Effect of Xanthan–Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Microencapsulation Procedure
2.3. Viable Counts and Encapsulation Yield
2.4. Characterization of the Capsules
2.4.1. X-ray Diffraction (XRD)
2.4.2. Fourier Transform Infrared Spectroscopy
2.5. Preparation of Simulated Gastric Fluid and Simulated Intestinal Fluid
2.6. Release Profile of Lactobacillus acidophilus
2.7. Storage Stability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Capsules
3.2. Viability of Lactobacillus acidophilus Microcapsules in Gastrointestinal Fluid
3.3. Release of Lactobacillus acidophilus from Capsules in Gastrointestinal Fluid
3.4. Application of Lactobacillus acidophilus Microcapsules in Dairy Beverage
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Prisco, A.D.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Rajam, R.; Kumar, S.B.; Prabhasankar, P.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J. Food Sci. Technol. 2015, 52, 4029–4041. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. The effect of encapsulating materials on the survival of probiotics during intestinal digestion: A review. Ciênc. Tecnol. Mater. 2015, 27, 73–77. [Google Scholar] [CrossRef]
- Brinques, G.B.; Maz, A. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng. 2011, 103, 123–128. [Google Scholar] [CrossRef]
- Arslan, S.; Erbas, M.; Tontul, I.; Topuz, A. Microencapsulation of probiotic Saccharomyces cerevisiae, var. boulardii with different wall materials by spray drying. LWT Food Sci. Technol. 2015, 63, 685–690. [Google Scholar] [CrossRef]
- Rosasflores, W.; Ramosramírez, E.G.; Salazarmontoya, J.A. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydr. Polym. 2013, 98, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellou, D.; Kandylis, P.; Petrović, T.; Dimitrijević-Branković, S.; Lević, S.; Nedović, V. Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT Food Sci. Technol. 2016, 71, 169–174. [Google Scholar] [CrossRef]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. 2015, 57, 344–371. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.K.; Shah, N.P. Acid bile and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 2007, 72, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Sanem, A.S.; Peter, K.; Ymartin, L. Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels. Food Hydrocoll. 2009, 23, 202–209. [Google Scholar] [CrossRef]
- Lima, M.; Carneiro, L.C.; Bianchini, D.; Dias, A.R.; Zavareze, E.D.; Prentice, C.; Moreira, A.D. Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. J. Food Sci. 2017, 82, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Iijima, M.; Kimura, K.; Hatakeyama, T.; Hatakeyama, H. Thermal and viscoelastic properties of xanthan gum/chitosan complexes in aqueous solutions. J. Therm. Anal. Calorim. 2006, 85, 669–674. [Google Scholar] [CrossRef]
- Fitzpatrick, P.; Meadows, J.; Ratcliffe, I.; Williams, P.A. Control of the properties of xanthan/glucomannan mixed gels by varying xanthan fine structure. Carbohydr. Polym. 2013, 92, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Chellat, F.; Tabrizian, M.; Dumitriu, S.; Chornet, E.; Rivard, C.H.; Yahia, L. Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J. Biomed. Mater. Res. 2000, 53, 592–599. [Google Scholar] [CrossRef]
- Shu, G.; He, Y.; Chen, L.; Song, Y.; Meng, J.; Chen, H. Microencapsulation of Bifidobacterium bifidum BB01 by xanthan-chitosan: Preparation and its stability in pure milk. Artif. Cells Nanomed. Biotechnol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; He, Y.; Chen, L.; Song, Y.; Meng, J.; Chen, H. Microencapsulation of Lactobacillus acidophilus by xanthan-chitosan and its stability in yoghurt. Polymers 2017, 9, 733. [Google Scholar] [CrossRef]
- Shu, G.; Li, C.; Chen, H.; Wang, C. Effect of inoculum and temperature on the fermentation of goat yogurt. Adv. J. Food Sci. Technol. 2014, 6, 68–71. [Google Scholar] [CrossRef]
- Alipour, S.; Montaseri, H.; Tafaghodi, M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf. B 2010, 81, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Z.; Javier, O.; Veronique, C.; Juani, M. Effect of the presence of glycerol and tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT Food Sci. Technol. 2008, 41, 2159–2165. [Google Scholar]
- Souza, B.W.S.; Cerqueira, M.A.; Martins, J.T.; Casariego, A.; Teixeira, J.A.; Vicente, A.A. Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocoll. 2010, 24, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Mehmood, S.; Shafiq, M.; Yasin, T.; Akhter, Z.; Ahmad, S. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Radiat. Phys. Chem. 2013, 91, 138–142. [Google Scholar] [CrossRef]
- Chandramouli, V.; Kailasapathy, K.; Peiris, P.; Jones, M. An improved method of microencapsulation and its evaluation to protect lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 2004, 56, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Sakiyama, T.; Yano, T. pH-sensitive swelling of a polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci. Biotechnol. Biochem. 1995, 59, 717–719. [Google Scholar] [CrossRef]
- Mandal, S.; Puniya, A.K.; Singh, K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, G.; He, Y.; Chen, L.; Song, Y.; Cao, J.; Chen, H. Effect of Xanthan–Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers 2018, 10, 588. https://doi.org/10.3390/polym10060588
Shu G, He Y, Chen L, Song Y, Cao J, Chen H. Effect of Xanthan–Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers. 2018; 10(6):588. https://doi.org/10.3390/polym10060588
Chicago/Turabian StyleShu, Guowei, Yunxia He, Li Chen, Yajuan Song, Jili Cao, and He Chen. 2018. "Effect of Xanthan–Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage" Polymers 10, no. 6: 588. https://doi.org/10.3390/polym10060588
APA StyleShu, G., He, Y., Chen, L., Song, Y., Cao, J., & Chen, H. (2018). Effect of Xanthan–Chitosan Microencapsulation on the Survival of Lactobacillus acidophilus in Simulated Gastrointestinal Fluid and Dairy Beverage. Polymers, 10(6), 588. https://doi.org/10.3390/polym10060588