scholar] [CrossRef]
- Brussino, P.; Bortolozzi, J.P.; Milt, V.G.; Banús, E.D.; Ulla, M.A. Alumina-Supported Nickel onto Cordierite Monoliths for Ethane Oxidehydrogenation: Coating Strategies and Their Effect on the Catalytic Behavior. Ind. Eng. Chem. Res. 2016, 55, 1503–1512. [Google Scholar] [CrossRef]
- Donsì, F.; Pirone, R.; Russo, G. Oxidative Dehydrogenation of Ethane over a Perovskite-Based Monolithic Reactor. J. Catal. 2002, 209, 51–61. [Google Scholar] [CrossRef]
- Bortolozzi, J.P.; Banús, E.D.; Terzaghi, D.; Gutierrez, L.B.; Milt, V.G.; Ulla, M.A. Novel catalytic ceramic papers applied to oxidative dehydrogenation of ethane. Catal. Today 2013, 216, 24–29. [Google Scholar] [CrossRef]
- Bortolozzi, J.P.; Banús, E.D.; Courtalón, N.L.; Ulla, M.A.; Milt, V.G.; Miró, E.E. Flexible NiZr-based structured catalysts for ethylene production through ODH of ethane: Catalytic performance enhancement. Catal. Today 2016, 273, 252–258. [Google Scholar] [CrossRef]
- Bortolozzi, J.P.; Banús, E.D.; Milt, V.G.; Miro, E.E. New formulations of Ni-containing ceramic papers to enhance the catalytic performance for the oxidative dehydrogenation of ethane. Ind. Eng. Chem. Res. 2014, 53, 17570–17579. [Google Scholar] [CrossRef]
- Bortolozzi, J.P.; Weiss, T.; Gutierrez, L.B.; Ulla, M.A. Comparison of Ni and Ni-Ce/Al2O3 catalysts in granulated and structured forms: Their possible use in the oxidative dehydrogenation of ethane reaction. Chem. Eng. J. 2014, 246, 343–352. [Google Scholar] [CrossRef]
- Santander, J.A.; López, E.; Tonetto, G.M.; Pedernera, M.N. Preparation of NiNbO/AISI 430 Ferritic Stainless Steel Monoliths for Catalytic Applications. Ind. Eng. Chem. Res. 2014, 53, 11312–11319. [Google Scholar] [CrossRef]
- Merino, D.; Sanz, O.; Montes, M. Effect of the thermal conductivity and catalyst layer thickness on the Fischer-Tropsch synthesis selectivity using structured catalysts. Chem. Eng. J. 2017, 327, 1033–1042. [Google Scholar] [CrossRef]
- Sanz, O.; Velasco, I.; Reyero, I.; Legorburu, I.; Arzamendi, G.; Gandía, L.M.; Montes, M. Effect of the thermal conductivity of metallic monoliths on methanolsteam reforming. Catal. Today 2016, 273, 131–139. [Google Scholar] [CrossRef]
- Almeida, L.C.; Echave, F.J.; Sanz, O.; Centeno, M.A.; Odriozola, J.A.; Montes, M. Washcoating of metallic monoliths and microchannel reactors. Stud. Surf. Sci. Catal. 2010, 175, 25–33. [Google Scholar] [CrossRef]
- Palacín, S.; Gutiérrez, A.; Preda, I.; Hernández-Vélez, M.; Sanz, R.; Jiménez, J.A.; Soriano, L. Core-level electronic properties of nanostructured NiO coatings. Appl. Surf. Sci. 2007, 254, 278–280. [Google Scholar] [CrossRef]
- Qin, H.; Guo, C.; Wu, Y.; Zhang, J. Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation. Korean J. Chem. Eng. 2014, 31, 1168–1173. [Google Scholar] [CrossRef]
- Abdeldayem, H.M.; Faiz, M.; Abdel-Samad, H.S.; Hassan, S.A. Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane. J. Rare Earths 2015, 33, 611–618. [Google Scholar] [CrossRef]
- Sepehri, S.; Rezaei, M.; Garbarino, G.; Busca, G. Preparation and characterization of mesoporous nanocrystalline La-, Ce-, Zr-, Sr-containing Ni-Al2O3 methane autothermal reforming catalysts. Int. J. Hydrogen Energy 2016, 41, 8855–8862. [Google Scholar] [CrossRef]
- Mazumder, J.; De Lasa, H.I. Ni catalysts for steam gasification of biomass: Effect of La2O3 loading. Catal. Today 2014, 237, 100–110. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Ismail, A.A.; Al-Sayari, S.A.; Fierro, J.L.G. Ni- and PtNi-catalysts supported on Al2O3 for acetone steam reforming: Effect of the modification of support with Ce, La and Mg. Catal. Today 2015, 242, 60–70. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Z.; He, F.; Chen, B.; Zhao, Y.; Xu, Q. Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst. Catal. Today 2017, 293–294, 56–60. [Google Scholar] [CrossRef]
- Skoufa, Z.; Xantri, G.; Heracleous, E.; Lemonidou, A.A. A study of Ni-Al-O mixed oxides as catalysts for the oxidative conversion of ethane to ethylene. Appl. Catal. A Gen. 2014, 471, 107–117. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A.A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling. J. Catal. 2006, 237, 175–189. [Google Scholar] [CrossRef]
- Tronconi, E.; Groppi, G.; Visconti, C.G. Structured catalysts for non-adiabatic applications. Curr. Opin. Chem. Eng. 2014, 5, 55–67. [Google Scholar] [CrossRef]
- Sanz, O.; Echave, F.; Romero-Sarria, F.; Odriozola, J.A. Montes, M. Advances in structured and microstructured catalytic reactors for hydrogen production. In Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 201–224. [Google Scholar]
Coated Substrates | Frontal Section | Lateral Section | Centrifugation Conditions (Al2O3) | Al2O3 Coatings | Al2O3 Specific Load (mg/cm2) |
---|---|---|---|---|---|
Al-M1 | 2000 rpm 5 min | 2 | 0.56 | ||
Al-M2 | 400 rpm 1 min | 2 | 0.85 | ||
Al-M3 | 400 rpm 1 min | 4 | 1.87 | ||
Al-M3C | - | - | 400 rpm 1 min | 5 | 1.68 |
SEM Image | Area | Dots | |||||
---|---|---|---|---|---|---|---|
Ni/Al | Fe/Al | Cr/Al | Ni/Al | Fe/Al | Cr/Al | ||
Ni-Al-M3 | |||||||
M | 0.28 | 0.03 | 0.01 | 0.23 | 0.03 | 0.01 | |
I | 0.31 | 0.02 | 0.00 | 0.27 | 0.02 | 0.00 | |
E | 0.32 | 0.03 | 0.01 | 0.29 | 0.02 | 0.00 | |
Ni-Al-M3C | |||||||
M | 0.25 | 0.02 | - | 0.18 | 0.00 | 0.00 | |
I | 0.27 | 0.00 | 0.00 | 0.21 | 0.01 | 0.00 | |
E | 0.80 | 0.00 | 0.00 | 0.61 | 0.02 | 0.01 |
Optical Image | SEM Image | Area | Dots | ||||
---|---|---|---|---|---|---|---|
Ni/Al | Fe/Al | Cr/Al | Ni/Al | Fe/Al | Cr/Al | ||
Ni-Al-M2 | |||||||
M | 0.15 | 0.02 | - | 0.14 | 0.02 | 0.01 | |
I | 0.17 | 0.02 | - | 0.15 | 0.02 | 0.01 | |
E | 0.76 | 0.05 | 0.02 | 1.07 | 0.08 | 0.01 | |
Ni-Al-M1 | |||||||
M | 0.18 | 0.05 | 0.02 | 0.23 | 0.10 | 0.24 | |
I | 0.12 | 0.09 | 0.03 | 0.27 | 0.17 | 0.02 | |
E | 0.22 | 0.05 | 0.01 | 0.30 | 0.10 | 0.02 |
Catalyst | Ethane Conversion (%) | Ethylene Selectivity (%) |
---|---|---|
Ni-Al-M1 | 14.8 | 70.8 |
Ni-Al-M2 | 15.9 | 78.3 |
Ni-Al-M3 | 15.7 | 78.2 |
Ni-Al-M3C | 13.7 | 82.1 |
Powder | 12.7 | 80.1 |
Monoliths Properties | M1 | M2 | M3 | M3C |
---|---|---|---|---|
Cell density (cpsi) | 2360 | 1330 | 289 | 289 |
Hydraulic diameter (µm) | 361 | 475 | 1065 | 1065 |
Diameter (mm) | 16 | 16 | 16 | 16 |
Length (mm) | 30 | 30 | 30 | 30 |
Geometric surface area (cm2) | 521 | 420 | 207 | 222 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brussino, P.; Bortolozzi, J.P.; Sanz, O.; Montes, M.; Ulla, M.A.; Banús, E.D. FeCrAlloy Monoliths Coated with Ni/Al2O3 Applied to the Low-Temperature Production of Ethylene. Catalysts 2018, 8, 291. https://doi.org/10.3390/catal8070291
Brussino P, Bortolozzi JP, Sanz O, Montes M, Ulla MA, Banús ED. FeCrAlloy Monoliths Coated with Ni/Al2O3 Applied to the Low-Temperature Production of Ethylene. Catalysts. 2018; 8(7):291. https://doi.org/10.3390/catal8070291
Chicago/Turabian StyleBrussino, Paula, Juan Pablo Bortolozzi, Oihane Sanz, Mario Montes, María Alicia Ulla, and Ezequiel David Banús. 2018. "FeCrAlloy Monoliths Coated with Ni/Al2O3 Applied to the Low-Temperature Production of Ethylene" Catalysts 8, no. 7: 291. https://doi.org/10.3390/catal8070291
APA StyleBrussino, P., Bortolozzi, J. P., Sanz, O., Montes, M., Ulla, M. A., & Banús, E. D. (2018). FeCrAlloy Monoliths Coated with Ni/Al2O3 Applied to the Low-Temperature Production of Ethylene. Catalysts, 8(7), 291. https://doi.org/10.3390/catal8070291