β-Nucleated Polypropylene: Preparation, Nucleating Efficiency, Composite, and Future Prospects
Abstract
:1. Introduction
2. Preparation Strategies of β-PP
2.1. Common Methods
- Temperature gradient—This method not only affects the shape of spherulites but also affects their internal structure. Although it has no effect on the nucleation of spherulite, it can accelerate the transformation from a melting state to spherulite. The density of the crystal nucleus is higher, and it is easier to form β-crystals in regions with larger temperature gradients [19,20].
- Shear induction—The most intuitive reason for this method’s existence is to cause different degrees of orientation in the polymer molecular chains, thereby obtaining polymers with different properties. Shearing can also induce the regular arrangement of molecular chains, shorten the nucleation time, increase the nucleation density, and induce oriented crystallization in the absence of nucleating agents [21].
- Quenching and annealing—It has been found, according to previous research, that the formation of β-crystals is evidently dependent on the quenching temperature [7,22]. A certain temperature range is beneficial for the growth of β-crystals [23]. The growth of β-crystals is inhibited, and the growth rate decreases significantly or increases to an α-transformation beyond the temperature range. Ma et al. [24] found that the comprehensive properties of a composite increased with an increase in the annealing temperature, and partial β-crystals were formed synchronously. The annealing process causes a change in the microstructure and greatly improves the impact strength. At a moderate temperature, it can induce the transformation of an α-crystal to a β-crystal.
- UV light—Zhao et al. [25] found that there was an evident presence of β-crystals after UV irradiation at 65 °C for 600 h, no matter if a pure PP or a composite with zinc oxide were added. Indeed, it was finally proved that UV light is the real reason for the formation of β-crystals.
2.2. Addition of β-Nucleating Agent
2.2.1. New β-Nucleating Agents or Compounds for Polypropylene
2.2.2. Polymer β-Nucleating Agent for Polypropylene
3. Nucleating Efficiency of β-Crystals
3.1. Influencing Factors of β-Nucleating Efficiency
3.1.1. Chain Structure
3.1.2. Ethylene Phase
3.1.3. Polymorphism
3.1.4. Interface Action
3.1.5. Processing Conditions
3.2. Improvement in β-Nucleating Efficiency
3.2.1. Processing Conditions
3.2.2. Promotion of Homopolymers
3.2.3. Modification of Nucleating Agent
3.2.4. Synergetic Effect
4. Composite of PP with β-Nucleating Agents
4.1. Toughening Mechanism of Composites
4.2. Post-Consumer Polypropylene with β-Nucleating Agents
5. Future Prospects of β-PP
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincenzo, B.; Roberta, C. Microstructure of polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar]
- Varga, J.; Ehrenstein, G.W. Formation of β-modification in its late stage of crystallization. Polymer 1996, 37, 5959–5963. [Google Scholar] [CrossRef]
- Yuzo, Y.; Yuichi, I.; Teruaki, O.; Chikashi, D.; Hiroshi, T.; Hiroki, U. Deconvolution Analyses of Differential Scanning Calorimetry Profiles of β-Crystallized Polypropylenes with Synchronized X-ray Measurements. Macromolecules 2007, 40, 2745–2750. [Google Scholar]
- Lezak, E.; Bartczak, Z.; Galeski, A. Plastic Deformation of the γ Phase in Isotactic Polypropylene in Plane-Strain Compression. Macromolecules 2006, 39, 4811–4819. [Google Scholar] [CrossRef]
- Norton, D.R.; Keller, A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 1985, 26, 704–716. [Google Scholar] [CrossRef]
- Jin, Y.; Hiltner, A.; Baer, E.; Masirek, R.; Piorkowska, E.; Galeski, A. Formation and transformation of smectic polypropylene nanodroplets. J. Polym. Sci. B Polym. Phys. 2006, 44, 1795–1803. [Google Scholar] [CrossRef]
- Padden, F.J., Jr.; Keith, H.D. Spherulitic Crystallization in Polypropylene. J. Appl. Phys. 1959, 30, 1479. [Google Scholar] [CrossRef]
- Turner-Jones, A.; Cobbold, A.J. The β-crystalline form of isotactic polypropylene. J. Polym. Sci. B Polym. Lett. 1968, 6, 539–546. [Google Scholar] [CrossRef]
- Meille, S.V.; Ferro, D.R.; Brueckner, S.; Lovinger, A.J.; Padden, F.J. Structure of β-Isotactic Polypropylene: A Long-Standing Structural Puzzle. Macromolecules 1994, 27, 2615–2622. [Google Scholar] [CrossRef]
- Lotz, B.; Kopp, S.; Dorset, D. An original crystal structure of polymers with ternary helices. Comptes Rendus Acad. Sci. Paris Ser. IIb 1994, 319, 187–192. [Google Scholar]
- Wang, J.; Gahleitner, M.; Gloger, D.; Bernreitner, K. β-Nucleation of isotactic polypropylene: Chain structure effects on the effectiveness of two different nucleating agents. Express Polym. Lett. 2020, 14, 491–502. [Google Scholar] [CrossRef]
- Chen, H.B.; Karger-Kocsis, J.; Wu, J.S.; Varga, J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 2002, 43, 6505–6514. [Google Scholar] [CrossRef]
- Dimitrios, G.P.; George, Z.P.; Dimitrios, N.B.; Konstantinos, C. Crystallization and melting of propylene–ethylene random copolymers. Homogeneous nucleation and β-nucleating agents. Prog. Polym. Sci. 2013, 49, 1577–1590. [Google Scholar]
- Dimitrios, G.P.; Dimitrios, N.B.; Konstantinos, C. Effect of crystalline structure of polypropylene random copolymers on mechanical properties and thermal degradation kinetics. Thermochim. Acta 2012, 543, 288–294. [Google Scholar]
- Fischer, J.; Freudenthaler, P.J.; Lang, R.W.; Buchberger, W.; Mantell, S.C. Chlorinated Water Induced Aging of Pipe Grade Polypropylene Random Copolymers. Polymers 2019, 11, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierzbicka, N.; Sterzyński, T.; Nowicki, M. The Friction of Structurally Modified Isotactic Polypropylene. Materials 2021, 14, 7462. [Google Scholar] [CrossRef]
- Varga, J. β-Modification of Isotactic Polypropylene: Preparation, Structure, Processing, Properties, and Application. J. Macromol. Sci. Part B Phys. 2002, 41, 1121–1171. [Google Scholar] [CrossRef]
- Dimitrios, G.; Papageorgiou; Konstantinos, C.; Dimitrios, N.B. β-Nucleated Polypropylene: Processing, Properties and Nanocomposites. Polym. Rev. 2015, 55, 596–629. [Google Scholar]
- Lovinger, A.J.; Chua, J.O.; Gryte, C.C. Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 641–656. [Google Scholar] [CrossRef]
- Pawlak, A.; Piorkowska, E. Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym. Sci. 2001, 279, 939–946. [Google Scholar] [CrossRef]
- Wang, L.; Yang, M.B. Unusual hierarchical distribution of b-crystals andimproved mechanical properties of injection-molded bars of isotactic polypropylene. RSC Adv. 2014, 4, 25135–25147. [Google Scholar] [CrossRef]
- Shi, G.Y.; Zhang, X.D.; Qiu, Z.X. Crystallization kinetics of β-phase poly(propylene). Makromol. Chem. 1992, 193, 583–591. [Google Scholar] [CrossRef]
- Dimitrios, G.P.; George, Z.P.; Evgeny, Z.; Dimitrios, B.; Christoph, S.; Konstantinos, C. Competitive Crystallization of a Propylene/Ethylene Random Copolymer Filled with a β-Nucleating Agent and Multi-Walled Carbon Nanotubes. Conventional and Ultrafast DSC Study. J. Phys. Chem. B 2013, 117, 14875–14884. [Google Scholar]
- Ma, Y.L.; Wang, X.M.; Liu, W.; Gong, W.; He, L. Effects of Annealing Process on Crystallization and Low Temperature Resistance Properties of PP-R Composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2018, 33, 855–862. [Google Scholar] [CrossRef]
- Zhao, H.X.; Robert, K.Y.L. A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 2006, 47, 3207–3217. [Google Scholar] [CrossRef]
- Leugering, V.H.J. Einfluß der kristallstruktur und der überstruktur auf einige eigenschaften von polypropylene. Makromol. Chem. 1967, 109, 204–216. [Google Scholar] [CrossRef]
- Mishra, S.; Sonawane, S.H.; Singh, R.P. Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J. Polym. Sci. B Polym. Phys. 2005, 43, 107–113. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, H.B.; Chan, C.M.; Wu, J.S. High Impact Toughness Polypropylene/CaCO3 Nanocomposites and the Toughening Mechanism. Macromolecules 2008, 41, 9204–9213. [Google Scholar] [CrossRef]
- Zhao, H.; Li, R.K.Y. Crystallization, mechanical, and fracture behaviors of spherical alumina-filled polypropylene nanocomposites. J. Polym. Sci. B Polym. Phys. 2005, 43, 3652–3664. [Google Scholar] [CrossRef]
- Sachin, J.; Han, G.; Martin, V.D.; Piet, L. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer 2005, 46, 8805–8818. [Google Scholar]
- Jingjiang, L.; Xiufen, W.; Qipeng, G. The β-crystalline form of wollastonite-filled polypropylene. J. Appl. Polym. Sci. 1990, 41, 2829–2835. [Google Scholar] [CrossRef]
- Mishra, S.; Mukherji, A. Phase characterization and mechanical and flame-retarding properties of nano-CaSO4/polypropylene and nano-Ca3(PO4)2/polypropylene composites. J. Appl. Polym. Sci. 2007, 103, 670–680. [Google Scholar] [CrossRef]
- Garbarczyk, J.; Paukszta, D. Influence of additives on the structure and properties of polymers: 2. Polymorphic transitions of isotactic polypropylene caused by aminosulphur compounds. Polymer 1981, 22, 562–564. [Google Scholar] [CrossRef]
- Varga, J.; Mudra, I.; Ehrenstein, G.W. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J. Appl. Polym. Sci. 1999, 74, 2357–2368. [Google Scholar] [CrossRef]
- Yang, Y.D.; Xin, Z.; Zhao, S.C.; Shi, Y.Q.; Zhou, S.; Zhou, J.; Ye, C.L. Nucleation effects of zinc adipate as β-Nucleating agent in ethylene-propylene block copolymerized polypropylene. J. Polym. Res. 2017, 24, 143. [Google Scholar] [CrossRef]
- Zhao, S.C.; Cai, Z.; Xin, Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 2008, 49, 2745–2754. [Google Scholar] [CrossRef]
- Kawai, T.; Iijima, R.; Yamamoto, Y.; Kimura, T. Crystal orientation of β-phase isotactic polypropylene induced by magnetic orientation of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer 2002, 43, 7301–7306. [Google Scholar] [CrossRef]
- Varga, J.; Stoll, K.; Menyhárd, A.; Horváth, Z. Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J. Appl. Polym. Sci. 2011, 121, 1469–1480. [Google Scholar] [CrossRef]
- Magnus, K.; Paul, S.; Henri, C.; Christian, B.; Volker, G.; Lynne, M.; Thomas, W.; Philip, P.; Markus, B.; Hans-Werner, S. Structural Aspects of 1,3,5-Benzenetrisamides−A New Family of Nucleating Agents. Cryst. Growth Des. 2009, 9, 2556–2558. [Google Scholar]
- Feng, J.; Chen, M.; Huang, Z.; Guo, Y.; Hu, H. Effects of mineral additives on the β-crystalline form of isotactic polypropylene. J. Appl. Polym. Sci. 2002, 85, 1742–1748. [Google Scholar] [CrossRef]
- Jones, A.T.; Aizlewood, J.M.; Beckett, D.R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158. [Google Scholar] [CrossRef]
- Yang, F.; Wu, T.; Xiang, M.; Cao, Y. Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures. Prog. Polym. Sci. 2017, 91, 134–148. [Google Scholar] [CrossRef]
- Motsoeneng, T.; Luyt, A.; Reenen, A. Investigation of the crystalline phase morphology of a β-nucleated impact polypropylene copolymer. J. Appl. Polym. Sci. 2014, 131, 39923. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhao, Y.; Zhang, C.B.; Dong, Z.Y.; Wang, K.Z.; Wang, D.J. Morphological Characteristics of β-Nucleating Agents Governing the Formation of the Crystalline Structure of Isotactic Polypropylene. Macromolecules 2021, 54, 6824–6834. [Google Scholar] [CrossRef]
- Guan, Z.X.; Lin, Z.D.; Mai, K.C. Monetaria moneta as a novel β-nucleating agent for isotactic polypropylene. Compos. Sci. Technol. 2013, 87, 58–63. [Google Scholar] [CrossRef]
- Ma, Y.J.; Xin, M.; Xu, K.; Chen, M. A novel β-nucleating agent for isotactic polypropylene. Polym. Int. 2013, 62, 744–750. [Google Scholar] [CrossRef]
- Liu, J.; Pan, Y. Nucleation and crystallization behavior of isotactic polypropylene induced by zinc tetrahydrophthalate. Polym. Bull. 2022, 79, 4563–4580. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.F.; Li, Y.; Zhong, J.R. Effect of a novel bio-based β-nucleating agent on the properties of isotactic polypropylene. J. Polym. Res. 2021, 28, 473. [Google Scholar] [CrossRef]
- Liu, J.; Liang, H. Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO. J. Therm. Anal. Calorim. 2021, 146, 2115–2126. [Google Scholar] [CrossRef]
- Horváth, F.; Bodrogi, D.; Hilt, B.; Pregi, E.; Menyhárd, A. Organogelators with dual β- and α-nucleating ability in isotactic polypropylene. J. Therm. Anal. Calorim. 2022, 147, 9451–9468. [Google Scholar] [CrossRef]
- Horváth, F.; Bihari, L.; Bodrogi, D.; Gombár, T.; Hilt, B.; Keszei, B.; Krain, T.; Simon, A.; Menyhárd, A. Effect of N,N′-Dicyclohexyldicarboxamide Homologues on the Crystallization and Properties of Isotactic Polypropylene. ACS Omega 2021, 6, 9053–9065. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Almanza, R.; Flores-Hernandez, C.G.; García-Méndez, R.F.; Almendarez-Camarillo, A. Keratin Modified and Functionalized as a Reinforcement and Nucleation Agent of β-Polypropylene Composites. J. Nat. Fibers 2022, 19, 15448–15458. [Google Scholar] [CrossRef]
- Zhang, X.X.; Tang, F.; Lv, W.; Wu, H.; He, X.L.; Zhao, S.C. Effect of an active β-nucleating agent on the crystallization behavior of polypropylene random copolymer. J. Polym. Res. 2022, 29, 4. [Google Scholar] [CrossRef]
- Vijay, S.W.; Kishore, K.J.; Kevin, H.; Saeed, M.A. Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. ACS Omega 2020, 5, 11394–11401. [Google Scholar]
- Liu, Y.M.; Tong, Z.Z.; Xu, J.T.; Fu, Z.S.; Fan, Z.Q. A highly efficient β-nucleating agent for impact-resistant polypropylene copolymer. J. Appl. Polym. Sci. 2014, 131, 40753. [Google Scholar] [CrossRef]
- Song, T.T.; Ren, Z.J.; Li, H.H.; Sun, X.L.; Xue, M.L.; Yan, S.K. Modification of illite with calcium pimelate and its influence on the crystallization and mechanical property of isotactic polypropylene. Compos. Part A 2019, 123, 200–207. [Google Scholar] [CrossRef]
- Zhan, K.J.; Yang, W.; Yue, L.; Xie, B.H.; Yang, M.B. MWCNTs Supported N,N′-Dicyclohexyl-1,5-diamino-2,6-naphthalenedicarboxamide: A Novel β-Nucleating Agent for Polypropylene. J. Macromol. Sci. Part B Phys. 2012, 51, 2412–2427. [Google Scholar] [CrossRef]
- Mohan, R.M.; Ramesh, C.; Yogesh, N.M.; Vijayamohanan, K.P. New Understanding on Regulating the Crystallization and Morphology of the β-Polymorph of Isotactic Polypropylene Based on Carboxylate–Alumoxane Nucleating Agents. Macromolecules 2016, 49, 2197–2205. [Google Scholar]
- Xia, M.Q.; Zhang, Y.F. The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. J. Therm. Anal. Calorim. 2021, 145, 3053–3066. [Google Scholar] [CrossRef]
- Xiang, J.; Li, Y.; Zhong, J.R.; Lu, C.H.; Zhang, Y.F. Influence of chemical structures of bisamide nucleating agents on the crystallization behavior and properties of isotactic polypropylene. J. Therm. Anal. Calorim. 2023, 148, 2417–2428. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, N.; Xin, Z.; Jiang, C. A novel highly efficient β-nucleating agent for isotactic polypropylene. J. Appl. Polym. Sci. 2012, 123, 108–117. [Google Scholar] [CrossRef]
- Barczewski, M.; Dobrzyńska-Mizera, M.; Dutkiewicz, M.; Szołyga, M. Novel polypropylene β-nucleating agent with polyhedral oligomeric silsesquioxane core: Synthesis and application. Polym. Int. 2016, 65, 1080–1088. [Google Scholar] [CrossRef]
- Barczewski, M.; Mysiukiewicz, O.; Dutkiewicz, M.; Szołyga, M.; Dobrzyńska-Mizera, M.; Piasecki, A. Effect of Shear Stress during Processing on Structure, Morphology, and Properties of Isotactic Polypropylene Nucleated with Silsesquioxane-Based β-Nucleating Agent. Materials 2023, 16, 3627. [Google Scholar] [CrossRef]
- Chen, P.J.; Xu, M.; Li, X.Y.; Han, Y.; Ding, J.J.; Lin, Y.X.; Liu, G.; Zhang, X.; Chen, L.; Tian, X.Y. The influence of melt status and beta-nucleation agent distribution on the crystallization of isotactic polypropylene. CrystEngComm 2022, 24, 2429–2445. [Google Scholar] [CrossRef]
- Yue, Y.; Hu, D.D.; Zhang, Q.L.; Lin, J.Y.; Feng, J.C. The effect of structure evolution upon heat treatment on the beta-nucleating ability of calcium pimelate in isotactic polypropylene. Polymer 2018, 149, 55–64. [Google Scholar] [CrossRef]
- Binsbergen, F.L. Heterogeneous nucleation in the crystallization of polyolefins: Part 1. Chemical and physical nature of nucleating agents. Polymer 1970, 11, 253–267. [Google Scholar] [CrossRef]
- Binsbergen, F.L.; Lange, B.G.M.D. Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer 1970, 11, 309–332. [Google Scholar] [CrossRef]
- Binsbergen, F.L. Heterogeneous nucleation in the crystallization of polyolefins. III. Theory and mechanism. J. Polym. Sci. Polym. Phys. Ed. 1973, 11, 117–135. [Google Scholar]
- Nie, S.; Zhong, J.R.; Li, Y.; Zhang, Y.F. Effect of polyacrylic salt nucleating agents on the properties of isotactic polypropylene. J. Therm. Anal. Calorim. 2023, 148, 6097–6106. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Cao, Z. Poly(Acrylonitrile–Butadiene–Styrene) as a Special β-Nucleating Agent on the Toughness of Isotactic Polypropylene. Polymers 2019, 11, 1894. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Cao, H.W.; Chen, W.L.; Ding, L.; Chen, L.; Zhang, X.; Li, J.C. An efficient liquid crystalline ionomer β-nucleating agent featuring π-π stacking and ionic interactions for isotactic polypropylene. Polym. Cryst. 2020, 3, e10125. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, T. Effect of entanglement upon branching on dispersibility, β-nucleating and mechanically strengthening ability of polystyrene in isotactic polypropylene. Polym. Bull. 2021, 78, 3259–3274. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Hu, F. Effect of polystyrenes with different architectures on the β-nucleating efficiency and toughening of isotactic polypropylene. Polym. Int. 2018, 67, 506–514. [Google Scholar] [CrossRef]
- Yang, R.; Ding, L.; Chen, W.L.; Chen, L.; Zhang, X.; Li, J.C. Chain Folding in Main-Chain Liquid Crystalline Polyester with Strong π–π Interaction: An Efficient β-Nucleating Agent for Isotactic Polypropylene. Macromolecules 2017, 50, 1610–1617. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Y.; Zhang, Y. Crystallization, melting behavior, and morphology of PP/Novolac blends. J. Polym. Sci. B Polym. Phys. 2006, 44, 3288–3303. [Google Scholar] [CrossRef]
- Su, Z.Q.; Dong, M.; Guo, Z.X.; Yu, J. Study of Polystyrene and Acrylonitrile−Styrene Copolymer as Special β-Nucleating Agents To Induce the Crystallization of Isotactic Polypropylene. Macromolecules 2007, 40, 4217–4224. [Google Scholar] [CrossRef]
- Torre, J.; Cortázar, M.; Gómez, M.; Ellis, G.; Marco, C. Melting behavior in blends of isotactic polypropylene and a liquid crystalline polymer. J. Polym. Sci. B Polym. Phys. 2004, 42, 1949–1959. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Yao, X.J.; Hu, J.S.; Qi, Y. A nematic liquid crystalline polymer as highly active novel β-nucleating agent for isotactic polypropylene. J. Mater. Sci. 2013, 48, 4032–4040. [Google Scholar] [CrossRef]
- Gajzlerova, L.; Navratilova, J.; Ryzi, A.; Slabenakova, T.; Cermak, R. Joint effects of long-chain branching and specific nucleation on morphology and thermal properties of polypropylene blends. Express Polym. Lett. 2020, 14, 952–961. [Google Scholar] [CrossRef]
- Cao, J.; Zheng, Y.Y.; Lin, T.F. Synergistic toughening effect of β-nucleating agent and long chain branching on polypropylene random copolymer. Polym. Test. 2016, 55, 318–327. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, Y.L.; Wang, K.; Deng, H.; Chen, F.; Zhang, Q.; Fu, Q. Enhancement of β-nucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene. Polymer 2012, 53, 4861–4870. [Google Scholar] [CrossRef]
- Krache, R.; Benavente, R.; Lopez-Majada, J.M.; Perena, J.M.; Cerrada, M.L.; Perez, E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 2007, 40, 6871–6878. [Google Scholar] [CrossRef] [Green Version]
- Varga, J.; Schulek-Toth, F. Crystallization, melting and spherulitic structure of β-nucleated random propylene copolymers. J. Therm. Anal. 1996, 47, 941–955. [Google Scholar] [CrossRef]
- Horváth, F.; Molnár, J.; Menyhárd, A. Polypropylene nucleation. In Polypropylene Handbook: Morphology, Blends and Composites; Karger-Kocsis, J., Bárány, T., Eds.; Springer: Cham, Switzerland, 2019; p. 121. [Google Scholar]
- Yang, S.; Wei, Q.Y.; Gao, X.R.; Zhou, L.; Xu, L.; Tang, J.H.; Zhong, G.J.; Ji, X.; Li, Z.M. Robust, transparent films of propylene−ethylene copolymer through isotropic-orientation transition at low temperature accelerated by adjustment of ethylene contents. Polymer 2020, 187, 122099. [Google Scholar] [CrossRef]
- Zhang, X.D.; Shi, G.Y. The effect of a β-nucleator on the crystallization and melting behavior of ethylene/propylene random and block copolymers. Thermochim. Acta 1994, 235, 49–59. [Google Scholar] [CrossRef]
- Bárány, T.; Izer, A.; Karger-Kocsis, J. Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym. Test. 2009, 28, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.Y.; Yang, W.H.; Chen, X.Y.; Zhao, Y.; Dong, X.; Müller, A.J.; Wang, D.J. Ethylene Comonomer-Directed Epitaxial Nucleation and Growth of β-Nucleated Isotactic Polypropylene. Macromolecules 2023, 56, 1965–1972. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, X.X.; Shao, L.S.; Xin, Z.; Ling, H.; Zhao, S.C. Failure mechanism of zinc adipate as a β-nucleating agent for polypropylene in the presence of calcium stearate. Polymer 2021, 215, 123374. [Google Scholar] [CrossRef]
- Zhou, P.Z.; Zhang, Y.F.; Lin, X.F. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J. Therm. Anal. Calorim. 2018, 132, 1845–1852. [Google Scholar] [CrossRef]
- Motsoeneng, T.S.; van Reenen, A.J.; Luyt, A.S. Structure and properties of a β-nucleated polypropylene impact copolymer. Polym. Int. 2015, 64, 222–228. [Google Scholar] [CrossRef]
- Kamfjord, T.; Stori, A. Selective functionalization of the ethylene rich phase of a heterophasic polypropylene. Polymer 2001, 42, 2767–2775. [Google Scholar] [CrossRef]
- Cao, J.; Lü, Q.F. Crystalline structure, morphology and mechanical properties of β-nucleated controlled-rheology polypropylene random copolymers. Polym. Test. 2011, 30, 899–906. [Google Scholar] [CrossRef]
- Fan, J.S.; Feng, J.C. Study on β-Nucleated Controlled-Rheological Polypropylene Random Copolymer: Crystallization Behavior and a Possible Degradation Mechanism. Ind. Eng. Chem. Res. 2013, 52, 761–770. [Google Scholar] [CrossRef]
- Blázquez-Blázquez, E.; Lahoz, J.; Pérez, E.; Cerrada, M.L. An Effective Package of Antioxidants for Avoiding Premature Failure in Polypropylene Random Copolymer Plastic Pipes under Hydrostatic Pressure and High Temperature. Polymers 2021, 13, 2825. [Google Scholar] [CrossRef] [PubMed]
- Benarab, A.; Blázquez-Blázquez, E.; Krache, R.; Benavente, R.; Cerrada, M.L.; Pérez, E. Composites of a Polypropylene Random Copolymer and Date Stone Flour: Crystalline Details and Mechanical Response. Polymers 2021, 13, 2957. [Google Scholar] [CrossRef] [PubMed]
- Menyhárd, A.; Molnár, J.; Horváth, Z.; Horváth, F.; Cavallo, D.; Polyák, P. Self-organization of micro reinforcements and the rules of crystal formation in polypropylene nucleated by non-selective nucleating agents with dual nucleating ability. Polym. Cryst. 2020, 3, e10136. [Google Scholar] [CrossRef]
- Horváth, F.; Gombár, T.; Varga, J.; Menyhárd, A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J. Therm. Anal. Calorim. 2017, 128, 925–935. [Google Scholar] [CrossRef]
- Busse, K.; Kressler, J.; Maier, R.D.; Scherble, J. Tailoring of the α-, β-, and γ-Modification in Isotactic Polypropene and Propene/Ethene Random Copolymers. Macromolecules 2000, 33, 8775–8780. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhou, P.Z.; Li, Y. The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene. Polym. Adv. Technol. 2019, 30, 1777–1788. [Google Scholar] [CrossRef]
- Sowinski, P.; Piorkowska, E.; Boyer, S.A.E.; Haudin, J.M. Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur. Polym. J. 2016, 85, 564–574. [Google Scholar] [CrossRef]
- Fu, J.X.; Li, X.P.; Zhou, M.; Hong, R.; Zhang, J. The α-, β-, and γ-polymorphs of polypropylene–polyethylene random copolymer modified by two kinds of β-nucleating agent. Polym. Bull. 2019, 76, 865–881. [Google Scholar] [CrossRef]
- Zhang, X.X.; Qin, W.; Wu, T.; Zhao, S.C. A new insight into the formation of β-crystals of isotactic polypropylene induced by zinc dicarboxylic acids. Polymer 2022, 262, 125500. [Google Scholar] [CrossRef]
- Köpplmayr, T.; Mayrhofer, E.; Unterweger, C. Thermo-mechanical properties of β-nucleated polypropylene multilayers. Polym. Test. 2014, 39, 79–85. [Google Scholar] [CrossRef]
- Shao, W.J.; Liu, L.Z.; Wang, Y.; Hua, X.; Zhang, F.R.; Shi, Y. Crystallization, structure, and properties of polypropylene random copolymer (PPR)/high-density polyethylene/polypropylene grafted maleic anhydride((HDPE/PP)-g-MAH) blends. J. Polym. Res. 2022, 29, 354. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jalali, A.; Zhang, K.; Zhao, J.C.; Qiao, Y.N.; Zhao, C.X.; Qi, Q.; Yang, W.; Yang, M.B. Tunable β-crystals formation from transcrystallinity to cylindrites at PP/PE interface via using melt penetration engineering. Polymer 2022, 258, 125303. [Google Scholar] [CrossRef]
- Wang, B.; Utzeri, R.; Castellano, M.; Stagnaro, P.; Müller, A.J.; Cavallo, D. Heterogeneous Nucleation and Self-Nucleation of Isotactic Polypropylene Microdroplets in Immiscible Blends: From Nucleation to Growth-Dominated Crystallization. Macromolecules 2020, 53, 5980–5991. [Google Scholar] [CrossRef]
- Carmeli, E.; Ottonello, S.; Wang, B.; Menyhárd, A.; Müller, A.J.; Cavallo, D. Competing crystallization of α- and β-phase induced by β-nucleating agents in microdroplets of isotactic polypropylene. CrystEngComm 2022, 24, 1966–1978. [Google Scholar] [CrossRef]
- Somani, R.H.; Yang, L.; Hsiao, B.S.; Agarwal, P.K.; Fruitwala, H.A.; Tsou, A.H. Shear-Induced Precursor Structures in Isotactic Polypropylene Melt by in-Situ Rheo-SAXS and Rheo-WAXD Studies. Macromolecules 2002, 35, 9096–9104. [Google Scholar] [CrossRef]
- Zhang, C.B.; Liu, G.M.; Zhao, Y.; Wang, K.Z.; Dong, X.; Li, Z.M.; Wang, L.; Wang, D.J. Exploring the polymorphic behavior of a β-nucleated propylene-ethylene random copolymer under shear flow. Polym. Cryst. 2020, 3, e10105. [Google Scholar] [CrossRef]
- Varga, J. Supermolecular structure of isotactic polypropylene. J. Mater. Sci. 1992, 27, 2557–2579. [Google Scholar] [CrossRef]
- Broda, J.; Fabia, J.; Bączek, M.; Ślusarczyk, C. Supramolecular Structure of Polypropylene Fibers Extruded with Addition of Functionalized Reduced Graphene Oxide. Polymers 2020, 12, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.J.; Yang, Q.; Kong, M.Q.; Huang, Y.J.; Liao, X.; Niu, Y.H.; Zhao, Z.G. Role of dicumyl peroxide on the morphology and mechanical performance of polypropylene random copolymer in microinjection molding. Polym. Adv. Technol. 2018, 29, 171–181. [Google Scholar] [CrossRef]
- Zhang, D.X.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Structural evolution of β-iPP with different supermolecular structures during the simultaneous biaxial stretching process. Polym. J. 2021, 53, 331–344. [Google Scholar] [CrossRef]
- Zhang, D.X.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Comparison of the Structural Evolution of β Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process. Chin. J. Polym. Sci. 2021, 39, 620–631. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, S.; Lin, H.; Lei, J.; Xu, L.; Zhou, L.; Dai, K.; Zhong, G.J.; Li, Z.M. Enhanced melt-recrystallization process of propylene-ethylene copolymer during the uniaxial stretching with the aid of isotactic polypropylene. Polymer 2022, 239, 124443. [Google Scholar] [CrossRef]
- Chen, J.; Schneider, K.; Heinrich, G. In-Situ Synchrotron X-ray Study on the Structure Variation of Morphology-Identified Injection-Molded β-Nucleated iPP under Tensile Deformation. Polymers 2021, 13, 3730. [Google Scholar] [CrossRef]
- Yu, Y.B.; Yang, S.; Yu, H.N.; Li, J.; Guo, S.Y. Temperature-Dependent Alternating α- or β-Transcrystalline Layers in Coextruded Isotactic Polypropylene Multilayered Films. Macromolecules 2017, 50, 5098–5106. [Google Scholar] [CrossRef]
- Quan, L.J.; Zhang, X.D.; Xia, W.L.; Chen, Y.H.; Gong, L.; Liu, Z.G.; Zhang, Q.Y.; Zhong, G.J.; Li, Z.M.; Hsiao, B. In situ synchrotron X-ray scattering studies on the temperature dependence of oriented β-crystal growth in isotactic polypropylene. Polym. Test. 2020, 90, 106660. [Google Scholar] [CrossRef]
- Yang, S.G.; Chen, Y.H.; Deng, B.W.; Lei, J.; Li, L.B.; Li, Z.M. Window of Pressure and Flow To Produce β-Crystals in Isotactic Polypropylene Mixed with β-Nucleating Agent. Macromolecules 2017, 50, 4807–4816. [Google Scholar] [CrossRef]
- Jia, W.; Zhuo, R.; Xu, M.; Lin, J.; Li, X.; Liu, C.; Shen, C.; Shao, C. Synergistic Effect of Pressurization Rate and β-Form Nucleating Agent on the Multi-Phase Crystallization of iPP. Polymers 2021, 13, 2984. [Google Scholar] [CrossRef]
- Petchwattana, N.; Naknaen, P.; Sanetuntikul, J. Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation. J. Cent. South Univ. 2018, 25, 3098–3106. [Google Scholar] [CrossRef]
- Zhang, C.B.; Liu, G.M.; Jiang, Q.H.; Yang, J.; Zhao, Y.; Wang, D.J. A WAXS/SAXS study on the deformation behavior of β-nucleated propylene–ethylene random copolymer subjected to uniaxial stretching. RSC Adv. 2015, 5, 44610–44617. [Google Scholar] [CrossRef]
- Gajzlerova, L.; Navratilova, J.; Zenzingerova, S.; Jaska, D.; Benicek, L.; Kudlacek, M.; Cermak, R.; Obadal, M. On isotactic polypropylene annealing: Difference in final properties of neat and β-nucleated polypropylene. Express Polym. Lett. 2022, 16, 453–464. [Google Scholar] [CrossRef]
- Yue, Y.; Sha, X.; Wang, F.S.; Gao, Y.; Zhang, L.L.; Wang, X.X.; Feng, J.C. The effect of β-nucleating agent on the self-nucleation of isotactic polypropylene. Polymer 2021, 229, 124009. [Google Scholar] [CrossRef]
- Farahani, M.; Jahani, Y. An approach for prediction optimum crystallization conditions for formation of beta polypropylene by response surface methodology (RSM). Polym. Test. 2021, 93, 106921. [Google Scholar] [CrossRef]
- Li, C.L.; Zhang, Y.K.; Leng, J.H.; He, B.B.; Chen, X. Synergistic Toughening Effect of Nucleating Agent and Annealing Treatment and Morphological Research on Block Copolymerization Polypropylene. Polym.-Plast. Technol. Mater. 2019, 58, 270–281. [Google Scholar] [CrossRef]
- Bai, H.W.; Luo, F.; Zhou, T.N.; Deng, H.; Wang, K.; Fu, Q. New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer 2011, 52, 2351–2360. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.F.; Li, Y. Dependence of β-crystal formation of isotactic polypropylene on crystallization conditions. J. Polym. Res. 2020, 27, 250. [Google Scholar] [CrossRef]
- Ji, H.; Zhou, X.; Chen, X.; Zhao, H.; Wang, Y.; Zhu, H.; Ma, Y.; Xie, L. Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching. Polymers 2020, 12, 1258. [Google Scholar] [CrossRef]
- Jiang, W.J.; Song, X.D.; Zhou, R.; Wu, Z.K.; Hu, B.; Zhang, Y.; Liang, Z.M.; Chen, Z.F.; Kang, J.; Xiang, M. Influences of molecular structure on the isothermal crystallization behavior and mechanical properties of β-nucleated isotactic polypropylene. Polym.-Plast. Technol. Mater. 2020, 59, 1724–1735. [Google Scholar] [CrossRef]
- Zheng, H.; Zeng, F.X.Y.; Chen, Z.F.; Kang, J.; Chen, J.Y.; Cao, Y.; Xiang, M. Exploring the roles of molecular structure on the β-crystallization of polypropylene random copolymer. J. Polym. Res. 2017, 24, 225. [Google Scholar] [CrossRef]
- Menyhárd, A.; Varga, J.; Liber, Á.; Belina, G. Polymer blends based on the β-modification of polypropylene. Prog. Polym. Sci. 2005, 41, 669–677. [Google Scholar] [CrossRef]
- Li, Y.; Nie, M.; Wang, Q. Synergistic effect of self-assembling nucleating agent and crystallization promoter on polypropylene random copolymer pipes via rotation extrusion. Polym. Eng. Sci. 2016, 56, 866–873. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, K.L.; Leng, J.H.; He, B.B. Effect of isotactic polypropylene on crystal structure and morphology of β-modified random copolymerized polypropylene. Polym. Bull. 2018, 75, 4085–4101. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Wang, C.; Junping, Z.; Mai, K. A novel highly efficient β-nucleating agent for polypropylene using nano-CaCO3 as a support. Polym. Int. 2010, 59, 1199–1204. [Google Scholar] [CrossRef]
- Li, M.; Li, G.; Zhang, Z.S.; Dai, X.; Mai, K.C. Enhanced β-crystallization in polypropylene random copolymer with a supported β-nucleating agent. Thermochim. Acta 2014, 598, 36–44. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Wang, C.G.; Meng, Y.Z.; Mai, K.C. Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Compos. Part A 2012, 43, 189–197. [Google Scholar] [CrossRef]
- Zhu, J.; Ni, H.T.; Liao, X.Q.; Liu, X. Preparation and Crystallization Property of Ternary Composites of WBG/AA-RCC/PP. J. Chem. 2015, 2015, 545016. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Chen, G.; Feng, J.; Zhang, W.; Gao, L.; Sun, W. Synergistic effects of α/β-nucleating agents on propylene-ethylene random copolymer: New clues for the pipe extrusion. Polym. Eng. Sci. 2016, 56, 1089–1095. [Google Scholar] [CrossRef]
- Niu, H.; Wang, N.; Li, Y. Influence of β-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer 2018, 150, 371–379. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.D.; Xin, Z.; Qin, W.; Zhou, S.; Zhao, S.C. Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer. J. Polym. Res. 2019, 26, 245. [Google Scholar] [CrossRef]
- Zhao, S.C.; Qin, W.; Xin, Z.; Zhou, S.; Gong, H.Z.; Ni, Y.M.; Zhang, K. In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer 2018, 151, 84–91. [Google Scholar] [CrossRef]
- Qin, W.; Xin, Z.; Pan, C.M.; Sun, S.B.; Jiang, X.F.; Zhao, S.C. In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chem. Eng. J. 2019, 358, 1243–1252. [Google Scholar] [CrossRef]
- Peng, W.L.; Liu, W.X.; Zhang, W.X.; Li, K.; Liu, X.; Chen, Z.B.; Tang, Z.H.; Liu, Z. A novel approach of preparing zinc adipate as β-nucleating agent for polypropylene engineering. J. Mater. Res. 2019, 34, 3654–3665. [Google Scholar] [CrossRef]
- Yang, Y.D.; Zhang, W.X.; Qin, W.; Xin, Z.; Zhao, S.C.; Chen, L.; Zhou, S. The nucleation effect of self-dispersed β-nucleating agent in ethylene-propylene block copolymerized polypropylene. Colloid Polym. Sci. 2018, 296, 1627–1633. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Zhang, K.; Xu, G.M.; Shan, C.Y.; He, M.; Qin, S.H.; Yu, J. Crystalline Characteristic Effect of In Situ Interaction between ZnO and Pht on Inducing β-nucleation of Isotactic Polypropylene. Polym. Cryst. 2022, 2022, 7067888. [Google Scholar] [CrossRef]
- Ding, C.; Wu, G.G.; Zhang, Y.; Yang, Y.; Yin, B.; Yang, M.B. Effect of surfactant assisted β-nucleating agent self-assembly on the crystallization of polypropylene. Polymer 2019, 184, 121895. [Google Scholar] [CrossRef]
- Ding, C.; Yang, Y.; Liu, L.; Wu, G.G.; Yin, B.; Yang, M.B. Surfactant-assisted β-NA supramolecular self-assembly in mini injection molding PP composite. Polymer 2020, 204, 122816. [Google Scholar] [CrossRef]
- Li, D.; Xin, Y.; Song, Y.; Dong, T.; Ben, H.; Yu, R.; Han, G.; Zhang, Y. Crystalline Modification of Isotactic Polypropylene with a Rare Earth Nucleating Agent Based on Ultrasonic Vibration. Polymers 2019, 11, 1777. [Google Scholar] [CrossRef] [Green Version]
- Wallner, G.M.; Grabmann, M.K.; Klocker, C.; Buchberger, W.; Nitsche, D. Effect of carbon nanotubes on the global aging behavior of β-nucleated polypropylene random copolymers for absorbers of solar-thermal collectors. Sol. Energy 2018, 172, 141–145. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Lin, X.F.; Li, Y.; He, B. Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene. J. Therm. Anal. Calorim. 2020, 139, 343–352. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Vourlias, G.; Bikiaris, D.N.; Chrissafis, K. Synergistic Effect of Functionalized Silica Nanoparticles and a β-Nucleating Agent for the Improvement of the Mechanical Properties of a Propylene/Ethylene Random Copolymer. Macromol. Mater. Eng. 2014, 299, 707–721. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Vourlias, G.; Bikiaris, D.N.; Chrissafis, K. Effect of Silica Nanoparticles Modification on the Thermal, Structural, and Decomposition Properties of a β-Nucleated Poly(propylene-co-ethylene) Matrix. Macromol. Chem. Phys. 2014, 215, 839–850. [Google Scholar] [CrossRef]
- Shi, S.H.; Liu, Y.S.; Nie, M.; Wang, Q. Nacre-Mimetic Polypropylene Featuring Heterogeneous Distribution of Polymorphic Compositions via Controlled Diffusion of β-Nucleating Agent. Ind. Eng. Chem. Res. 2019, 58, 4116–4124. [Google Scholar] [CrossRef]
- Gu, Y.X.; Liu, Y.X.; Fan, Z.R.; Gui, J.F.; Liu, P.; Wang, H.M. Influence of β-nucleating Compound Agents on the Mechanical Properties and Crystallization Behavior of Polypropylene Random Copolymer. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2023, 38, 237–243. [Google Scholar] [CrossRef]
- Mao, H.D.; Liu, Y.S.; Liu, W.; Nie, M.; Wang, Q. Investigation of crystallisation and interfacial nature of polyhedral oligomeric silsesquioxane/polypropylene composites in the presence of β-nucleating agent. Plast. Rubber Compos. 2017, 46, 322–328. [Google Scholar] [CrossRef]
- Shen, L.; Chen, Z.; Kou, J. High-quality modification of general polypropylene by the synergistic effect of zinc adipate, hydrotalcite, and polypropylene (SP179). J. Appl. Polym. Sci. 2023, 140, e53704. [Google Scholar] [CrossRef]
- Peng, W.; Sun, F.; Liang, Y.; Kang, J.; Chen, J.; Wang, W.; Cao, Y.; Xiang, M. Exploring the Effects of MXene on Nonisothermal Crystallization and Melting Behavior of β-Nucleated Isotactic Polypropylene. Polymers 2021, 13, 3815. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Tzounis, L.; Papageorgiou, G.Z.; Bikiaris, D.N.; Chrissafis, K. β-nucleated propylene–ethylene random copolymer filled with multi-walled carbon nanotubes: Mechanical, thermal and rheological properties. Polymer 2014, 55, 3758–3769. [Google Scholar] [CrossRef]
- Ren, P.-G.; Wang, J.; Fan, Q.; Yang, S.; Wu, Z.-Q.; Yan, D.-X.; Chen, Y.-H. Synergetic Toughening Effect of Carbon Nanotubes and β-Nucleating Agents on the Polypropylene Random Copolymer/Styrene-Ethylene-Butylene- Styrene Block Copolymer Blends. Polymers 2019, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Jiang, X.; Fang, Y.; Chen, J.; Kang, J.; Cao, Y.; Xiang, M. Investigation on the Effect of Hyperbranched Polyester Grafted Graphene Oxide on the Crystallization Behaviors of β-Nucleated Isotactic Polypropylene. Polymers 2019, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Martínez, D.; Gutiérrez-Páramo, H.E.; Martínez-Hernández, A.L.; Velasco-Santos, C.; Almendarez-Camarillo, A. Induction of the β-phase in isotactic polypropylene with pimelic acid modified graphene nanoplatelets. FlatChem 2023, 38, 100472. [Google Scholar] [CrossRef]
- Luo, S.; Lv, C.; Chang, L.; Guo, W. Enhancing Crystallization and Toughness of Wood Flour/Polypropylene Composites via Matrix Crystalline Modification: A Comparative Study of Two β-Nucleating Agents. Polymers 2022, 14, 3561. [Google Scholar] [CrossRef]
- Kotek, J.; Kelnar, I.; Synková, H.; Starý, Z.; Baldrian, J. β-Polypropylene/wood flour composites: Effects of specific β-nucleation and coupling agent on mechanical behavior. J. Appl. Polym. Sci. 2007, 103, 506–511. [Google Scholar] [CrossRef]
- Thumm, A.; Risani, R.; Dickson, A.; Sorieul, M. Ligno-Cellulosic Fibre Sized with Nucleating Agents Promoting Transcrystallinity in Isotactic Polypropylene Composites. Materials 2020, 13, 1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Zhang, Y.F.; Li, Y.; Zhong, J.R. Effect of sodium lignosulfonate/nano calcium carbonate composite filler on properties of isotactic polypropylene. Polym. Bull. 2023, 80, 3103–3117. [Google Scholar] [CrossRef]
- Lv, C.; Luo, S.; Guo, W. Investigation of the crystallization and mechanical properties of wood fiber/polypropylene composites nucleated by a self-assembly β-nucleating agent. Polym. Bull. 2023, 80, 5239–5256. [Google Scholar] [CrossRef]
- Yang, X.; Chang, J.; Fang, W.; Yu, Z.; Li, M.; Li, Q. Improved impact property of long glass fiber-reinforced polypropylene random coPolym. Compos. toughened with beta-nucleating agent via tunning the crystallization and phase. Polym. Compos. 2021, 42, 3169–3183. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, J.C.; Cheng, D.; Yi, J.J.; Wang, L. Different crystallization behavior of olefin block copolymer in α- and β-polypropylene matrix. Polymer 2013, 54, 4719–4727. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, C.; Zhao, Y.; Wang, D.; Lei, J.; Li, Z. Synergistic enhancement of crystallization and mechanical performance of polypropylene random copolymer by strong shear and β-nucleating agent. Polym. Int. 2017, 66, 1141–1150. [Google Scholar] [CrossRef]
- Ren, Q.L.; Zhang, Q.L.; Wang, L.; Yi, J.J.; Feng, J.C. Synergistic Toughening Effect of Olefin Block Copolymer and Highly Effective β-Nucleating Agent on the Low-Temperature Toughness of Polypropylene Random Copolymer. Ind. Eng. Chem. Res. 2017, 56, 5277–5283. [Google Scholar] [CrossRef]
- Jiang, Q.; Jia, H.B.; Wang, J.Y.; Fang, E.Y.; Jiang, J. Effects of nucleating agents on crystallization behavior and mechanical properties of high-fluid polypropylene. Iran. Polym. J. 2012, 21, 201–209. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.B.; Jin, B.Q.; Sheng, Q.; Wang, T.; Zhang, J. Influence of morphology evolution on the mechanical properties of beta nucleated isotactic polypropylene in presence of polypropylene random copolymer. Polym. Test. 2016, 51, 13–19. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Y.; Guo, J.; Qin, J.; Lian, H.; Lu, Z.; Chen, X. Synergistic effect of β-nucleating agent and layered double hydroxide on high toughness of polypropylene composites. Polym. Eng. Sci. 2023, 63, 1989–2001. [Google Scholar] [CrossRef]
- Luo, F.; Wang, J.W.; Bai, H.W.; Wang, K.; Deng, H.; Zhang, Q.; Chen, F.; Fu, Q.; Na, B. Synergistic toughening of polypropylene random copolymer at low temperature: β-Modification and annealing. Mater. Sci. Eng. A 2011, 528, 7052–7059. [Google Scholar] [CrossRef]
- Luo, F.; Xu, C.L.; Wang, K.; Deng, H.; Chen, F.; Fu, Q. Exploring temperature dependence of the toughening behavior of β-nucleated impact polypropylene copolymer. Polymer 2012, 53, 1783–1790. [Google Scholar] [CrossRef]
- Estevez, R.; Tijssens, M.G.A.; Van der Giessen, E. Modeling of the competition between shear yielding and crazing in glassy polymers. J. Mech. Phys. Solids. 2000, 48, 2585–2617. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.C.; Tian, H.C.; Pan, W.L.; Feng, J.C.; Wang, D.; Ning, N.Y.; Tian, M.; Zhang, L.Q. Unexpected Improvement of Both Mechanical Strength and Elasticity of EPDM/PP Thermoplastic Vulcanizates by Introducing β-Nucleating Agents. Macromolecules 2021, 54, 2835–2843. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, S.; Yang, H.Q.; Zhang, M.; Zhang, Q.Y.; Li, Z.M. Toughness Reinforcement in Carbon Nanotube-Filled High Impact Polypropylene Copolymer with β-Nucleating Agent. Ind. Eng. Chem. Res. 2016, 55, 8733–8742. [Google Scholar] [CrossRef]
- Qiu, B.W.; Chen, F.; Shangguan, Y.G.; Lin, Y.; Zheng, Q.; Wang, X. Toughening mechanism in impact polypropylene copolymer containing a β-nucleating agent. RSC Adv. 2016, 6, 23117–23125. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, F.; Bai, H.; Wang, K.; Deng, H.; Chen, F.; Zhang, Q.; Fu, Q. Synergistic effects of β-modification and impact polypropylene copolymer on brittle-ductile transition of polypropylene random copolymer. J. Appl. Polym. Sci. 2013, 129, 3613–3622. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Hua, W.Q.; Ren, Q.L.; Feng, J.C. Regulation of Physical Networks and Mechanical Properties of Triblock Thermoplastic Elastomer through Introduction of Midblock Similar Crystalline Polymer with Multiblock Architecture. Macromolecules 2016, 49, 7379–7386. [Google Scholar] [CrossRef]
- Han, R.; Yang, Q.J.; Wang, Z.Z.; Cao, D.; Li, G.Z.; Zheng, L.; Peng, B.Y.; Gao, X.Y.; Chen, G. 3D printing-enabled self-assembling β-nucleating agent alignment: Structural evolution and mechanical performances. Polymer 2022, 246, 124736. [Google Scholar] [CrossRef]
- Zhu, K.M.; Ding, Q.; Hua, C.R.; Fu, H.; Yao, J. Effect of β-nucleating agent on crystallization of post-consumer polypropylene. Thermochim. Acta 2019, 675, 63–68. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, H.; Hua, C.R.; Jiang, X.M.; Yu, J.; Zhu, K.M. Effect of β-nucleating agent on crystallization of wollastonite-filled recycled polypropylene composites. J. Therm. Anal. Calorim. 2021, 144, 713–719. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, S.Q.; Hua, Z.; Niu, H. Influence of isotactic polypropylene grafted with styryl-group on the polymer crystallization behavior. Polym. Test. 2022, 108, 107508. [Google Scholar] [CrossRef]
- Wu, G.G.; Xu, L.Y.; Chen, W.B.; Ding, C.; Liu, Z.Y.; Yang, W.; Yang, M.B. Oriented polypropylene cast films consisted of β-transcrystals induced by the nucleating agent self-assembly and its homogeneous membranes with high porosity. Polymer 2018, 151, 136–144. [Google Scholar] [CrossRef]
Sequence | Nucleating Agent | Provider | Kβ/% | Polypropylene Category | The Best Kβ Amount Added % | Reference |
---|---|---|---|---|---|---|
1 | Calcium carbonate | Heat-treated shell | 80.1 | Isotactic polypropylene, grade F401 | 5 | [45] |
2 | P-cyclohexylamide Carboxybenzene | Prepared in laboratory | 96.96 | Isotactic polypropylene, grade T30S | 0.05 | [46] |
3 | Zinc tetrahydrate | Guangzhou Chenghe technology company (China) | 97.2 | Isotactic polypropylene, grade T30S | 0.1 | [47] |
4 | Established lignin zinc salts | Lignin powder | 92.77 | Isotactic polypropylene | 0.2 | [48] |
5 | Nano-zinc oxide | Jing Rui new material Co., Ltd. (China) | 95.2 | Isotactic polypropylene, grade T30S | 3 | [49] |
6 | N,N′-dicyclohexylsuberoylamide and N,N′-dicyclohexylsebacoylamide | Synthesized in laboratory | Not mentioned | Homopolymer, H649 Heterophasic copolymer K 693 Random copolymer R 605 | Not mentioned | [50,51] |
7 | Pimelic acid supported chemically on treated keratin fibers | Industrial waste | 79 | Isotactic polypropylene | 0.5 | [52] |
8 | Zinc suberate | Synthesized in laboratory | 82 | PPR powder, brand T4401 | 0.2 | [53] |
9 | Bulk molybdenum disulfide | Composites Innovation Centre (Canada) | Not mentioned | Isotactic polypropylene | Not mentioned | [54] |
10 | Calcium tetrahydrate | GCH Technology Co., Ltd. (China) | 93.5 | Impact resistant polypropylene copolymer brand j340 | 0.03 | [55] |
11 | Cadmium bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (BCHE30) | Synthesized according to a patient in laboratory | 87 | Isotactic polypropylene, grade F401 | 0.1 | [36] |
12 | N,N′-dicyclohexylterephthalamide (DCHT) | Shanxi Provincial Institute of chemical industry (China) | 0.95~1.0 | Isotactic polypropylene, grade S1003 | 0.05 | [44] |
13 | Illite modified by calcium heptaneate | Chemical modified in laboratory | 93.31 | Isotactic polypropylene | 5 | [56] |
14 | N,N′-dicyclohexyl-1,5-diamino-2,6-naphthalenedcarboxamide chemically supported on the surface of MWCNTs | Synthesized in laboratory | 93 | Isotactic polypropylene, grade T30S | 0.05 | [57] |
15 | Alkyl-substituted benzoate alumina | Synthesized in laboratory | >80 | Homopolymer | 0.2 | [58] |
16 | N1, N4-Bis (2,2-dimethylbutyl) terephthalamide (TPA-CP) N1, N4-Dicyclohexylterephthalamide (TPA-CA) N1, N4-Dicyclopentylterephthalamide (TPA-CP) N1, N6-Diphenyladipamide (ADA-PA) | Synthesized in laboratory | Not mentioned | Isotactic polypropylene powder PP-HGD | 0.2 | [59,60] |
17 | Hexahydroxythalic barium | Synthesized according to a patient in laboratory | 80.2 | Isotactic polypropylene, grade T30S | 0.4 | [61] |
18 | Silesquioxane functionalized with N,N′-dicyclohexyl-2,6-naphthalene Dicarboxamide (SF-B01) | Department of organic chemistry UAM (Poland) | 84.77 | Isotactic polypropylene, grade hp500n | 0.25 | [62,63] |
Sequence | Nucleating Agent | Provider | Kβ/% | Polypropylene Category | The Best Kβ Amount Added % | Reference |
---|---|---|---|---|---|---|
1 | Zinc polyacrylate Potassium polyacrylate Sodium polyacrylate | Synthesized in laboratory | 12 18 25 | Isotactic polypropylene powder PP-HGD | 0.3 | [69] |
2 | Poly (acrylonitrile–butadiene–styrene) (ABS) | Chimei Industrial Co., Ltd. (Taipei, Taiwan, China) | 36.2 | Isotactic polypropylene, grade T30S | 2 | [70] |
3 | Liquid crystal polymer ionomer with 5 sulfate monomers (PBDPSi5) | Synthesized in laboratory | 97 | Isotactic polypropylene | 4 | [71] |
4 | Linear polystyrene Comb-like branched polystyrene | Synthesized | 70.4 55.1 | Isotactic polypropylene, grade T30S | 1 | [72] |
5 | Comb-like branched polystyrene Linear polystyrene Star shaped polystyrene | Synthesized | 49.52 21.17 7.45 | Isotactic polypropylene, grade T30S | 1 | [73] |
6 | Liquid crystal polyester (PBDPS) | Synthesized in laboratory | 96.6 | Isotactic polypropylene, grade T30S | 4 | [74] |
7 | Novolac | Qinan adhesive materials factory (China) | 20.8 | Isotactic polypropylene, grade F401 | 30 | [75] |
8 | Polystyrene (PS) Styrene acrylonitrile copolymer (SAN) | PS from Taita Chemical Corp San from Mitsubishi plastics, Inc., Japan | 26 32 | Isotactic polypropylene, grade S1003 | 2 | [76] |
9 | Liquid crystal polymer (LCP), Vectra A950 | Hoechst IBERICA SA | 23 | Isotactic polypropylene | 1 | [77] |
10 | LCP-NA2 | Synthesized in laboratory | 70 | Isotactic polypropylene powder TPH-XB-075 | 1 | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zheng, X.; Xu, W.; Ren, Y.; Leng, H.; Liang, L.; Zheng, D.; Chen, J.; Jiang, H. β-Nucleated Polypropylene: Preparation, Nucleating Efficiency, Composite, and Future Prospects. Polymers 2023, 15, 3107. https://doi.org/10.3390/polym15143107
Wu B, Zheng X, Xu W, Ren Y, Leng H, Liang L, Zheng D, Chen J, Jiang H. β-Nucleated Polypropylene: Preparation, Nucleating Efficiency, Composite, and Future Prospects. Polymers. 2023; 15(14):3107. https://doi.org/10.3390/polym15143107
Chicago/Turabian StyleWu, Bo, Xian Zheng, Wenjie Xu, Yanwei Ren, Haiqiang Leng, Linzhi Liang, De Zheng, Jun Chen, and Huanfeng Jiang. 2023. "β-Nucleated Polypropylene: Preparation, Nucleating Efficiency, Composite, and Future Prospects" Polymers 15, no. 14: 3107. https://doi.org/10.3390/polym15143107