Next Issue
Volume 15, August-1
Previous Issue
Volume 15, July-1
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 15, Issue 14 (July-2 2023) – 173 articles

Cover Story (view full-size image): This pioneering work shows, for the first time, the therapeutic potential of a lignin-mediated modulation of a cell morphology and phenotype of inflammed, degenerated diseased human cells into a healthier morphology and phenotype. Lignin not only modulated multi-factorial aspects of cell morphology; it also induced a healthier cell shape that correlated with positive changes in major fibrosis- and inflammatory-regulating genes, in addition to inducing a decrease in a major disease marker. This shows that lignin could be therapeutically exploited in an entirely new way: by targeting cell morphology. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 3448 KiB  
Article
Molecularly Imprinted Polymers Specific towards 4-Borono-L-phenylalanine—Synthesis Optimization, Theoretical Analysis, Morphology Investigation, Cytotoxicity, and Release Studies
by Emilia Balcer, Monika Sobiech, Joanna Giebułtowicz, Małgorzata Sochacka and Piotr Luliński
Polymers 2023, 15(14), 3149; https://doi.org/10.3390/polym15143149 - 24 Jul 2023
Cited by 3 | Viewed by 1287
Abstract
The aim of this study was to create molecularly imprinted polymers (MIPs) that are specific towards 4-borono-L-phenylalanine (BPA) to serve as boron compound carriers. The honeycomb-like MIPs were characterized in the matter of adsorption properties, morphology, structure, and cytotoxicity towards A549 and V79-4 [...] Read more.
The aim of this study was to create molecularly imprinted polymers (MIPs) that are specific towards 4-borono-L-phenylalanine (BPA) to serve as boron compound carriers. The honeycomb-like MIPs were characterized in the matter of adsorption properties, morphology, structure, and cytotoxicity towards A549 and V79-4 cell lines. The honeycomb-like MIP composed from methacrylic acid and ethylene glycol dimethacrylate was characterized by a binding capacity of 330.4 ± 4.6 ng g−1 and an imprinting factor of 2.04, and its ordered, porous morphology was confirmed with scanning electron microscopy. The theoretical analysis revealed that the coexistence of different anionic forms of the analyte in basic solution might lower the binding capacity of the MIP towards BPA. The release profiles from the model phosphate buffer saline showed that only 0 to 4.81% of BPA was released from the MIP within the time frame of two hours, furthermore, the obtained material was considered non-cytotoxic towards tested cell lines. The results prove that MIPs can be considered as effective BPA delivery systems for biomedical applications and should be investigated in further studies. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 3955 KiB  
Article
Biocompatible Palladium Nanoparticles Prepared Using Vancomycin for Colorimetric Detection of Hydroquinone
by Shoubei Gao, Kai Liu, Xianbing Ji, Yanshuai Cui, Ruyu Li, Guanglong Ma, Yongqiang Zhang and Longgang Wang
Polymers 2023, 15(14), 3148; https://doi.org/10.3390/polym15143148 - 24 Jul 2023
Cited by 1 | Viewed by 1660
Abstract
Hydroquinone poses a major threat to human health and is refractory to degradation, so it is important to establish a convenient detection method. In this paper, we present a novel colorimetric method for the detection of hydroquinone based on a peroxidase-like Pd nanozyme. [...] Read more.
Hydroquinone poses a major threat to human health and is refractory to degradation, so it is important to establish a convenient detection method. In this paper, we present a novel colorimetric method for the detection of hydroquinone based on a peroxidase-like Pd nanozyme. The vancomycin-stabilized palladium nanoparticles (Van-Pdn NPs, n = 0.5, 1, 2) were prepared using vancomycin as a biological template. The successful synthesis of Van-Pdn NPs (n = 0.5, 1, 2) was demonstrated by UV-vis spectrophotometry, transmission electron microscopy, and X-ray diffraction. The sizes of Pd nanoparticles inside Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs were 2.6 ± 0.5 nm, 2.9 ± 0.6 nm, and 4.3 ± 0.5 nm, respectively. Furthermore, Van-Pd2 NPs exhibited excellent biocompatibility based on the MTT assay. More importantly, Van-Pd2 NPs had good peroxidase-like activity. A reliable hydroquinone detection method was established based on the peroxidase-like activity of Van-Pd2 NPs, and the detection limit was as low as 0.323 μM. Therefore, vancomycin improved the peroxidase-like activity and biocompatibility of Van-Pd2 NPs. Van-Pd2 NPs have good application prospects in the colorimetric detection of hydroquinone. Full article
(This article belongs to the Special Issue Eco-Friendly Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

21 pages, 5857 KiB  
Article
Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting
by Martin Hubmann, Stephan Schuschnigg, Ivica Ðuretek, Jonas Groten and Clemens Holzer
Polymers 2023, 15(14), 3147; https://doi.org/10.3390/polym15143147 - 24 Jul 2023
Viewed by 1830
Abstract
Measuring the shear viscosity of polymeric melts is an extensive effort frequently performed in high-pressure capillary rheometers, where the pressures required to push the melt through a capillary at various temperatures and volumetric flow rates are recorded. Then, the viscosity values are obtained [...] Read more.
Measuring the shear viscosity of polymeric melts is an extensive effort frequently performed in high-pressure capillary rheometers, where the pressures required to push the melt through a capillary at various temperatures and volumetric flow rates are recorded. Then, the viscosity values are obtained through Bagley and Weissenberg–Rabinowitsch corrections involving parameter fitting. However, uncertainties in those conversions due to pressure variations and measurement inaccuracies (random errors) affect the accuracy of the consequently calculated viscosities. This paper proposes quantifying them through a propagation of uncertainties calculation. This has been experimentally demonstrated for a polycarbonate melt. In addition, the derived viscosity uncertainties were used for the weighted residual sum of squares parameter estimation of the Cross-WLF viscosity model and compared with the coefficients obtained using the standard residual sum of squares minimization approach. The motivation was that, by comparison, individual poorly measured viscosity values should have a less negative impact on the overall fit quality of the former. For validation, the rheometer measurements were numerically simulated with both fits. The simulations based on the Cross-WLF fit, including the derived viscosity uncertainties, matched the measured pressures ~16% more closely for shear rates below 1500 1/s. Considering the uncertainties led to more precise coefficients. However, both fits showed substantial deviations at higher shear rates, probably due to substantial non-isothermal flow conditions that prevailed during these measurements. A capillary rheometer experiment was also simulated using arbitrarily chosen Cross-WLF parameters to exclude such systematic errors. A normally distributed error was then applied to the simulated pressures before re-fitting the parameters. Again, taking advantage of the derived viscosity uncertainties, the fit could recover the initial parameters better. Full article
(This article belongs to the Special Issue Advances in Polymers Processing and Injection Molding)
Show Figures

Figure 1

18 pages, 2199 KiB  
Article
Modeling of Poly(Ethylene Terephthalate) Homogeneous Glycolysis Kinetics
by Kirill A. Kirshanov, Roman V. Toms, Mikhail S. Balashov, Sergey S. Golubkov, Pavel V. Melnikov and Alexander Yu. Gervald
Polymers 2023, 15(14), 3146; https://doi.org/10.3390/polym15143146 - 24 Jul 2023
Cited by 3 | Viewed by 2393
Abstract
Polymer composites with various recycled poly(ethylene terephthalate)-based (PET-based) polyester matrices (poly(ethylene terephthalate), copolyesters, and unsaturated polyester resins), similar in properties to the primary ones, can be obtained based on PET glycolysis products after purification. PET glycolysis allows one to obtain bis(2-hydroxyethyl) terephthalate and [...] Read more.
Polymer composites with various recycled poly(ethylene terephthalate)-based (PET-based) polyester matrices (poly(ethylene terephthalate), copolyesters, and unsaturated polyester resins), similar in properties to the primary ones, can be obtained based on PET glycolysis products after purification. PET glycolysis allows one to obtain bis(2-hydroxyethyl) terephthalate and oligo(ethylene terephthalates) with various molecular weights. A kinetic model of poly(ethylene terephthalate) homogeneous glycolysis under the combined or separate action of oligo(ethylene terephthalates), bis(2-hydroxyethyl) terephthalate, and ethylene glycol is proposed. The model takes into account the interaction of bound, terminal, and free ethylene glycol molecules in the PET feedstock and the glycolysis agent. Experimental data were obtained on the molecular weight distribution of poly(ethylene terephthalate) glycolysis products and the content of bis(2-hydroxyethyl) terephthalate monomer in them to verify the model. Homogeneous glycolysis of PET was carried out at atmospheric pressure in dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents with catalyst based on antimony trioxide (Sb2O3) under the action of different agents: ethylene glycol at temperatures of 165 and 180 °C; bis(2-hydroxyethyl) terephthalate at 250 °C; and oligoethylene terephthalate with polycondensation degree 3 at 250 °C. Homogeneous step-by-step glycolysis under the successive action of the oligo(ethylene terephthalate) trimer, bis(2-hydroxyethyl) terephthalate, and ethylene glycol at temperatures of 250, 220, and 190 °C, respectively, was also studied. The composition of products was confirmed using FTIR spectroscopy. Molecular weight characteristics were determined using gel permeation chromatography (GPC), the content of bis(2-hydroxyethyl) terephthalate was determined via extraction with water at 60 °C. The developed kinetic model was found to be in agreement with the experimental data and it could be used further to predict the optimal conditions for homogeneous PET glycolysis and to obtain polymer-based composite materials with desired properties. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

21 pages, 7490 KiB  
Article
Advanced Plastic Waste Recycling—The Effect of Clay on the Morphological and Thermal Behavior of Recycled PET/PLA Sustainable Blends
by Maria-Paraskevi Belioka, Georgia Markozanne, Kiriaki Chrissopoulou and Dimitrios S. Achilias
Polymers 2023, 15(14), 3145; https://doi.org/10.3390/polym15143145 - 24 Jul 2023
Cited by 9 | Viewed by 2096
Abstract
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained [...] Read more.
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained from recycled plastics. Several blends were prepared, containing 50 to 90% PET. Moreover, multiscale nanocomposite blends were formed via melt mixing using different amounts and types of nanoclay in order to study their effect on the morphology, surface properties, and thermal stability of the blends. The materials were characterized by X-ray diffraction analysis (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The nanoclay was found to exhibit a uniform dispersion in the polymer matrix, presenting mainly intercalated structures with some exfoliated at low loading and some agglomerates at high loading (i.e., 10%). The addition of nanoclay to PET/PLA matrices increased the roughness of the blends and improved their thermal stability. Thermal degradation of the blends occurs in two steps following those of the individual polymers. Contamination of rPET with rPLA results in materials having poor thermal stability relative to rPET, presenting the onset of thermal degradation at nearly 100 °C lower. Therefore, important information was obtained concerning the recyclability of mixed PET and PLA waste. The perspective is to study the properties and find potential applications of sustainable blends of recycled PET and PLA by also examining the effect of different clays in different loadings. Therefore, useful products could be produced from blends of waste polyester. Full article
Show Figures

Figure 1

17 pages, 6146 KiB  
Article
Unraveling the Adsorption Mechanism and Anti-Corrosion Functionality of Dextrin and Inulin as Eco-Friendly Biopolymers for the Corrosion of Reinforced Steel in 1.0 M HCl: A Thermodynamic and Kinetic Approach
by Arafat Toghan and Ahmed Fawzy
Polymers 2023, 15(14), 3144; https://doi.org/10.3390/polym15143144 - 24 Jul 2023
Cited by 13 | Viewed by 1161
Abstract
Reinforcing steel (RS) is mainly used in building construction and many industries, but it suffers from corrosion problems, especially in acidic environments. Biopolymers are characterized by their unique chemical composition, as they contain a variety of functional groups that are capable of binding [...] Read more.
Reinforcing steel (RS) is mainly used in building construction and many industries, but it suffers from corrosion problems, especially in acidic environments. Biopolymers are characterized by their unique chemical composition, as they contain a variety of functional groups that are capable of binding strongly to the metal surface and forming a protective layer on it. Herewith, two biopolymers, viz. dextrin (Dex) and inulin (Inu), were tested as eco-friendly inhibitors for the corrosion of RS in 1.0 M HCl medium at different temperatures. Various experimental tools were utilized in this research. The inhibition efficiencies (% IEs) of the tested polymeric compounds were improved by increasing their doses while reducing with rising temperature. The % IEs of Dex and Inu at a dose of 500 mg/L reached 85% and 93%, respectively. The examined biopolymers displayed cathodic/anodic behavior (mixed type) with a foremost anodic one. The acquired higher % IEs were demonstrated by intense adsorption of Dex and Inu on the RS surface fitting the Langmuir isotherm. The influence of rising temperature in the range of 288–318 K on the corrosion behavior was examined, and the evaluated thermodynamic and kinetic parameters sustained the mechanism of physical adsorption of the polymeric inhibitors. Additionally, the kinetics of corrosion, as well as its inhibition by Dex and Inu, were also investigated. The SEM micrographs of the RS surfaces were accorded with all utilized experimental tools. The results gained from all used tools were discovered to be in good agreement with each other. Full article
Show Figures

Figure 1

16 pages, 5621 KiB  
Article
An Integrated Multi-Functional Thermal Conductive and Flame Retardant Epoxy Composite with Functionalized Carbon Nitride Nanosheets
by Yuxin Yang, Ruiping Wang, Yang Leng, Jingchun Wang and Miaojun Xu
Polymers 2023, 15(14), 3143; https://doi.org/10.3390/polym15143143 - 24 Jul 2023
Cited by 5 | Viewed by 1548
Abstract
In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS) containing piperazine [...] Read more.
In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS) containing piperazine pyrophosphate (PPAP) by hydrogen bonding, and the obtained nanosheet was defined as PPAP-CNNS. During solution blending and program-controlled curing, PPAP-CNNS was used as a multifunctional filler to fabricate highly thermoconductive and fire retardant epoxy resin (EP) composites. In line with expectations, the resultant EP composites containing 7 wt% PPAP-CNNS had an exceptional thermal conductivity (TC) of 1.1 W·m−1K−1, which was 4.8 times higher than pure EP. Simultaneously, there was a sharp drop in the heat release rate (HRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) compared to pure EP. These reductions were, respectively, 63.7%, 54.2%, 17.9%, and 57.2%. The addition of PPAP-CNNS increased the specific surface area, which increased the heat conduction routes, and also the shape of the compact and solid char layer during burning, protecting the underlying polymer. These improvements to dispersion and surface functionalization were made possible by the compound. These results indicate that the preparation of integrated multi-functional resin described in this study has a wide application. Full article
(This article belongs to the Special Issue Development in Thermosetting Polymers)
Show Figures

Figure 1

22 pages, 31131 KiB  
Article
Investigation of Auxetic Structural Deformation Behavior of PBAT Polymers Using Process and Finite Element Simulation
by Yanling Schneider, Vinzenz Guski, Ahmet O. Sahin, Siegfried Schmauder, Javad Kadkhodapour, Jonas Hufert, Axel Grebhardt and Christian Bonten
Polymers 2023, 15(14), 3142; https://doi.org/10.3390/polym15143142 - 24 Jul 2023
Cited by 1 | Viewed by 1156
Abstract
The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more [...] Read more.
The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force–displacement curve, the structural Poisson’s ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress–strain flow curve with the total stress calculated from the elemental stresses. Full article
(This article belongs to the Special Issue Computational Modeling and Simulations of Polymers)
Show Figures

Figure 1

18 pages, 14884 KiB  
Article
A Systematic Study on Impact of Binder Formulation on Green Body Strength of Vat-Photopolymerisation 3D Printed Silica Ceramics Used in Investment Casting
by Ozkan Basar, Varghese Paul Veliyath, Fatih Tarak and Ehsan Sabet
Polymers 2023, 15(14), 3141; https://doi.org/10.3390/polym15143141 - 24 Jul 2023
Cited by 3 | Viewed by 2129
Abstract
Additive ceramics manufacturing with vat-photopolymerisation (VP) is a developing field, and the need for suitable printing materials hinders its fast growth. Binder mixtures significantly influence the mechanical properties of printed ceramic bodies by VP, considering their rheological properties, curing performances and green body [...] Read more.
Additive ceramics manufacturing with vat-photopolymerisation (VP) is a developing field, and the need for suitable printing materials hinders its fast growth. Binder mixtures significantly influence the mechanical properties of printed ceramic bodies by VP, considering their rheological properties, curing performances and green body characteristics. Improving mechanical characteristics and reducing cracks during printing and post-processes is mainly related to binder formulations. The study aims to develop a binder formulation to provide the printed ceramic specimens with additional green strength. The impact on mechanical properties (ultimate tensile strength, flexural strength, Young’s and strain at breakpoint), viscosity and cure performance of Urethane Acrylate (UA) and thermoplastic Polyether Acrylate (PEA) oligomers to monofunctional N-Vinylpyrrolidone (NVP), 1,6-Hexanediol Diacrylate (HDDA) and Tri-functional Photocentric 34 (PC34) monomers were investigated under varying concentrations. The best mechanical characteristic was showcased when the PC34 was replaced with 20–30 wt.% of UA in the organic medium. The Thermogravimetric Analysis (TGA) and sintering test outcomes revealed that increasing the content of NVP in the organic medium (above 15 wt.%) leads to uncontrolled thermal degradation during debinding and defects on ceramic parts after sintering. The negative effect of UA on the viscosity of ceramic-loaded mixtures was controlled by eliminating the PC34 compound with NVP and HDDA, and optimum mechanical properties were achieved at 15 wt.% of NVP and 65 wt.% of HDDA. PEA is added to provide additional flexibility to the ceramic parts. It was found that strain and other mechanical parameters peaked at 15 wt.% of PEA. The study formulated the most suitable binder formulation on the green body strength of printing silica ceramics as 50 wt.% HDDA, 20 wt.% Urethane Acrylate, 15 wt.% NVP and 15 wt.% PEA. Full article
(This article belongs to the Special Issue 3D/4D Printing for Polymer Composites)
Show Figures

Figure 1

22 pages, 9396 KiB  
Article
5-Amino-8-hydroxyquinoline-containing Electrospun Materials Based on Poly(vinyl alcohol) and Carboxymethyl Cellulose and Their Cu2+ and Fe3+ Complexes with Diverse Biological Properties: Antibacterial, Antifungal and Anticancer
by Milena Ignatova, Nevena Manolova, Iliya Rashkov, Ani Georgieva, Reneta Toshkova and Nadya Markova
Polymers 2023, 15(14), 3140; https://doi.org/10.3390/polym15143140 - 24 Jul 2023
Viewed by 1468
Abstract
Novel fibrous materials with diverse biological properties containing a model drug of the 8-hydroxyquinoline group—5-amino-8-hydroxyquinoline (5A8Q)—were fabricated using a one-pot method by electrospinning poly(vinyl alcohol) (PVA)/carboxymethyl cellulose (CMC)/5A8Q solutions. Experiments were performed to prepare Cu2+ (Fe3+) complexes of the crosslinked [...] Read more.
Novel fibrous materials with diverse biological properties containing a model drug of the 8-hydroxyquinoline group—5-amino-8-hydroxyquinoline (5A8Q)—were fabricated using a one-pot method by electrospinning poly(vinyl alcohol) (PVA)/carboxymethyl cellulose (CMC)/5A8Q solutions. Experiments were performed to prepare Cu2+ (Fe3+) complexes of the crosslinked PVA/CMC/5A8Q materials. The formation of complexes was proven by using scanning electron microscopy (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The release of 5A8Q and 5A8Q.Cu2+ (Fe3+) was studied and their in vitro release profiles were mostly impacted by the hydrophilic/hydrophobic properties of the materials. The performed microbiological assays revealed that fibrous materials containing 5A8Q and their complexes exhibited good antibacterial and antifungal efficacy. Their activity was stronger against bacteria S. aureus than against bacteria E. coli and fungi C. albicans. Cell viability tests using MTT showed that the presence of 5A8Q and its complexes in the fibrous materials resulted in a significant decrease in the HeLa and MCF-7 cancer cell viability for the various times of cell incubation. Moreover, the observed cytotoxicity of the mats against cancer cells was greater than that against non-cancer HaCaT keratinocytes. All these properties make the novel materials potential candidates for the design of wound healing materials and as drug delivery systems for local therapy of cervical and breast cancer. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymeric Fibers and Textiles)
Show Figures

Graphical abstract

16 pages, 2671 KiB  
Article
Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil
by Junqi Wang, Ruiqing Liu, Bo Wang, Zhigang Cheng, Chengkun Liu, Yiwen Tang and Junfeng Zhu
Polymers 2023, 15(14), 3139; https://doi.org/10.3390/polym15143139 - 24 Jul 2023
Cited by 2 | Viewed by 1230
Abstract
Heavy oil exploitation needs efficient viscosity reducers to reduce viscosity, and polyether carboxylate viscosity reducers have a significant viscosity reduction effect on heavy oil. Previous work has studied the effect of different side chain lengths on this viscosity reducer, and now a series [...] Read more.
Heavy oil exploitation needs efficient viscosity reducers to reduce viscosity, and polyether carboxylate viscosity reducers have a significant viscosity reduction effect on heavy oil. Previous work has studied the effect of different side chain lengths on this viscosity reducer, and now a series of polyether carboxylate viscosity reducers, including APAD, APASD, APAS, APA, and AP5AD (the name of the viscosity reducer is determined by the name of the desired monomer), with different electrical properties have been synthesized to investigate the effect of their different electrical properties on viscosity reduction performance. Through the performance tests of surface tension, contact angle, emulsification, viscosity reduction, and foaming, it was found that APAD viscosity reducers had the best viscosity reduction performance, reducing the viscosity of heavy oil to 81 mPa·s with a viscosity reduction rate of 98.34%, and the worst viscosity reduction rate of other viscosity reducers also reached 97%. Additionally, APAD viscosity reducers have the highest emulsification rate, and the emulsion formed with heavy oil is also the most stable. The net charge of APAD was calculated from the molar ratio of the monomers and the total mass to minimize the net charge. While the net charge of other surfactants was higher. It shows that the amount of the surfactant’s net charge affects the surfactant’s viscosity reduction effect, and the smaller the net charge of the surfactant itself, the better the viscosity reduction effect. Full article
Show Figures

Figure 1

25 pages, 5670 KiB  
Review
Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview
by Solange Magalhães, Catarina Fernandes, Jorge F. S. Pedrosa, Luís Alves, Bruno Medronho, Paulo J. T. Ferreira and Maria da Graça Rasteiro
Polymers 2023, 15(14), 3138; https://doi.org/10.3390/polym15143138 - 24 Jul 2023
Cited by 18 | Viewed by 10192
Abstract
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on [...] Read more.
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose’s use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

19 pages, 4229 KiB  
Article
Methodologies to Evaluate the Micromechanics Flexural Strength Properties of Natural-Fiber-Reinforced Composites: The Case of Abaca-Fiber-Reinforced Bio Polyethylene Composites
by Faust Seculi, Fernando Julián, Joan Llorens, Francisco X. Espinach, Pere Mutjé and Quim Tarrés
Polymers 2023, 15(14), 3137; https://doi.org/10.3390/polym15143137 - 24 Jul 2023
Cited by 5 | Viewed by 1654
Abstract
There is growing emphasis on developing green composites as a substitute for oil-based materials. In the pursuit of studying and enhancing the mechanical properties of these composites, tensile tests are predominantly employed, often overlooking the flexural properties. This study focuses on researching the [...] Read more.
There is growing emphasis on developing green composites as a substitute for oil-based materials. In the pursuit of studying and enhancing the mechanical properties of these composites, tensile tests are predominantly employed, often overlooking the flexural properties. This study focuses on researching the flexural properties of abaca-fiber-reinforced bio-based high-density polyethylene (BioPE) composites. Specifically, composites containing 30 wt% of abaca fiber (AF) were treated with a coupling agent based on polyethylene functionalized with maleic acid (MAPE). The test results indicate that incorporating 8 wt% of the coupling agent significantly improved the flexural strength of the composites. Thereafter, composites with AF content ranging from 20 to 50 wt% were produced and subjected to flexural testing. It was observed that flexural strength was positively correlated with AF content. A micromechanics analysis was conducted to evaluate the contributions of the phases. This analysis involved assessing the mechanical properties of both the reinforcement and matrix to facilitate the modeling of flexural strength. The findings of this study demonstrate the feasibility of replacing oil-based matrices, such as high-density polyethylene (HDPE), with fully bio-based composites that exhibit comparable flexural properties to their oil-based counterparts. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 3421 KiB  
Article
One-Step Method for Direct Acrylation of Vegetable Oils: A Biobased Material for 3D Printing
by Cristian Mendes-Felipe, Igor Isusi, Olga Gómez-Jiménez-Aberasturi, Soraya Prieto-Fernandez, Leire Ruiz-Rubio, Marco Sangermano and José Luis Vilas-Vilela
Polymers 2023, 15(14), 3136; https://doi.org/10.3390/polym15143136 - 24 Jul 2023
Cited by 11 | Viewed by 2342
Abstract
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad [...] Read more.
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad functional attributes, stable price and sustainable character. Acrylated vegetable oils are considered to be very versatile materials for very broad applications (such as in adhesives, coatings or inks) since, in the presence of photoinitiators, they can be polymerized by means of UV-initiated free radical polymerizations. The usual process for the synthesis of acrylate vegetable oils consists in reacting epoxidized oils derivatives with acrylic acid. Here, the influence of different catalysts on the activity and selectivity of the process of acrylation of epoxidized soybean oil is studied. In addition, a novel one-step method for direct acrylation of vegetable oils is also explored. This new approach advantageously uses the original vegetable resource and eliminates intermediate reactions, thus being more environmentally efficient. This study offers a simple and low-cost option for synthesizing a biomass-derived monomer and studies the potential for the 3D printing of complex structures via digital light processing (DLP) 3D printing of the thus-obtained novel sustainable formulations. Full article
(This article belongs to the Special Issue Environmentally Friendly Bio-Based Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 6510 KiB  
Article
Effect of Fe3O4 Nanoparticles Modified by Citric and Oleic Acids on the Physicochemical and Magnetic Properties of Hybrid Electrospun P(VDF-TrFE) Scaffolds
by Vladimir Botvin, Anastasia Fetisova, Yulia Mukhortova, Dmitry Wagner, Sergey Kazantsev, Maria Surmeneva, Andrei Kholkin and Roman Surmenev
Polymers 2023, 15(14), 3135; https://doi.org/10.3390/polym15143135 - 24 Jul 2023
Cited by 8 | Viewed by 2031
Abstract
This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. [...] Read more.
This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. The synthesized Fe3O4-CA and Fe3O4-OA nanoparticles are similar in particle size and phase composition, but differ in zeta potential values and magnetic properties. Pure P(VDF-TrFE) scaffolds as well as composites with Fe3O4-CA and Fe3O4-OA nanoparticles demonstrate beads-free 1 μm fibers. According to scanning electron (SEM) and transmission electron (TEM) microscopy, fabricated P(VDF-TrFE) scaffolds filled with CA-modified Fe3O4 nanoparticles have a more homogeneous distribution of magnetic filler due to both the high stabilization ability of CA molecules and the affinity of Fe3O4-CA nanoparticles to the solvent used and P(VDF-TrFE) functional groups. The phase composition of pure and composite scaffolds includes a predominant piezoelectric β-phase, and a γ-phase, to a lesser extent. When adding Fe3O4-CA and Fe3O4-OA nanoparticles, there was no significant decrease in the degree of crystallinity of the P(VDF-TrFE), which, on the contrary, increased up to 76% in the case of composite scaffolds loaded with 15 wt.% of the magnetic fillers. Magnetic properties, mainly saturation magnetization (Ms), are in a good agreement with the content of Fe3O4 nanoparticles and show, among the known magnetoactive PVDF or P(VDF-TrFE) scaffolds, the highest Ms value, equal to 10.0 emu/g in the case of P(VDF-TrFE) composite with 15 wt.% of Fe3O4-CA nanoparticles. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds)
Show Figures

Figure 1

15 pages, 10820 KiB  
Article
Influence of TPU/EVA Phase Morphology Evolution on Supercritical Carbon Dioxide Extrusion Foaming
by Jun-Wei Du, Tian-Tian Zhou, Rong Zhang and Sheng-Fei Hu
Polymers 2023, 15(14), 3134; https://doi.org/10.3390/polym15143134 - 24 Jul 2023
Cited by 4 | Viewed by 2400
Abstract
Ethylene-vinyl acetate copolymer (EVA) was added at different contents to the thermoplastic polyurethane (TPU) matrix to form a non-compatible blending system, and foaming materials with high pore density were prepared using the supercritical carbon dioxide extrusion method. The influence of the phase morphology [...] Read more.
Ethylene-vinyl acetate copolymer (EVA) was added at different contents to the thermoplastic polyurethane (TPU) matrix to form a non-compatible blending system, and foaming materials with high pore density were prepared using the supercritical carbon dioxide extrusion method. The influence of the phase morphology and crystal morphology of the TPU/EVA blend on its foaming behavior was studied. The results show that EVA changed the phase morphology and crystal morphology of the blends, leading to the improved melt viscosity and crystallinity of the blend system. At the same time, interfacial nucleation increases the density of cells and decreases the cell thickness and size, which is beneficial for improving the foaming properties of the blends. For the EVA content of 10% (mass fraction), the cell size is small (105.29 μm) and the cell density is the highest (3.74 × 106 cells/cm3). Based on the TPU/EVA phase morphology and crystal morphology, it is found that the sea-island structure of the blend has better foaming properties than the bicontinuous structure. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

20 pages, 6663 KiB  
Article
Design, Synthesis, and Comparison of PLA-PEG-PLA and PEG-PLA-PEG Copolymers for Curcumin Delivery to Cancer Cells
by Neda Rostami, Farzaneh Faridghiasi, Aida Ghebleh, Hadi Noei, Meisam Samadzadeh, Mohammad Mahmoudi Gomari, Alireza Tajiki, Majid Abdouss, Alireza Aminoroaya, Manisha Kumari, Reza Heidari, Vladimir N. Uversky and Bryan R. Smith
Polymers 2023, 15(14), 3133; https://doi.org/10.3390/polym15143133 - 23 Jul 2023
Cited by 6 | Viewed by 3182
Abstract
Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR’s solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) [...] Read more.
Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR’s solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) (PEG-PLA-PEG) were designed and synthesized to assess and compare their CUR-delivery capacity and inhibitory potency on MCF-7 breast cancer cells. Molecular dynamics simulations and free energy analysis indicated that PLA-PEG-PLA has a higher propensity to interact with the cell membrane and more negative free energy, suggesting it is the better carrier for cell membrane penetration. To characterize the copolymer synthesis, Fourier transform-infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were employed, copolymer size was measured using dynamic light scattering (DLS), and their surface charge was determined by zeta potential analysis. Characterization indicated that the ring-opening polymerization (ROP) reaction was optimal for synthesizing high-quality polymers. Microspheres comprising the copolymers were then synthesized successfully. Of the two formulations, PLA-PEG-PLA experimentally exhibited better results, with an initial burst release of 17.5%, followed by a slow, constant release of the encapsulated drug up to 80%. PLA-PEG-PLA-CUR showed a significant increase in cell death in MCF-7 cancer cells (IC50 = 23.01 ± 0.85 µM) based on the MTT assay. These data were consistent with gene expression studies of Bax, Bcl2, and hTERT, which showed that PLA-PEG-PLA-CUR induced apoptosis more efficiently in these cells. Through the integration of nano-informatics and in vitro approaches, our study determined that PLA-PEG-PLA-CUR is an optimal system for delivering curcumin to inhibit cancer cells. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Figure 1

18 pages, 5400 KiB  
Article
Effect of Chemical and Steam Explosion Pulping on the Physical and Mechanical Properties of Sugarcane Straw Pulp Trays
by Kittaporn Ngiwngam, Sinchai Chinvorarat, Pornchai Rachtanapun, Rafael Auras, Thawien Wittaya and Wirongrong Tongdeesoontorn
Polymers 2023, 15(14), 3132; https://doi.org/10.3390/polym15143132 - 23 Jul 2023
Cited by 1 | Viewed by 2109
Abstract
Sugarcane straw fiber (SSF) samples were prepared by chemical pulping (CP) and steam explosion (STE). CP (5, 10, 15% NaOH + 0.2% w/w anthraquinone at 121 °C for 1 h) and STE pressure (1.77, 1.96, and 2.16 MPa at 220 °C [...] Read more.
Sugarcane straw fiber (SSF) samples were prepared by chemical pulping (CP) and steam explosion (STE). CP (5, 10, 15% NaOH + 0.2% w/w anthraquinone at 121 °C for 1 h) and STE pressure (1.77, 1.96, and 2.16 MPa at 220 °C for 4 min) SSF trays were molded with a hydraulic hot-press machine at 120 °C, 7 min, and 1.72 MPa. The yield (%) of SSF from STE (54–60% dry basis (db.)) was higher than CP (32–48% db.). STE trays had greater tensile strength than CP. However, STE’s elongation and compression strength was lower than CP tray samples. The trays made from SSF using STE had less swelling in thickness, longer water wetting time, and a higher water contact angle than those made from CP. The micrographs displayed a smaller size of SSF obtained in STE than the CP. The appearance and area of peaks in ATR-FTIR spectra and XRD diffractograms, respectively, revealed that the STE trays had a larger residual lignin content from the lignin study and a lower crystallinity index than the CP trays. Moreover, the lightness values of the STE trays were lower than those of the CP trays due to lignin retention. The study results indicate that CP is the preferred method for producing SSF packaging material with high flexibility and fiber purity. However, when considering the specific SF of 4.28, the STE treatment showed superior physical and mechanical properties compared to CP. This suggests that STE could be an excellent alternative green pulping technique for producing durable biobased trays. Overall, the findings highlight the potential of STE as a viable option for obtaining trays with desirable characteristics, providing a sustainable and efficient approach to tray production. Full article
Show Figures

Figure 1

15 pages, 4328 KiB  
Article
Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties
by Gaukhar Toleutay, Esra Su and Gaukhargul Yelemessova
Polymers 2023, 15(14), 3131; https://doi.org/10.3390/polym15143131 - 23 Jul 2023
Cited by 1 | Viewed by 1652
Abstract
Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since they are based on ionic interactions, [...] Read more.
Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since they are based on ionic interactions, polyampholytes are known to require lower amounts of chemical cross-linkers as compared with traditional gels. However, the effects of both chemical and physical interactions on the material’s performance are yet to be fully understood and were examined in the present work. Here, four series of equimolar polyampholyte hydrogels were synthesized with anionic (acrylamidomethylpropane sulfonic acid sodium salt) and cationic monomers (acrylamidopropyl-trimethylammonium chloride) along with a cross-linker (N,N′-methylenebisacrylamide). The mechanical and rheological properties of the gels were characterized following changes to the initial monomer concentration and crosslinker ratios, which led to gels with different toughness, stretchability, and compressibility. The direct correlation of the cross-linking degree with the initial monomer concentration showed that the chemical crosslinker could be further reduced at a high monomer concentration of 30% by weight, which creates an inter-chain network at a minimal crosslinker concentration of 0.25%. Lastly, N′N-dimethylacrylamide was added, which resulted in an increase in the number of H-bonds in the structure, noticeably raising material performance. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 3285 KiB  
Article
The Effect of Polymer Elastic Particles Modified with Nano-Silica on the Mechanical Properties of Oil Well Cement-Based Composite Materials
by Xiaoliang Wang, Mingbiao Xu, Yi Qin, Jianjian Song, Rongyao Chen and Zhong Yin
Polymers 2023, 15(14), 3130; https://doi.org/10.3390/polym15143130 - 23 Jul 2023
Cited by 4 | Viewed by 1480
Abstract
The integrity of oil well cement sheaths is closely related to the long-term production safety of oil and gas wells. The primary material used to form a cement sheath is brittle. In order to reduce the brittleness of oil well cement and improve [...] Read more.
The integrity of oil well cement sheaths is closely related to the long-term production safety of oil and gas wells. The primary material used to form a cement sheath is brittle. In order to reduce the brittleness of oil well cement and improve its flexibility and resistance to stress damage, nano-silica was used to modify polymer elastic particles, and their properties were analyzed. The influence of the modified polymer particles on the properties of oil well cement-based composite materials was studied, and the microstructure of the polymer particle cement sample was analyzed. The results showed that nano-silica effectively encapsulates polymer particles, improves their hydrophilicity, and achieves a maximum temperature resistance of 415 °C. The effect of the modified polymer particles on the compressive strength of cement sample is reduced. Polymer particles with different dosages can effectively reduce the elastic modulus of cement paste, improve the deformation and elasticity of cement paste, and enhance the toughness of cement paste. Microstructural analysis showed that the polymer particles are embedded in the hydration products, which is the main reason for the improvement in the elasticity of cement paste. At the same time, polymer particle cement slurry can ensure the integrity of the cement sample after it is impacted, which helps to improve the ability of oil well cement-based composite materials to resist stress damage underground. Full article
(This article belongs to the Special Issue Polymer-Cement Composites: Synthesis, Properties and Application)
Show Figures

Figure 1

16 pages, 3068 KiB  
Review
Performance, Mechanical Properties and Durability of a New Type of UHPC—Basalt Fiber Reinforced Reactive Powder Concrete: A Review
by Fangyuan Li, Tangzhen Lv and Sihang Wei
Polymers 2023, 15(14), 3129; https://doi.org/10.3390/polym15143129 - 23 Jul 2023
Cited by 6 | Viewed by 2357
Abstract
The advent of reactive powder concrete (RPC) has brought about the era of ultra-high performance concrete (UHPC), and the incorporation of fiber has brought about more possibilities for its application. Basalt fiber reinforced reactive powder concrete (BFRPC), as the product of the combination [...] Read more.
The advent of reactive powder concrete (RPC) has brought about the era of ultra-high performance concrete (UHPC), and the incorporation of fiber has brought about more possibilities for its application. Basalt fiber reinforced reactive powder concrete (BFRPC), as the product of the combination of RPC and fiber, has become a new engineering material that has received much attention from scholars in recent years. Compared with traditional UHPC, BFRPC is superior in corrosion resistance, material compatibility, cost performance, environmental protection, and other aspects; therefore, it is destined to have a wide range of applications in the future. In this article, we extensively reviewed the literature on basalt fiber reinforced RPC in the past decade from the perspective of work performance, mechanical properties, and durability. Moreover, we summarized the research progress and achievements on BFRPCs in the following points: (1) The performance of BFRPCs is mainly influenced by three factors: the frictional resistance between fine aggregates, the consistency of the cement slurry, and the three-dimensional random interweaving of basalt fibers; (2) the mechanical properties of BFRPC are mainly influenced by curing conditions, the design of the RPC matrix proportional mix, and the addition of basalt fibers up to a threshold; (3) thanks in part to RPC’s density and the filling and bridging of fibers, BFRPC exhibits uniform and good performance in durability indicators. However, there are still some problems in the current development of BFRPC, such as inconsistent test conclusions among different scholars and a lack of scenarios in which to apply BFRPC. This paper also puts forward the prospect from the aspects of theoretical research and practical application, and provides a reference for subsequent related work. Full article
Show Figures

Figure 1

24 pages, 4222 KiB  
Review
Probing the Free Volume in Polymers by Means of Positron Annihilation Lifetime Spectroscopy
by Giovanni Consolati, Dario Nichetti and Fiorenza Quasso
Polymers 2023, 15(14), 3128; https://doi.org/10.3390/polym15143128 - 23 Jul 2023
Cited by 8 | Viewed by 2660
Abstract
Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration [...] Read more.
Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration of vacancies with a sensitivity of 10−7. In the field of porous and amorphous systems, PALS can probe cavities in the range from a few tenths up to several tens of nm. In the case of polymers, PALS is one of the few techniques able to give information on the holes forming the free volume. This quantity, which cannot be measured with macroscopic techniques, is correlated to important mechanical, thermal, and transport properties of polymers. It can be deduced theoretically by applying suitable equations of state derived by cell models, and PALS supplies a quantitative measure of the free volume by probing the corresponding sub-nanometric holes. The system used is positronium (Ps), an unstable atom formed by a positron and an electron, whose lifetime can be related to the typical size of the holes. When analyzed in terms of continuous lifetimes, the positron annihilation spectrum allows one to gain insight into the distribution of the free volume holes, an almost unique feature of this technique. The present paper is an overview of PALS, addressed in particular to readers not familiar with this technique, with emphasis on the experimental aspects. After a general introduction on free volume, positronium, and the experimental apparatus needed to acquire the corresponding lifetime, some of the recent results obtained by various groups will be shown, highlighting the connections between the free volume as probed by PALS and structural properties of the investigated materials. Full article
Show Figures

Figure 1

16 pages, 3066 KiB  
Article
Design of a 3D Amino-Functionalized Rice Husk Ash Nano-Silica/Chitosan/Alginate Composite as Support for Laccase Immobilization
by Francesca Romana Scuto, Clarissa Ciarlantini, Viviana Chiappini, Loris Pietrelli, Antonella Piozzi and Anna M. Girelli
Polymers 2023, 15(14), 3127; https://doi.org/10.3390/polym15143127 - 22 Jul 2023
Cited by 4 | Viewed by 1909
Abstract
Recycling of agro-industrial waste is one of the major issues addressed in recent years aimed at obtaining products with high added value as a future alternative to traditional ones in the per-spective of a bio-based and circular economy. One of the most produced [...] Read more.
Recycling of agro-industrial waste is one of the major issues addressed in recent years aimed at obtaining products with high added value as a future alternative to traditional ones in the per-spective of a bio-based and circular economy. One of the most produced wastes is rice husk and it is particularly interesting because it is very rich in silica, a material with a high intrinsic value. In the present study, a method to extract silica from rice husk ash (RHA) and to use it as a carrier for the immobilization of laccase from Trametes versicolor was developed. The obtained mesoporous nano-silica was characterized by X-ray diffraction (XRD), ATR-FTIR spectroscopy, Scanning Elec-tron Microscopy (SEM), and Energy Dispersive X-ray spectroscopy (EDS). A nano-silica purity of about 100% was found. Nano-silica was then introduced in a cross-linked chitosan/alginate scaffold to make it more easily recoverable after reuse. To favor laccase immobilization into the composite scaffold, functionalization of the nano-silica with (γ-aminopropyl) triethoxysilane (APTES) was performed. The APTES/RHA nano-silica/chitosan/alginate (ARCA) composite al-lowed to obtain under mild conditions (pH 7, room temperature, 1.5 h reaction time) a robust and easily reusable solid biocatalyst with 3.8 U/g of immobilized enzyme which maintained 50% of its activity after six reuses. The biocatalytic system, tested for syringic acid bioremediation, was able to totally oxidize the contaminant in 24 h. Full article
(This article belongs to the Special Issue Sustainability of Polymer Materials)
Show Figures

Graphical abstract

24 pages, 14889 KiB  
Article
Synthesis and Characterization of Core–Double-Shell-Structured PVDF-grafted-BaTiO3/P(VDF-co-HFP) Nanocomposite Films
by Fatima Ezzahra Bouharras, Salima Atlas, Simone Capaccioli, Massimiliano Labardi, Abdelghani Hajlane, Bruno Ameduri and Mustapha Raihane
Polymers 2023, 15(14), 3126; https://doi.org/10.3390/polym15143126 - 22 Jul 2023
Cited by 2 | Viewed by 1574
Abstract
Core–double-shell-structured nanocomposite films consisting of polyvinylidene fluoride-grafted-barium titanate (PVDF-g-BT) incorporated into a P(VDF-co-hexafluoropropylene (HFP)) copolymer matrix were produced via a solution mixing method for energy storage applications. The resulting films were thoroughly investigated via spectroscopic, thermal, and morphological analyses. [...] Read more.
Core–double-shell-structured nanocomposite films consisting of polyvinylidene fluoride-grafted-barium titanate (PVDF-g-BT) incorporated into a P(VDF-co-hexafluoropropylene (HFP)) copolymer matrix were produced via a solution mixing method for energy storage applications. The resulting films were thoroughly investigated via spectroscopic, thermal, and morphological analyses. Thermogravimetric data provided an enhancement of the thermal stability, while differential scanning calorimetry indicated an increase in the crystallinity of the films after the addition of PVDF-g-BT. Moreover, broadband dielectric spectroscopy revealed three dielectric processes, namely, glass–rubber relaxation (αa), relaxation associated with the polymer crystalline phase (αc), and slower relaxation in the nanocomposites resulting from the accumulation of charge on the interface between the PVDF-g-BT filler and the P(VDF-co-HFP) matrix. The dependence of the dielectric constant from the composition was analyzed, and we found that the highest permittivity enhancement was obtained by the highest concentration filler added to the largest concentration of P(VDF-co-HFP). Mechanical analysis revealed an improvement in Young’s modulus for all nanocomposites versus pristine P(VDF-co-HFP), confirming the uniformity of the distribution of the PVDF-g-BT nanocomposite with a strong interaction with the copolymer matrix, as also evidenced via scanning electron microscopy. The suggested system is promising for use in high-energy-density storage devices as supercapacitors. Full article
Show Figures

Figure 1

12 pages, 2992 KiB  
Article
Influence of the Polymeric Matrix on the Optical and Electrical Properties of Copper Porphine-Based Semiconductor Hybrid Films
by Maria Elena Sánchez Vergara, Joaquín André Hernández Méndez, Daniela González Verdugo, Isabella María Giammattei Funes and Octavio Lozada Flores
Polymers 2023, 15(14), 3125; https://doi.org/10.3390/polym15143125 - 22 Jul 2023
Cited by 1 | Viewed by 1794
Abstract
In this study, we assessed the electrical and optical behavior of semiconductor hybrid films fabricated from octaethyl-21H,23H-porphine copper (CuP), embedded in polymethylmethacrylate (PMMA), and polystyrene (PS). The hybrid films were characterized structurally and morphologically using infrared spectroscopy (IR), atomic force microscopy (AFM), scanning [...] Read more.
In this study, we assessed the electrical and optical behavior of semiconductor hybrid films fabricated from octaethyl-21H,23H-porphine copper (CuP), embedded in polymethylmethacrylate (PMMA), and polystyrene (PS). The hybrid films were characterized structurally and morphologically using infrared spectroscopy (IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Subsequently, the PMMA:CuP and PS:CuP hybrid films were evaluated optically by UV–vis spectroscopy, as well as electrically, with the four-point collinear method. Hybrid films present a homogeneous and low roughness morphology. In addition, the PS matrix allows the crystallization of the porphin, while PMMA promotes the amorphous structure in CuP. The polymeric matrix also affects the optical behavior of the films, since the smallest optical gap (2.16 eV) and onset gap (1.89 eV), and the highest transparency are obtained in the film with a PMMA matrix. Finally, the electrical behavior in hybrid films is also affected by the matrix: the largest amount of current carried is approximately 0.01 A for the PS:CuP film, and 0.0015 A for the PMMA:CuP film. Thanks to the above properties, hybrid films are promising candidates for use in optoelectronic devices. Full article
(This article belongs to the Special Issue Application and Development of Conductive Polymers)
Show Figures

Figure 1

19 pages, 3249 KiB  
Article
Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols
by Aiga Ivdre, Arnis Abolins, Nikita Volkovs, Laima Vevere, Aigars Paze, Raimonds Makars, Daniela Godina and Janis Rizikovs
Polymers 2023, 15(14), 3124; https://doi.org/10.3390/polym15143124 - 22 Jul 2023
Cited by 8 | Viewed by 3066
Abstract
Developing polyols from biomass sources contributes to a more circular economy by replacing petroleum-based polyols in the vast production of polyurethanes (PUR). One such potential biomass source could be leftover birch bark from which suberinic acids (SA) can be obtained. The purpose of [...] Read more.
Developing polyols from biomass sources contributes to a more circular economy by replacing petroleum-based polyols in the vast production of polyurethanes (PUR). One such potential biomass source could be leftover birch bark from which suberinic acids (SA) can be obtained. The purpose of this study was to identify the best synthesis routes for novel SA-based polyols, obtain rigid PUR foams, and evaluate their competitiveness and potential suitability as thermal insulation material. Novel polyols were synthesized from depolymerized SA by esterification with various functionality and molecular weight alcohols in several molar ratios. The moisture content, hydroxyl and acid values, and apparent viscosity were tested. Free-rise rigid PUR foams from the most suitable SA-based polyol and tall oil-based polyol were successfully prepared, reaching ~20 wt.% total renewable material content in the foam. The obtained rigid PUR foams’ morphological, mechanical, and thermal properties were investigated and compared to present foam materials, including commercial foams. The apparent density (~33 kg/m3), as well as the closed cell content (~94%), compression strength (0.25 MPa, parallel to the foaming direction), and thermal conductivity (~0.019 W/(m·K)), approved the competitiveness and potential ability of SA-based rigid PUR foam production as thermal insulation material. Full article
(This article belongs to the Special Issue Recent Advances in Polyurethane Materials)
Show Figures

Figure 1

15 pages, 3467 KiB  
Article
The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films
by Shuting Zhang, Fuqiang Tian, Jieyi Liang, Jinmei Cao and Zhaoliang Xing
Polymers 2023, 15(14), 3123; https://doi.org/10.3390/polym15143123 - 22 Jul 2023
Cited by 3 | Viewed by 1200
Abstract
The insulating properties of polypropylene (PP) film play a very important role in the operating status of direct current (DC) support capacitors. Charging and discharging currents in PP film under high DC electric fields and temperatures correspond to charge transportation and accumulation, which [...] Read more.
The insulating properties of polypropylene (PP) film play a very important role in the operating status of direct current (DC) support capacitors. Charging and discharging currents in PP film under high DC electric fields and temperatures correspond to charge transportation and accumulation, which significantly influence the electrical insulating properties of PP. In this paper, we have comprehensively studied the dependence of charging/discharging currents in PP film on time, electric field (150–670 kV/mm), and temperature (40–120 °C). The results showed that the charging current increased by almost an order of magnitude from 150 kV/mm to 670 kV/mm and exhibits a steep increase with temperature above 80 °C. The discharging currents are about 10 times less than the corresponding charging currents. Carrier mobility varies little with the electric field and becomes slightly larger with an increase in temperature. The quantity of the accumulated charges was calculated by the integral of the charging and discharging current differentials and showed a significant increase with the electric field and temperature. The corresponding electric field distortion becomes larger above 80 °C compared to 20–60 °C. Both electric field and temperature have an important effect on PP film and capacitors based on charge transport and accumulation and their electric field distortion. This study is innovative in that it combines the operating status of DC support capacitors with traditional methods to research synthetically charged transport mechanisms of PP film. The findings are meaningful for understanding the insulation failure mechanisms of PP film and capacitors under complex stresses. Full article
Show Figures

Figure 1

17 pages, 4738 KiB  
Article
Polydopamine-Coated Polycaprolactone Electrospun Nanofiber Membrane Loaded with Thrombin for Wound Hemostasis
by Dapeng Cui, Ming Li, Peng Zhang, Feng Rao, Wei Huang, Chuanlin Wang, Wei Guo and Tianbing Wang
Polymers 2023, 15(14), 3122; https://doi.org/10.3390/polym15143122 - 22 Jul 2023
Cited by 6 | Viewed by 1775
Abstract
Hemorrhagic shock is the primary cause of death in patients with severe trauma, and the development of rapid and efficient hemostatic methods is of great significance in saving the lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared [...] Read more.
Hemorrhagic shock is the primary cause of death in patients with severe trauma, and the development of rapid and efficient hemostatic methods is of great significance in saving the lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared by electrospinning. A PCL–PDA loading system was developed by modifying the surface of polydopamine (PDA), using inspiration from mussel adhesion protein, and the efficient and stable loading of thrombin (TB) was realized to ensure the bioactivity of TB. The new thrombin loading system overcomes the disadvantages of harsh storage conditions, poor strength, and ease of falling off, and it can use thrombin to start a rapid coagulation cascade reaction, which has the characteristics of fast hemostasis, good biocompatibility, high safety, and a wide range of hemostasis. The physicochemical properties and biocompatibility of the PCL–PDA–TB membrane were verified by scanning electron microscopy, the cell proliferation test, the cell adhesion test, and the extract cytotoxicity test. Red blood cell adhesion, platelet adhesion, dynamic coagulation time, and animal models all verified the coagulation effect of the PCL–PDA–TB membrane. Therefore, the PCL–PDA–TB membrane has great potential in wound hemostasis applications, and should be widely used in various traumatic hemostatic scenarios. Full article
(This article belongs to the Special Issue New Advances in Polymer Electrospun Fibers)
Show Figures

Figure 1

19 pages, 6513 KiB  
Article
Effect of the Electric Field on the Biomineralization of Collagen
by Fiorella Ortiz, Antonio Díaz-Barrios, Zoraya E. Lopez-Cabaña and Gema González
Polymers 2023, 15(14), 3121; https://doi.org/10.3390/polym15143121 - 22 Jul 2023
Cited by 3 | Viewed by 1463
Abstract
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite [...] Read more.
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite migration of ions into collagen membranes to form hydroxyapatite (HA) on the collagen membrane. Two physically separated solutions were used for the incubation medium, one rich in phosphate ions and the other in calcium ions, and their effects were evaluated against the traditional mineralization in Simulated Body Fluid (SBF). Pre-polarization of the organic membranes and the effect of incubation time on the biomineralization process were also assessed by FTIR and Raman spectroscopies.Our results demonstrated that the membrane pre-polarization significantly accelerated the mineralization process on collagen. On the other side, it was found that the application of the electric field influenced the collagen structure and its interactions with the mineral phase. The increment of the mineralization degree enhanced the photoluminescence properties of the collagen/HA materials, while the conductivity and the dielectric constant were reduced. These results might provide a useful approach for future applications in manufacturing biomimetic bone-like materials. Full article
Show Figures

Figure 1

18 pages, 3477 KiB  
Article
Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy
by Federica Magaletti, Fatima Margani, Alessandro Monti, Roshanak Dezyani, Gea Prioglio, Ulrich Giese, Vincenzina Barbera and Maurizio Stefano Galimberti
Polymers 2023, 15(14), 3120; https://doi.org/10.3390/polym15143120 - 22 Jul 2023
Cited by 6 | Viewed by 1415
Abstract
Elastomer composites with low hysteresis are of great importance for sustainable development, as they find application in billions of tires. For these composites, a filler such as silica, able to establish a chemical bond with the elastomer chains, is used, in spite of [...] Read more.
Elastomer composites with low hysteresis are of great importance for sustainable development, as they find application in billions of tires. For these composites, a filler such as silica, able to establish a chemical bond with the elastomer chains, is used, in spite of its technical drawbacks. In this work, a furnace carbon black (CB) functionalized with polar groups was used in replacement of silica, obtaining lower hysteresis. CBN326 was functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinol pyrrole, SP), and samples of CB/SP adducts were prepared with different SP content, ranging from four to seven parts per hundred carbon (phc). The entire process, from the synthesis of SP to the preparation of the CB/SP adduct, was characterized by a yield close to 80%. The functionalization did not alter the bulk structure of CB. Composites were prepared, based on diene rubbers—poly(1,4-cis-isoprene) from Hevea Brasiliensis and poly(1,4-cis-butadiene) in a first study and synthetic poly(1,4-cis-isoprene) in a second study—and were crosslinked with a sulfur-based system. A CB/silica hybrid filler system (30/35 parts) was used and the partial replacement (66% by volume) of silica with CB/SP was performed. The composites with CB/SP exhibited more efficient crosslinking, a lower Payne effect and higher dynamic rigidity, for all the SP content, with the effect of the functionalized CB consistently increasing the amount of SP. Lower hysteresis was obtained for the composites with CB/SP. A CB/SP adduct with approximately 6 phc of SP, used in place of silica, resulted in a reduction in ΔG′/G′ of more than 10% and an increase in E’ at 70 °C and in σ300 in tensile measurements of about 35% and 30%, respectively. The results of this work increase the degrees of freedom for preparing elastomer composites with low hysteresis, allowing for the use of either silica or CB as filler, with a potentially great impact on an industrial scale. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop