Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine
Abstract
:1. Introduction
2. Results
2.1. Materials Characterization
2.2. Voltammetric Responses of Dopamine on the MnO2-RGO/GCEs
2.3. Electrochemical Active Area of MnO2-RGO/GCEs
2.4. Spatial Models for Various Morphologies of Nano-MnO2
2.5. Electrochemical Kinetics of Dopamine on MnO2 NWs-RGO/GCE
2.6. Electrochemical Sensing Perfomances of MnO2 NWs-RGO/GCE
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Nano-MnO2 with Various Morphologies
3.2.1. Preparation of MnO2 NRs
3.2.2. Preparation of MnO2 NTs
3.2.3. Preparation of MnO2 NWs
3.3. Preparation of MnO2-GO Nanocomposite Dispersion
3.4. Fabrication of MnO2-RGO Modified Electrodes
3.5. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cai, W.; Lai, T.; Du, H.; Ye, J. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sens. Actuators B 2014, 193, 492–500. [Google Scholar] [CrossRef]
- Hsu, M.S.; Chen, Y.L.; Lee, C.Y.; Chiu, H.T. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl. Mater. Interfaces 2012, 4, 5570–5575. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B 2013, 186, 380–387. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, R.; Chai, Y.; Zhang, Y.; Hu, F.; Zhang, M. Au-nanoclusters incorporated 3-amino-5-mercapto-1,2,4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 2011, 30, 315–319. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Li, W.; Liu, Z.; Ding, Z.; Tuo, D. Towards Improvements for Penetrating the Blood–Brain Barrier—Recent Progress from a Material and Pharmaceutical Perspective. Cells 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M.A. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B 2007, 847, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Sun, Y.; Tang, B. Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 2002, 57, 899–907. [Google Scholar] [CrossRef]
- Schöning, M.J.; Jacobs, M.; Muck, A.; Knobbe, D.T.; Wang, J.; Chatrathi, M.; Spillmann, S. Amperometric pdms/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sens. Actuators B 2005, 108, 688–694. [Google Scholar] [CrossRef]
- Li, X.; Pan, J.; Yang, F.; Feng, J.; Mo, J.; Chen, Z. Simple amperometric detector for microchip capillary electrophoresis, and its application to the analysis of dopamine and catechol. Microchim. Acta 2011, 174, 123–130. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.J. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal. Chem. 2011, 83, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, L.; Mo, Y.; Xu, Z.; Xie, S.; Yuan, H.; Xiao, D.; Choi, M.M. Electrogenerated chemiluminescence of anatase TiO2; nanotubes film. Talanta 2011, 85, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, S.; Zhang, Z.; He, G.; Zhou, P.; Liang, H.; Tian, L.; Zhou, X.; Jiang, H. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. Colloids Surf. B 2013, 111, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Miao, Y.E.; Ji, S.; Weng, W.T.; Liu, T. Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 2014, 6, 12449–12456. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Kim, J. Electrochemical behavior of dopamine and ascorbic acid at dendritic au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid. J. Electroanal. Chem. 2012, 683, 75–79. [Google Scholar] [CrossRef]
- Fang, B.; Wang, G.; Zhang, W.; Li, M.; Kan, X. Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis 2010, 17, 744–748. [Google Scholar] [CrossRef]
- Wu, L.N.; Tan, Y.L.; Wang, L.; Sun, S.N.; Qu, Z.Y.; Zhang, J.M.; Fan, Y.J. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim. Acta 2015, 182, 1361–1369. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Q.L. Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene. Microchim. Acta 2015, 182, 671–677. [Google Scholar] [CrossRef]
- Yuan, B.; Xu, C.; Liu, L.; Zhang, Q.; Ji, S.; Pi, L.; Zhang, D.; Huo, Q. Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim. Acta 2013, 104, 78–83. [Google Scholar] [CrossRef]
- Jiao, F.; Bruce, P.G. Mesoporous Crystalline β-MnO2—A Reversible Positive Electrode for Rechargeable Lithium Batteries. Adv. Mater. 2010, 19, 657–660. [Google Scholar] [CrossRef]
- Li, Q.; Lu, X.F.; Xu, H.; Tong, Y.X.; Li, G.R. Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 2726–2733. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Bian, S.; Shao, F.; Liu, S.; Peng, Y. Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors. Electrochim. Acta 2016, 209, 486–497. [Google Scholar] [CrossRef]
- Chen, K.; Wang, M.; Li, G.; He, Q.; Liu, J.; Li, F. Spherical α-MnO2 supported on N-KB as efficient electrocatalyst for oxygen reduction in Al–air battery. Materials 2018, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, K.; Liu, J.; He, Q.; Li, G.; Li, F. Efficiently enhancing electrocatalytic activity of α-MnO2 nanorods/N-doped ketjenblack carbon for oxygen reduction reaction and oxygen evolution reaction using facile regulated hydrothermal treatment. Catalysts 2018, 8, 138. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Alias, Y.; Basirun, W.J.; Pei, M.W.; Sookhakian, M. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sens. Actuators B 2014, 201, 526–534. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Hao, L.; Tang, X.; Kenta, O. Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 2007, 111, 8418–8423. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, C.K.; Yu, J.G.; Chen, X.Q. MnO2 /reduced graphene oxide nanoribbons: Facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sens. Actuators B 2017, 239, 544–552. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Huang, J.; You, T. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens. Actuators B 2014, 193, 166–172. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, C.; Tian, X.; Zheng, B.; Li, Y.; Yuan, H.; Xiao, D.; Choi, M.M.F. Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode. Electrochim. Acta 2013, 89, 832–839. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, J.; Chen, H. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron. 2009, 24, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, R.; Biji, P. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine. Mater. Sci. Eng. B 2016, 210, 10–18. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Wang, Z.H.; Tang, J.; Zhang, F.F.; Xia, J.F.; Sun, N.; Shi, G.Y.; Xia, Y.Z.; Xia, L.H.; Qin, L.C. Elimination of ascorbic acid and sensitive detection of uric acid at the MnO2 nanorods/graphene-based modified electrode. Int. J. Electrochem. Sci. 2013, 8, 9967–9976. [Google Scholar]
- Yang, B.; Wang, J.; Duan, B.; Zhu, M.; Yang, P.; Du, Y. A three dimensional Pt nanodendrite/graphene/MnO2 nanoflower modified electrode for the sensitive and selective detection of dopamine. J. Mater. Chem. B 2015, 3, 7440–7448. [Google Scholar] [CrossRef]
- Chen, A.; Xu, L.; Zhang, X.; Yang, Z.; Yang, S. Improving surface adsorption via shape control of hematite α-Fe2O3 nanoparticles for sensitive dopamine sensors. ACS Appl. Mater. Interfaces 2016, 8, 33765–33774. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Shi, Z.; Deng, Y.; Sun, J.; Wang, H. Morphology–dependent electrochemical sensing properties of manganese dioxide–graphene oxide hybrid for guaiacol and vanillin. Electrochim. Acta 2014, 147, 157–166. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J.; Chen, D. Sensitive and selective detection of tartrazine based on TiO2-electrochemically reduced graphene oxide composite-modified electrodes. Sensors 2018, 18, 1911. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. Fabrication of amine-modified magnetite-electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode for sensitive dopamine determination. Nanomaterials 2018, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Preparation of Cu2O-reduced graphene nanocomposite modified electrodes towards ultrasensitive dopamine detection. Sensors 2018, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Honma, I.; Zhou, H. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosens. Bioelectron. 2008, 23, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Fei, J.; Hu, S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 2003, 318, 100–106. [Google Scholar] [CrossRef]
- Wu, L.; Feng, L.; Ren, J.; Qu, X. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens. Bioelectron. 2012, 34, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R.; Bard, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, NY, USA, 2001; pp. 669–676. [Google Scholar]
- Gooding, J.J.; Praig, V.G.; Hall, E.A. Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal. Chem. 1998, 70, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, Z.; Qin, Y.; Wang, H. Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts. Appl. Surf. Sci. 2016, 385, 234–240. [Google Scholar] [CrossRef]
- Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem Interfacial Electrochem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- Wang, Z.L. Nanowires and Nanobelts; Springer: Boston, MA, USA, 2004; Volume 2, pp. 657–661. [Google Scholar]
- Hassanpour, A.; Bogdan, N.; Capobianco, J.A.; Bianucci, P. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Mater. Des. 2017, 119, 464–469. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.; Li, G.; Deng, P.; Liu, J.; Liu, X. Electrochemical detection of dopamine based on MnO2 nanowires/reduced graphene oxide composites modified glassy carbon electrode. Chin. J. Anal. Chem. 2018, 46, 438–445. [Google Scholar]
- Reddy, S.; Swamy, B.E.K.; Jayadevappa, H. CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Yao, Z.; Yang, X.; Niu, Y.; Wu, F.; Hu, Y.; Yang, Y. Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Microchim. Acta 2017, 184, 1–8. [Google Scholar] [CrossRef]
- Reddy, S.; Swamy, B.E.K.; Chandrashekar, B.N.; Chitravathi, S.; Jayadevappa, H. Cationic surfactants–assisted synthesis of ZnO nanoparticles and their modified carbon paste electrode for electrochemical investigation of dopamine. Anal. Bioanal. Electrochem. 2012, 4, 186–196. [Google Scholar]
- Gao, W.; Ye, S.; Shao, M. Solution-combusting preparation of mono-dispersed Mn3O4 nanoparticles for electrochemical applications. J. Phys. Chem. Solids 2011, 72, 1027–1031. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Agboola, B.O.; Pillay, J.; Ozoemena, K.I. Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (iii) oxide nanoparticles platform. Sens. Actuators B 2010, 148, 93–102. [Google Scholar] [CrossRef]
- Liu, A.; Honma, I.; Zhou, H. Amperometric biosensor based on tyrosinase-conjugated polysacchride hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (dopac) in biological fluid. Biosens. Bioelectron. 2006, 21, 809–816. [Google Scholar] [CrossRef] [PubMed]
Electrodes | Epa/mV b | Ipa/μA c | Jpac/(μA/cm2) d |
---|---|---|---|
Bare GCE | 392 | 1.396 | —— |
RGO/GCE | 444 | 22.56 | —— |
MnO2 NRs-RGO/GCE | 452 | 25.74 | 272.13 |
MnO2 NTs-RGO/GCE | 452 | 27.86 | 265.33 |
MnO2 NWs-RGO/GCE | 440 | 30.26 | 232.77 |
Electrodes | Method | Linear Range (μM) | Detection Limit (μM) | Ref. |
---|---|---|---|---|
MnO2 nanowires/chitosan-modifed gold electrode | CA a | 0.10–12.0 | 0.04 | [28] |
ZnO-modified carbon paste electrode | DPV b | 0.1–20 | 0.03 | [51] |
Cu2O/graphene-modified glassy carbon electrode | CV c | 0.3–1.4; 2–20 | 0.055 | [16] |
CuO-modified carbon paste electrode | DPV b | 0.1–10 | 0.01 | [49] |
Mn3O4-modified graphite electrode | DPV b | 10–70 | 0.1 | [52] |
SWCNT/Fe2O3-modified graphite electrode | SWV d | 3.2–31.8 | 0.36 | [53] |
rGO-Mn3O4/Nafion film supporting Au nanoparticles modified gold electrode | CA a | 1.0–1450 | 0.25 | [50] |
Pt nanodendrites/reduce graphene oxide/MnO2 nanoflowers modified glassy carbon electrode | DPV b | 1.5–215.56 | 0.1 | [33] |
MnO2 NWs-ErGO/GCE | SDLSV e | 0.06–1.0 1.0–80 | 0.001 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Li, G.; Liu, X.; Liu, J.; Deng, P.; Chen, D. Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine. Catalysts 2018, 8, 323. https://doi.org/10.3390/catal8080323
He Q, Li G, Liu X, Liu J, Deng P, Chen D. Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine. Catalysts. 2018; 8(8):323. https://doi.org/10.3390/catal8080323
Chicago/Turabian StyleHe, Quanguo, Guangli Li, Xiaopeng Liu, Jun Liu, Peihong Deng, and Dongchu Chen. 2018. "Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine" Catalysts 8, no. 8: 323. https://doi.org/10.3390/catal8080323
APA StyleHe, Q., Li, G., Liu, X., Liu, J., Deng, P., & Chen, D. (2018). Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine. Catalysts, 8(8), 323. https://doi.org/10.3390/catal8080323