Recent Research Progress on Black Carbon Emissions from Marine Diesel Engines
Abstract
:1. Introduction
2. Marine BC Emissions
2.1. Current Ships Emission Regulations
2.2. Marine Diesel Engine
2.3. Marine Fuel
2.4. Marine BC Legislative Trends
2.5. Definition of BC and Carbon Aerosol
3. The Formation and Characterizations of BC
3.1. Formation and Oxidation
3.1.1. Formation and Oxidation Mechanism
3.1.2. Formation and Oxidation Progress in Diesel Spray Flame
3.1.3. Effect of Engine Lubricating Oil
3.2. Physical and Chemical Characteristics
3.2.1. BC Particles Evolution
Morphology and Nanostructure
3.2.2. Nanostructure of Primary Particle
3.2.3. Surface Functional Groups
3.2.4. Oxidation Activity
3.2.5. Particle Size Distribution
3.2.6. Chemical Composition and Element of BC Aerosol Compounds
4. Measurement Technologies
4.1. Alternative Measurements of the BC Aerosol Compound
4.2. BC Measurement from Exhaust
4.2.1. Weighing Method
4.2.2. Light Absorption Method
4.2.3. Laser-Induced Incandescence Method
4.2.4. Thermal Radiation Analysis (TRA) and Thermal–Optical Analysis (TOA)
4.3. BC Measurement in Flames
4.3.1. Light Extinction Method
4.3.2. Two-Color Method
4.3.3. Full Cylinder Sampling Method
4.3.4. In Situ Sampling and Measurement
4.4. Measurement Method Discussion
5. Control Technologies for Reducing BC Emissions
5.1. Purification before Engine
5.1.1. Traditional Marine Fuels
5.1.2. Low Carbon and Zero Carbon Fuels
5.2. Purification Inside Engine
5.2.1. High-Pressure Fuel Injection and Small-Hole Nozzle
5.2.2. Optimizing Injection Timing
5.2.3. Injection Strategy
5.3. Other
5.3.1. Ambient Temperature
5.3.2. Ambient Pressure
5.3.3. Stoichiometry
5.3.4. Combustion Chamber: Structure and Geometry
5.4. The Processing outside Engine
5.4.1. Exhaust Gas Re-Circulation (EGR)
5.4.2. Particle Treatment System
5.4.3. Diesel Particulate Filters (DPFs) and Diesel Oxidation Catalysts (DOCs)
5.4.4. Scrubber
6. Conclusions
- The detection and control of BC emissions from ships are more difficult than that of PM emissions. This is mainly due to the fact that their characteristics are very complex, and the existing detection methods can only recognize one of these characteristics. Therefore, the harmonization and standardization of measurement methods and terminology is a top priority. It is recommended to use the definition “Equivalent BC (eBC)” when using the light attenuation measurement method. Use the definition “Soot BC” when using particle characteristics or micro-morphology measurement methods. Use the definition “refractory rBC” if you use the laser-induced incandescence measurement method. The “Element Carbon” (EC) can also be used instead of the BC detection. The FSN measurement method is the recommended test method for ships due to its optical properties.
- The technology for controlling BC emissions in marine low-speed engines should be different from the technology for controlling PM emissions in another high-speed engine. The simultaneous optimization of energy efficiency in both ship and engine technology (energy efficiency design of ships and in-combustion cleaning technologies) has great potential to control BC emissions. Improving fuel quality is key to reducing BC emissions. At present, the feasible solutions for low-speed engines are optimizing ship design, using biofuel, increasing common rail high-pressure injection pressure, reducing orifice diameter, introducing adoption of boot-length injection patterns, split injection, increasing air entrainment in the lift-off flame, improving air–oil mixture through new combustion chamber design, after-treatment systems, etc. The combined effect of the BC emission reduction should be more than 50%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
IMO | International Maritime Organization |
BC | Black Carbons |
IAPP | International Air Pollution Prevention |
PMs | Particulate Matters |
EPA | Environmental Protection Agency |
CI | Compression-Ignition |
IC | Internal Combustion |
MARPOL | International Convention for the Prevention of Pollution from Ships |
ECA | Emission Control Areas |
RPM | Revolutions Per Minute |
HFO | Heavy Fuel Oil |
MDO | Marine Diesel Oil |
MEPC | Marine Environmental Protection Committee |
MAC | Mass Absorption Cross |
OM | Organic Mass |
OC | Organic Compound |
eBC | equivalent Black Carbons |
rBC | refractory Black Carbons |
TEM | Transmission Electron Microscopy |
EC | Elemental Carbon |
PAHs | Polycyclic Aromatic Hydrocarbons |
HACA | Hydrogen Abstraction Acetylene Addition |
UHC | Unburnt Hydrocarbon |
NOx | Nitrogen Oxides |
AMS | Accelerator Mass Spectrometry |
GMD | Geometric Mean Diameters |
DPFs | Diesel Particulate Filters |
2-D | Two-Dimensional |
DP | Diametral Pitch |
XRD | X-Ray Diffraction |
HRTEM | High-Resolution Transmission Electron Microscopy |
RS | Raman Spectroscopy |
FT-IR | Fourier Transform Infrared Spectroscopy |
XPS | X-ray Photoelectron Spectroscopy |
TGA | Thermo-Gravimetric Analyzer |
T | Temperature |
SMPS | Scanning Mobility Particle Size |
ELPI | Electrical Low-Pressure Impactor |
SOF | Soluble Organic Fraction |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
SMPS | Scanning Mobility Particle Size |
SEM | Scanning Electron Microscopy |
EDX | Energy Dispersive X-Ray Spectroscopy |
TEOM | Tapered Element Oscillating Micro-balance |
ELPI | Electrical Low-Pressure Impactor |
PSAP | Particle Soot Absorption Photometer |
TR | Thermal Radiation |
LA | Light Absorption |
TO | Thermal–Optical |
MAP | Multi-angle Absorption Photometer |
LAC | Light Absorption Coefficients |
WMAC | Wavelength-Dependent Mass Absorption Coefficient |
PAS | Photoacoustic Absorption Spectroscopy |
FSN | Filter Smoke Number |
LII | Laser-Induced Incandescence |
SP2 | Single Particle Soot Photometer |
TRA | Thermal Radiation Analysis |
TOA | Thermal–Optical Analysis |
IMPROVE | Interagency Monitoring of Protected Visual Environments |
NIOSH | National Institute of Occupational Safety and Health |
AFM | Atomic Force Microscope |
FSN | Filter Smoke Number |
LNG | Liquid Natural Gas |
CO | Carbon Monoxide |
EGR | Exhaust Gas Recirculation |
TDC | Top Dead Center |
ECMs | Electronic Control Modules |
ISF | Insoluble Fraction |
SCR | Selective Catalytic Reactor |
ESP | Electrostatic Precipitator |
FF | Fabric Filter |
WES | Wet Electrostatic Scrubber |
EGCS | Exhaust Gas Cleaning System |
DOCs | Diesel Oxidation Catalysts |
References
- Zhu, M.; Li, K.X.; Shi, W.; Lam, S.L. Incentive policy for reduction of emission from ships: A case study of China. Mar. Policy 2017, 86, 253–258. [Google Scholar] [CrossRef]
- Corbett, J.J. Updated emissions from ocean shipping. J. Geophys. Res. 2003, 108, 20–30. [Google Scholar] [CrossRef]
- Lin, B.; Lin, C. Compliance with international emission regulations: Reducing the air pollution from merchant vessels. Mar. Policy 2006, 30, 220–225. [Google Scholar] [CrossRef]
- Goldsworthy, L. Exhaust Emissions from Ship Engines—Significance, Regulations, Control Technologies. Aust. N. Z. Marit. Law J. 2010, 24, 21–30. [Google Scholar]
- Wan, Z.; Zhu, M.; Chen, S.; Sperling, D. Pollution: Three steps to a green shipping industry. Nature 2016, 530, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Endresen, Ø. Emission from international sea transportation and environmental impact. J. Geophys. Res. 2003, 108, 17–28. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from Ship Emissions: A Global Assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- U.S. EPA (U.S. Environmental Protection Agency). Report to Congress on Black Carbon. EPA-450/R-12-001; 2012. Available online: https://19january2017snapshot.epa.gov/www3/airquality/blackcarbon/2012report/fullreport.pdf (accessed on 16 December 2023).
- Humpert, M.; Raspotnik, A. The future of Arctic shipping. Port. Technol. Int. 2012, 55, 10–11. Available online: https://wpassets.porttechnology.org/wp-content/uploads/2019/05/25182025/The_future_of_Arctic_shipping.pdf (accessed on 16 December 2023).
- Ellis, B.; Brigham, L. Arctic Marine Shipping Assessment 2009 Report. Oaarchivearctic-Councilorg. 2009. Available online: https://oaarchive.arctic-council.org/handle/11374/54 (accessed on 16 December 2023).
- Brunila, O.; Inkinen, T. Black carbon measurement in the Arctic—Is there a business potential? In Final Report of the Work Package 3 in the Sea Effects; Centre for Maritime Studies: Singapore, 2017. [Google Scholar]
- Lack, D.; Thuesen, J.; Elliot, R. Investigation of appropriate control measures (abatement technologies) to reduce Black Carbon emissions from international shipping. In International Maritime Organization Study Report and Prepared by Litehauz; ERRIAZ; International Maritime Organization: London, UK, 2012. [Google Scholar]
- National Snow and Ice Data Center. Arctic vs. Antarctic National Snow and Ice Data Center. Nsidcorg. 2000. Available online: https://nsidc.org/cryosphere/seaice/characteristics/difference.html (accessed on 16 December 2023).
- Grahame, T.J.; Klemm, R.; Schlesinger, R.B. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014, 64, 620–660. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Gerlofs-Nijland, M.E.; Lanki, T. Health Effects of Black Carbon. World Health Organization. 2012. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf (accessed on 16 December 2023).
- Briggs, N.L.; Long, C.M. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos. Environ. 2016, 144, 409–427. [Google Scholar] [CrossRef]
- Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [Google Scholar] [CrossRef] [PubMed]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Domestic Regulations for Emissions from Marine Compression-ignition (Diesel) Engines. United States Environmental Protection Agency: Washington, DC, USA, 2019. Available online: https://www.epa.gov/regulations-emissions-vehicles-and-engines/domestic-regulations-emissions-marine-compression (accessed on 16 December 2023).
- Chinese Standard. Limits and Measurement Methods for Exhaust Pollutants from Marine engines (China Ⅰ, Ⅱ). GB 15097-2016; PDF in English; 2016. Available online: https://https://english.mee.gov.cn/Resources/standards/Air_Environment/emission_mobile/201705/t20170523_414595.shtml (accessed on 16 December 2023).
- Di Natale, F.; Carotenuto, C. Particulate matter in marine diesel engines exhausts: Emissions and control strategies. Transp. Res. Part D Transp. Environ. 2015, 40, 166–191. [Google Scholar] [CrossRef]
- IMO. Resolution MEPC.176 (58). Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto. International Maritime Organization. 2008. Available online: http://refhub.elsevier.com/S1364-0321(20)30436-6/sref84 (accessed on 16 December 2023).
- Panagakos, G.P.; Stamatopoulou, E.V.; Psaraftis, H.N. The possible designation of the Mediterranean Sea as a SECA: A case study. Transp. Res. Part D Transp. Environ. 2014, 28, 74–90. [Google Scholar] [CrossRef]
- Viana, M.; Fann, N.; Tobías, A.; Querol, X.; Rojas-Rueda, D.; Plaza, A. Environmental and Health Benefits from Designating the Marmara Sea and the Turkish Straits as an Emission Control Area (ECA). Environ. Sci. Technol. 2015, 49, 3304–3313. [Google Scholar] [CrossRef] [PubMed]
- Kasper, A.; Aufdenblatten, S.; Forss, A.; Mohr, M.; Burtscher, H. Particulate Emissions from a Low-Speed Marine Diesel Engine. Aerosol Sci. Technol. 2007, 41, 24–32. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Lack, D.A.; Corbett, J.J. Black carbon from ships: A review of the effects of ship speed, fuel quality and exhaust gas scrubbing. Atmos. Chem. Phys. 2012, 12, 3985–4000. [Google Scholar] [CrossRef]
- IMO. Sub-Committee on Pollution Prevention and Response (PPR), 2nd Session, 19 to 23 January 2015. Wwwimoorg. 2015. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/PPR-2.aspx (accessed on 19 August 2022).
- IMO. Marine Environment Protection Committee (MEPC), 68th Session, 11 to 15 May 2015. Wwwimoorg. 2015. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-68th-session.aspx (accessed on 19 August 2022).
- IMO. Marine Environment Protection Committee (MEPC), 74th Session, 13–17 May 2019. Wwwimoorg. 2019. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-74th-session.aspx (accessed on 26 November 2021).
- Maricq, M.M. Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust. Aerosol Sci. Technol. 2014, 48, 620–629. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef]
- Bond, T.C.; Habib, G.; Bergstrom, R.W. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 2006, 111, 120–129. [Google Scholar] [CrossRef]
- Schwarz, J.P.; Gao, R.S.; Fahey, D.W.; Thomson, D.S.; Watts, L.A.; Wilson, J.C. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. 2006, 111, 116–131. [Google Scholar] [CrossRef]
- Medalia, A.I.; Heckman, F.A. Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy. Carbon 1969, 7, 567–582. [Google Scholar] [CrossRef]
- Fung, K. Particulate Carbon Speciation by MnO2Oxidation. Aerosol Sci. Technol. 1990, 12, 122–127. [Google Scholar] [CrossRef]
- Wonaschütz, A.; Hitzenberger, R.; Bauer, H.; Pouresmaeil, P.; Klatzer, B.; Caseiro, A. Application of the Integrating Sphere Method to Separate the Contributions of Brown and Black Carbon in Atmospheric Aerosols. Environ. Sci. Technol. 2009, 43, 1141–1146. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef]
- Russell, L.M. Aerosol Organic-Mass-to-Organic-Carbon Ratio Measurements. Environ. Sci. Technol. 2003, 37, 2982–2987. [Google Scholar] [CrossRef]
- Sakurai, H.; Tobias, H.J.; Park, K.; Zarling, D.; Docherty, K.S.; Kittelson, D.B. On-line measurements of diesel nanoparticle composition and volatility. Atmos. Environ. 2003, 37, 1199–1210. [Google Scholar] [CrossRef]
- Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M. Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry. Combust. Flame 2000, 122, 90–104. [Google Scholar] [CrossRef]
- Kholghy, M.R.; Veshkini, A.; Thomson, M.J. The core–shell internal nanostructure of soot—A criterion to model soot maturity. Carbon 2016, 100, 508–536. [Google Scholar] [CrossRef]
- Lahaye, J.; Badie, P.; Ducret, J. Mechanism of carbon formation during steamcracking of hydrocarbons. Carbon 1977, 15, 87–93. [Google Scholar] [CrossRef]
- Johansson, K.O.; Head-Gordon, M.P.; Schrader, P.E.; Wilson, K.R.; Michelsen, H.A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 2018, 361, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Heywood, J.B. Internal Combustion Engine Fundamentals; Mcgraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Dec, J.E. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*. SAE Tech. Pap. 1997, 342–358. [Google Scholar] [CrossRef]
- Wei, Y.; Li, T.; Zhou, X.; Zhang, Z. Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique. Fuel 2020, 268, 117343. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Lai, Z.; Wei, Y. Modeling diesel spray tip and tail penetrations after end-of-injection. Fuel 2019, 237, 442–456. [Google Scholar] [CrossRef]
- Zhao, Y.; Nguyen, T.; Presto, A.; Christopher, J.; Andrew, A.; Allen, L. Intermediate volatility organic compound emissions from on-road diesel vehicles: Chemical composition, emission factors, and estimated secondary organic aerosol production. Environ. Sci. Technol. 2015, 49, 11516–11526. [Google Scholar] [CrossRef]
- Black, F.; High, L. Methodology for Determining Particulate and Gaseous Diesel Hydrocarbon Emissions. SAE Tech. Pap. 790422 1979, 12, 232–238. [Google Scholar] [CrossRef]
- Kageyama, K.; Kinehara, N. Characterization of Particulate Emission from Swirl Chamber Type Light-Duty Diesel Engine as a Function of Engine Parameters. SAE Tech. Pap. 1982, 91, 754–766. Available online: https://www.jstor.org/stable/44631980 (accessed on 16 December 2023).
- Eveleigh, A.; Ladommatos, N. Isotopic Tracers for Combustion Research. Combust. Sci. Technol. 2016, 189, 660–682. [Google Scholar] [CrossRef]
- Mayer, W.J.; Lechman, D.C.; Hilden, D.L. The Contribution of Engine Oil to Diesel Exhaust Particulate Emissions. SAE Tech. Paper 1980, 553–565. [Google Scholar] [CrossRef]
- Buchholz, B.A.; Dibble, R.W.; Rich, D.; Cheng, A.S. Quantifying the Contribution of Lubrication Oil Carbon to Particulate Emissions from a Diesel Engine. SAE Tech. Paper 2003, 112, 1874–1879. [Google Scholar] [CrossRef]
- Jones, H.L.; Mctaggart-Cowan, G.P.; Rogak, S.N.; Bushe, W.K.; Munshi, S.R.; Buchholz, B.A. Source Apportionment of Particulate Matter from a Diesel Pilot-Ignited Natural Gas Fuelled Heavy Duty DI Engine. SAE Technical Paper Series. SAE Tech. Paper 2005, 114, 944–954. [Google Scholar] [CrossRef]
- Miller, A.L.; Stipe, C.B.; Habjan, M.C.; Ahlstrand, G.G. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine. Environ. Sci. Technol. 2007, 41, 6828–6835. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, C.; Song, J.; Lv, G.; Dong, S.; Zhao, Z. Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process. Combust. Flame 2011, 158, 1624–1630. [Google Scholar] [CrossRef]
- Zhang, R.; Kook, S. Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine. Combust. Flame 2015, 162, 2720–2728. [Google Scholar] [CrossRef]
- Si, M.; Cheng, Q.; Song, J.; Liu, Y.; Tao, M.; Lou, C. Study on inversion of morphological parameters of soot aggregates in hydrocarbon flames. Combust. Flame 2017, 183, 261–270. [Google Scholar] [CrossRef]
- Gaddam, C.K.; Vander Wal, R.L. Physical and chemical characterization of SIDI engine particulates. Combust. Flame 2013, 160, 2517–2528. [Google Scholar] [CrossRef]
- Brasil, A.M.; Farias, T.L.; Carvalho, M.G. A Recipe for Image Characterization of Fractal-Like Aggregates. J. Aerosol Sci. 1999, 30, 1379–1389. [Google Scholar] [CrossRef]
- Wei, J.; Zeng, Y.; Pan, M.; Zhuang, Y.; Qiu, L.; Zhou, T. Morphology analysis of soot particles from a modern diesel engine fueled with different types of oxygenated fuels. Fuel 2020, 267, 117248. [Google Scholar] [CrossRef]
- Neer, A.; Koylu, U.O. Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine. Combust. Flame 2006, 146, 142–154. [Google Scholar] [CrossRef]
- Rohani, B.; Bae, C. Morphology and nano-structure of soot in diesel spray and in engine exhaust. Fuel 2017, 203, 47–56. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, G.; Li, T.; He, P.; Chen, R. Characteristics of Particulate Matter Emissions from a Low-Speed Marine Diesel Engine at Various Loads. Environ. Sci. Technol. 2019, 53, 11552–11559. [Google Scholar] [CrossRef] [PubMed]
- Lieke, K.I.; Rosenørn, T.; Pedersen, J.; Larsson, D.; Kling, J.; Fuglsang, K. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber. Aerosol Sci. Technol. 2013, 47, 1038–1046. [Google Scholar] [CrossRef]
- Lee, K.O.; Cole, R.; Sekar, R.; Choi, M.Y.; Kang, J.S.; Bae, C.S. Morphological investigation of the microstructure, dimensions, and fractal geometry of diesel particulates. Proc. Combust. Inst. 2002, 29, 647–653. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Wang, Y.; He, P.; Wang, B. The evolution of soot morphology and nanostructure along axial direction in diesel spray jet flames. Combust. Flame 2019, 199, 204–212. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Tomasek, A.J. Soot nanostructure: Dependence upon synthesis conditions. Combust. Flame 2004, 136, 129–140. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Tomasek, A.J. Soot oxidation. Combust. Flame 2003, 134, 1–9. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, J.; Hernández, J.J.; Sánchez-Valdepeñas, J. Effect of oxygenated and paraffinic alternative diesel fuels on soot reactivity and implications on DPF regeneration. Fuel 2016, 185, 460–467. [Google Scholar] [CrossRef]
- Sharma, M.; Agarwal, A.; Bharathi, K. Characterization of exhaust particulates from diesel engine. Atmos. Environ. 2005, 39, 3023–3028. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Wang, Y.; He, P. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions. Meas. Sci. Technol. 2018, 29, 045801. [Google Scholar] [CrossRef]
- Toth, P.; Palotas, A.B.; Ring, T.A.; Eddings, E.G.; Vander Wal, R.; Lighty, J.S. The effect of oxidation pressure on the equilibrium nanostructure of soot particles. Combust. Flame 2015, 162, 2422–2430. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Mueller, C.J. Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine. Energy Fuels 2006, 20, 2364–2369. [Google Scholar] [CrossRef]
- Agudelo, J.R.; Álvarez, A.; Armas, O. Impact of crude vegetable oils on the oxidation reactivity and nanostructure of diesel particulate matter. Combust. Flame 2014, 161, 2904–2915. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Rao, L.; Kook, S. A Comparison between In-Flame and Exhaust Soot Nanostructures in a Light-Duty Diesel Engine. SAE Tech. Paper 2017-01-0710 2017, 12, 654–657. [Google Scholar] [CrossRef]
- Pahalagedara, L.; Sharma, H.; Kuo, C.-H.; Dharmarathna, S.; Joshi, A.; Suib, S.L.; Mhadeshwar, A.B. Structure and oxidation activity correlations for carbon blacks and diesel soot. Energy Fuels 2012, 26, 6757–6764. [Google Scholar] [CrossRef]
- Ying, Y.; Liu, D. Nanostructure evolution and reactivity of nascent soot from inverse diffusion flames in CO2, N2, and He atmospheres. Carbon 2018, 139, 172–180. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Lu, T.; Cheung, C.S.; Huang, Z. Effects of engine operating conditions on the size and nanostructure of diesel particles. J. Aerosol Sci. 2012, 47, 27–38. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Fan, C. Variations in surface functional groups, carbon chemical state and graphitization degree during thermal deactivation of diesel soot particles. J. Environ. Sci. 2023, 124, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 2011, 33, 41–67. [Google Scholar] [CrossRef]
- Müller, J.-O.; Su, D.S.; Jentoft, R.E.; Wild, U.; Schlögl, R. Diesel Engine Exhaust Emission: Oxidative Behavior and Microstructure of Black Smoke Soot Particulate. Environ. Sci. Technol. 2006, 40, 1231–1236. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Bryg, V.M.; Huang, C.-H. Aircraft engine particulate matter: Macro- micro- and nanostructure by HRTEM and chemistry by, X.P.S. Combust. Flame 2014, 161, 602–611. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Bryg, V.M.; Hays, M.D. XPS Analysis of Combustion Aerosols for Chemical Composition, Surface Chemistry, and Carbon Chemical State. Anal. Chem. 2011, 83, 1924–1930. [Google Scholar] [CrossRef]
- Song, J.; Alam, M.; Boehman, A.L.; Kim, U. Examination of the oxidation behavior of biodiesel soot. Combust. Flame 2006, 146, 589–604. [Google Scholar] [CrossRef]
- Müller, J.-O.; Su, D.S.; Wild, U.; Schlögl, R. Bulk and surface structural investigations of diesel engine soot and carbon black. Phys. Chem. Chem. Phys. 2007, 9, 4018–4025. [Google Scholar] [CrossRef]
- Wang, L.; Song, C.; Song, J.; Lv, G.; Pang, H.; Zhang, W. Aliphatic C–H and oxygenated surface functional groups of diesel in-cylinder soot: Characterizations and impact on soot oxidation behavior. Proc. Combust. Inst. 2013, 34, 3099–3106. [Google Scholar] [CrossRef]
- Cain, J.P.; Gassman, P.L.; Wang, H.; Laskin, A. Micro-FTIR study of soot chemical composition—Evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys. Chem. Chem. Phys. 2010, 12, 5206. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Yezerets, A.; Currier, N.W.; Kim, D.H.; Wang, C.M. HRTEM Study of diesel soot collected from diesel particulate filters. Carbon 2007, 45, 70–77. [Google Scholar] [CrossRef]
- Sun, C.; Martin, J.; Boehman, A.L. Nanostructure and reactivity of soot produced from a turbodiesel engine using post injection. Proc. Combust. Inst. 2019, 37, 1169–1176. [Google Scholar] [CrossRef]
- Yokomichi, H.; Hayashi, T.; Masuda, A. Changes in structure and nature of defects by annealing of fluorinated amorphous carbon thin films with low dielectric constant. Appl. Phys. Lett. 1998, 72, 2704–2706. [Google Scholar] [CrossRef]
- Kandas, A.W.; Gokhan Senel, I.; Levendis, Y.; Sarofim, A.F. Soot surface area evolution during air oxidation as evaluated by small angle X-ray scattering and CO2 adsorption. Carbon 2005, 43, 241–251. [Google Scholar] [CrossRef]
- Stanmore, B.R.; Brilhac, J.F.; Gilot, P. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 2001, 39, 2247–2268. [Google Scholar] [CrossRef]
- Ghiassi, H.; Toth, P.; Jaramillo, I.C.; Lighty, J.S. Soot oxidation-induced fragmentation: Part 1: The relationship between soot nanostructure and oxidation-induced fragmentation. Combust. Flame 2016, 163, 179–187. [Google Scholar] [CrossRef]
- Ghiassi, H.; Jaramillo, I.C.; Toth, P.; Lighty, J.S. Soot oxidation-induced fragmentation: Part 2: Experimental investigation of the mechanism of fragmentation. Combust. Flame 2016, 163, 170–178. [Google Scholar] [CrossRef]
- Sirignano, M.; Ghiassi, H.; D’Anna, A.; Lighty, J.S. Temperature and oxygen effects on oxidation-induced fragmentation of soot particles. Combust. Flame 2016, 171, 15–26. [Google Scholar] [CrossRef]
- Mueller, M.E.; Chan, Q.N.; Qamar, N.H.; Dally, B.B.; Pitsch, H.; Alwahabi, Z.T. Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combust. Flame 2013, 160, 1298–1309. [Google Scholar] [CrossRef]
- Attili, A.; Bisetti, F.; Mueller, M.E.; Pitsch, H. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 2014, 161, 1849–1865. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Guan, C.; Huang, Z. Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Appl. Therm. Eng. 2014, 68, 100–106. [Google Scholar] [CrossRef]
- Stratakis, G. Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame 2003, 132, 157–169. [Google Scholar] [CrossRef]
- Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Maricq, M.M.; Podsiadlik, D.H.; Chase, R.E. Size Distributions of Motor Vehicle Exhaust PM: A Comparison Between ELPI and SMPS Measurements. Aerosol Sci. Technol. 2000, 33, 239–260. [Google Scholar] [CrossRef]
- Kinsey, J.S.; Mitchell, W.A.; Squier, W.C.; Linna, K.; King, F.G.; Logan, R. Evaluation of methods for the determination of diesel-generated fine particulate matter: Physical characterization results. J. Aerosol Sci. 2006, 37, 63–87. [Google Scholar] [CrossRef]
- Chu-Van, T.; Ristovski, Z.; Pourkhesalian, A.M.; Rainey, T.; Garaniya, V.; Abbassi, R. A comparison of particulate matter and gaseous emission factors from two large cargo vessels during manoeuvring conditions. Energy Rep. 2019, 5, 1390–1398. [Google Scholar] [CrossRef]
- Wei, Q.; Kittelson, D.B.; Watts, W.F. Single-Stage Dilution Tunnel Design. SAE Tech. Pap. 2001, 110, 259–271. [Google Scholar] [CrossRef]
- Wichmann, H.-E. Diesel Exhaust Particles. Inhal. Toxicol. 2007, 19, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, X.; Tang, G.; Chen, Y.; Dong, L.; Shu, G. Impact of lubricating oil combustion on nanostructure, composition and graphitization of diesel particles. Fuel 2017, 190, 237–244. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Balasubramanian, R. Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine. Fuel 2015, 141, 1–8. [Google Scholar] [CrossRef]
- Yang, K.; Wei, L.; Cheung, C.S.; Tang, C.; Huang, Z. The effect of pentanol addition on the particulate emission characteristics of a biodiesel operated diesel engine. Fuel 2017, 209, 132–140. [Google Scholar] [CrossRef]
- Choi, J.-H.; Cho, I.; Lee, J.S.; Park, S.-K.; Lee, W.-J.; Kim, H. Characterization of carbonaceous particulate matter emitted from marine diesel engine. J. Mech. Sci. Technol. 2016, 30, 2011–2017. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, F.; Lou, W.; Li, D.; Chen, J. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ. 2017, 605–606, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Kocbach, A.; Johansen, B.V.; Schwarze, P.E.; Namork, E. Analytical electron microscopy of combustion particles: A comparison of vehicle exhaust and residential wood smoke. Sci. Total Environ. 2005, 346, 231–243. [Google Scholar] [CrossRef]
- Vernooij, M.G.C.; Mohr, M.; Tzvetkov, G.; Zelenay, V.; Huthwelker, T.; Kaegi, R. On Source Identification and Alteration of Single Diesel and Wood Smoke Soot Particles in the Atmosphere; An X-Ray Microspectroscopy Study. Environ. Sci. Technol. 2009, 43, 5339–5344. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shah, N.; Braun, A.; Huggins, F.E.; Huffman, G.P. Electron Microscopy Investigation of Carbonaceous Particulate Matter Generated by Combustion of Fossil Fuels. Energy Fuels 2005, 19, 1644–1651. [Google Scholar] [CrossRef]
- Chen, Y.; Shah, N.; Huggins, F.E.; Huffman, G.P. Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmos. Environ. 2006, 40, 651–663. [Google Scholar] [CrossRef]
- Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel–biodiesel blends. Atmos. Environ. 2015, 120, 463–474. [Google Scholar] [CrossRef]
- Mühlbauer, W.; Zöllner, C.; Lehmann, S.; Lorenz, S.; Brüggemann, D. Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity. Combust. Flame 2016, 167, 39–51. [Google Scholar] [CrossRef]
- Liati, A.; Spiteri, A.; Dimopoulos Eggenschwiler, P.; Vogel-Schäuble, N. Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: Implications for the reactivity of soot. J. Nanoparticle Res. 2012, 14, 12–24. [Google Scholar] [CrossRef]
- Jung, H.; Kittelson, D.B.; Zachariah, M.R. The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation. SAE Tech. Paper 2003-01-3179 2003. [CrossRef]
- Hansen, B.B.; Jensen, A.D.; Jensen, P.A. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel 2013, 106, 234–240. [Google Scholar] [CrossRef]
- Kweon, C.-B.; Foster, D.E.; Schauer, J.J.; Okada, S. Detailed Chemical Composition and Particle Size Assessment of Diesel Engine Exhaust. SAE Technical Paper 2002-01-2670 2002, 16, 221–234. [Google Scholar] [CrossRef]
- Jin, T.; Qu, L.; Liu, S.; Gao, J.; Wang, J.; Wang, F.; Zhang, P.; Bai, Z.; Xu, X. Chemical characteristics of particulate matter emitted from a heavy duty diesel engine and correlation among inorganic and PAH components. Fuel 2014, 116, 655–661. [Google Scholar] [CrossRef]
- Luo, C.-H.; Lee, W.-M.; Liaw, J.-J. Morphological and semi-quantitative characteristics of diesel soot agglomerates emitted from commercial vehicles and a dynamometer. J. Environ. Sci. 2009, 21, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Janosik, S.M. Background Information on Black Carbon Emissions from Large Marine and Stationary Diesel En-gines-Definition, Measurement Method, Emission Factors and Abatement Technologies. Int. Counc. Combust. Engines 2005, 42, 1. [Google Scholar]
- Crua, C. Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures. Combust. Flame 2003, 135, 475–488. [Google Scholar] [CrossRef]
- Dreier, T.; Bougie, B.; Dam, N.; Gerber, T. Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments: A comparative study. Appl. Phys. B 2006, 83, 403–411. [Google Scholar] [CrossRef]
- Ryser, R.; Gerber, T.; Dreier, T. Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence. Combust. Flame 2009, 156, 120–129. [Google Scholar] [CrossRef]
- Bougie, B.; Ganippa, L.C.; van Vliet, A.P.; Meerts, W.L.; Dam, N.J.; ter Meulen, J.J. Laser-induced incandescence particle size measurements in a heavy-duty diesel engine. Combust. Flame 2006, 145, 635–637. [Google Scholar] [CrossRef]
- Bougie, B.; Ganippa, L.C.; van Vliet, A.P.; Meerts, W.L.; Dam, N.J.; ter Meulen, J.J. Soot particulate size characterization in a heavy-duty diesel engine for different engine loads by laser-induced incandescence. Proc. Combust. Inst. 2007, 31, 685–691. [Google Scholar] [CrossRef]
- Schwarz, J.P.; Spackman, J.R.; Fahey, D.W.; Gao, R.S.; Lohmann, U.; Stier, P. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J. Geophys. Res. 2008, 113, 223–245. [Google Scholar] [CrossRef]
- Moteki, N.; Kondo, Y. Dependence of Laser-Induced Incandescence on Physical Properties of Black Carbon Aerosols: Measurements and Theoretical Interpretation. Aerosol Sci. Technol. 2010, 44, 663–675. [Google Scholar] [CrossRef]
- Laborde, M.; Schnaiter, M.; Linke, C.; Saathoff, H.; Naumann, K.-H.; Möhler, O. Single Particle Soot Photometer intercomparison at the AIDA chamber. Atmos. Meas. Tech. 2012, 5, 3077–3097. [Google Scholar] [CrossRef]
- Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmos. Chem. Phys. 2008, 8, 2387–2403. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Sci. Technol. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmüller, H.; Fung, K. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef] [PubMed]
- Modest, M.F. Radiative Heat Transfer, 2nd ed.; Academic Press: Boston, MA, USA, 2003. [Google Scholar]
- Kevin, A.T.; Matthew, R.J.; David, R.S.; Gregory, J.S. Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements. Appl. Opt. 2008, 47, 694–703. [Google Scholar]
- Karataş, A.E.; Gülder, Ö.L. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 2012, 38, 818–845. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Ma, P.; Wang, B. Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry. Energies 2017, 10, 2062. [Google Scholar] [CrossRef]
- Hitzenberger, R.; Petzold, A.; Bauer, H.; Ctyroky, P.; Pouresmaeil, P.; Laskus, L. Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location. Environ. Sci. Technol. 2006, 40, 6377–6383. [Google Scholar] [CrossRef]
- Köylü, Ü.Ö. Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity. Combust. Flame 1997, 109, 488–500. [Google Scholar] [CrossRef]
- Knox, A.; Evans, G.J.; Brook, J.R.; Yao, X.; Jeong, C.-H.; Godri, K.J. Mass Absorption Cross-Section of Ambient Black Carbon Aerosol in Relation to Chemical Age. Aerosol Sci. Technol. 2009, 43, 522–532. [Google Scholar] [CrossRef]
- Kondo, Y.; Sahu, L.; Kuwata, M.; Miyazaki, Y.; Takegawa, N.; Moteki, N. Stabilization of the Mass Absorption Cross Section of Black Carbon for Filter-Based Absorption Photometry by the use of a Heated Inlet. Aerosol Sci. Technol. 2009, 43, 741–756. [Google Scholar] [CrossRef]
- Subramanian, R.; Khlystov, A.Y.; Robinson, A.L. Effect of Peak Inert-Mode Temperature on Elemental Carbon Measured Using Thermal-Optical Analysis. Aerosol Sci. Technol. 2006, 40, 763–780. [Google Scholar] [CrossRef]
- Schmid, H. Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos. Environ. 2001, 35, 2111–2121. [Google Scholar] [CrossRef]
- Novakov, T.; Corrigan, C.E. Thermal characterization of biomass smoke particles. Mikrochim. Acta 1995, 119, 157–166. [Google Scholar] [CrossRef]
- Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects. Environ. Sci. Technol. 2011, 45, 10394–10400. [Google Scholar] [CrossRef]
- Cai, M.; Guo, R.; Zhou, F.; Liu, W. Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Sci. China Technol. Sci. 2013, 56, 2888–2913. [Google Scholar] [CrossRef]
- Huang, C.; Hu, Q.; Wang, H.; Qiao, L.; Jing, S.; Wang, H. Emission factors of particulate and gaseous compounds from a large cargo vessel operated under real-world conditions. Environ. Pollut. 2018, 242, 667–674. [Google Scholar] [CrossRef]
- Mueller, L.; Jakobi, G.; Czech, H.; Stengel, B.; Orasche, J.; Arteaga-Salas, J.M. Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Appl. Energy 2015, 155, 204–217. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, J.; Zhu, Y. Chemical composition and size distribution of particulate matters from marine diesel engines with different fuel oils. Fuel 2019, 235, 972–983. [Google Scholar] [CrossRef]
- Zetterdahl, M.; Moldanová, J.; Pei, X.; Pathak, R.K.; Demirdjian, B. Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels. Atmos. Environ. 2016, 145, 338–345. [Google Scholar] [CrossRef]
- CIMAC WG05. Background Information on Black Carbon Emissions. Wwwcimaccom. 2013. Available online: https://www.cimac.com/publications/publications350/cimac-wg05-background-information-on-black-carbon-emissions.html (accessed on 20 August 2022).
- Ristimaki, J.; Hellen, G.; Lappi, M. Chemical and physical characterization of exhaust particulate matter from a marine medium speed diesel engine. In Proceedings of the 26th CIMAC World Congress on Combustion Engines, Bergen, Norway, 14–17 June 2010; Volume 73, pp. 11–32. Available online: https://cris.vtt.fi/en/publications/chemical-and-physical-characterization-of-exhaust-particulate-mat (accessed on 16 December 2023).
- Wu, G.; Jiang, G.; Yang, Z.; Huang, Z. Emission Characteristics for Waste Cooking Oil Biodiesel Blend in a Marine Diesel Propulsion Engine. Pol. J. Environ. Stud. 2019, 28, 2911–2921. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-A.; Wang, W.-G. A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel. J. Korean Soc. Fish. Technol. 2021, 57, 256–263. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Cheenkachorn, K.; Poompipatpong, C.; Ho, C.G. Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy 2013, 53, 52–57. [Google Scholar] [CrossRef]
- Abdelaal, M.M.; Hegab, A.H. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR. Energy Convers. Manag. 2012, 64, 301–312. [Google Scholar] [CrossRef]
- Wartsila. Marine Market Emissions Reduced with New Wärtsilä 31SG Pure Gas Engine. Wartsilacom. 2021. Available online: https://www.wartsila.com/media/news/17-09-2019-marine-market-emissions-reduced-with-new-wartsila-31sg-pure-gas-engine-2528265 (accessed on 20 August 2022).
- Kamimoto, T.; Yokota, H.; Kobayashi, H. Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames. SAE Technical Paper Series. SAE Tech. Paper 871610 1987, 96, 783–791. [Google Scholar] [CrossRef]
- İçıngür, Y.; Altiparmak, D. Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Convers. Manag. 2003, 44, 389–397. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Z.; Zhang, W.; Kuti, O.A.; Nishida, K. Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Appl. Energy 2011, 88, 1620–1628. [Google Scholar] [CrossRef]
- Çelıkten, İ. An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines. Appl. Therm. Eng. 2003, 23, 2051–2060. [Google Scholar] [CrossRef]
- Merker, G.P.; Delebinski, T. Injection rate shaping for diesel engines assisted by optical measurement systems. MTZ Worldw. 2007, 68, 22–25. [Google Scholar] [CrossRef]
- Huang, G.; Li, Z.; Zhao, W.; Zhang, Y.; Li, J.; He, Z. Effects of fuel injection strategies on combustion and emissions of intelligent charge compression ignition (ICCI) mode fueled with methanol and biodiesel. Fuel 2020, 274, 117851. [Google Scholar] [CrossRef]
- Desantes, J.M.; Benajes, J.; Molina, S.; González, C.A. The modification of the fuel injection rate in heavy-duty diesel engines. Part 1: Effects on engine performance and emissions. Appl. Therm. Eng. 2004, 24, 2701–2714. [Google Scholar] [CrossRef]
- Shundoh, S.; Komori, M.; Tsujimura, K.; Kobayashi, S. NOx Reduction from Diesel Combustion Using Pilot Injection with High Pressure Fuel Injection; SAE Technical Paper Series. SAE Tech. Paper 920461 1992, 12, 222–232. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, X.; Li, T. Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures. Energies 2019, 12, 4284. [Google Scholar] [CrossRef]
- Li, T.; Ogawa, H. Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation. SAE Int. J. Engines 2011, 5, 94–101. [Google Scholar] [CrossRef]
- Nishida, O.; Mukōhara, S. Characteristics of soot formation and decomposition in turbulent diffusion flames. Combust. Flame 1982, 47, 269–279. [Google Scholar] [CrossRef]
- Glassman, I. Soot formation in combustion processes. Symp. (Int.) Combust. 1989, 22, 295–311. [Google Scholar] [CrossRef]
- Sato, T.; Shirabe, N.; Anezaki, Y.; Okamoto, A. Spatial Distribution of Droplet Diameter of Wall-Impinging-Spray for Direct Injection Gasoline Engines. SAE Tech. Pap. 2003, 112, 246–254. [Google Scholar] [CrossRef]
- Böhm, H.; Hesse, D.; Jander, H.; Lüers, B.; Pietscher, J.; Wagner, H.G.G. The influence of pressure and temperature on soot formation in premixed flames. Symp. (Int.) Combust. 1989, 22, 403–411. [Google Scholar] [CrossRef]
- Flower, W.L. An investigation of soot formation in axisymmetric turbulent diffusion flames at elevated pressure. Symp. (Int.) Combust. 1989, 22, 425–435. [Google Scholar] [CrossRef]
- Flower, W.L.; Bowman, C.T. Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres. Symp. (Int.) Combust. 1988, 21, 1115–1124. [Google Scholar] [CrossRef]
- Inaba, K.; Ojima, Y.; Masuko, Y.; Kobashi, Y.; Shibata, G.; Ogawa, H. Thermal efficiency improvement with super-charging and cooled exhaust gas recirculation in semi-premixed diesel combustion with a twin peak shaped heat release. Int. J. Engine Res. 2019, 20, 80–91. [Google Scholar] [CrossRef]
- Li, T.; Suzuki, M.; Shudo, T.; Ogawa, H. Characteristics of Nano-Particulate Matter from ultra-high EGR low temperature diesel combustion. JSME Trans. (B) 2008, 74, 207–212. [Google Scholar] [CrossRef]
- Kang, G.; Li, L.; Wang, W.; Dan, Y. Study of a polyaniline/polypropylene collecting electrode and its particle removal efficiency. RSC Adv. 2016, 6, 75038–75044. [Google Scholar] [CrossRef]
Engine Type | Cylinder Volume/(L/cyl) | Rated Power/(kW) | PMs/(g/kW·h) |
---|---|---|---|
Category 1 | SV < 0.9 | p ≥ 37 | 0.30 |
0.9 ≤ SV < 1.2 | 0.14 | ||
1.2 ≤ SV < 5 | 0.12 | ||
Category 2 | 5 ≤ SV < 15 | p < 2000 | 0.14 |
2000 ≤ p < 3700 | 0.14 | ||
p ≥ 3700 | 0.27 | ||
15 ≤ SV < 20 | p < 2000 | 0.34 | |
2000 ≤ p < 3300 | 0.50 | ||
p ≥ 3300 | 0.50 | ||
20 ≤ SV < 25 | p < 2000 | 0.27 | |
p ≥ 2000 | 0.50 | ||
25 ≤ SV < 30 | p < 2000 | 0.27 | |
p ≥ 2000 | 0.50 |
Type | Method Description | Instrument Name | Measuring Range |
---|---|---|---|
Light Absorption Coefficient (LAC) (eBC) | Filter measurement: The light absorption of the particle pair is measured by the filter; the BC is quantified by the coefficient related to the mass concentration. | BC sensor (PAS/PSAP, AVL 483) | 0.001~150 mg/m3 |
Smoke meter (FSN, AVL 415SE) | 0~10 FSN | ||
BC measuring instrument (Magee Scientific AE21 type) | 2.2~12.5 µg/m3 | ||
Photoacoustic counter measurement: By heating particles, energy is transferred to the surrounding air, and sound waves are generated to measure the light absorption of the particle pair and quantify BC with coefficients related to light absorption and mass concentration. | Multi-angle absorber (MAAP, Thermo Scientific 5012 Type) | 0~180 µg/m3 | |
Thermal Radiation (rBC) | Measurement of Incandescent light: Non-contact particle (luminescence) measurement; BC is quantified by comparing the incandescent signal with the standard laboratory BC particle signal. | Single particle photometer (SP2); | 100~800 nm |
BC particle aerosol mass spectrum (SP-AMS) | 40~1 µm | ||
Laser-induced incandescence (LII, Artium 300 Type) | 10~100 nm | ||
Thermal- Optical (EC) | Measurement of the thermal properties: Refractory carbon component when heated to high temperatures; BC is quantified as the mass of carbon formed during heating. | Quartz fiber filter membrane | / |
Thermal properties and optical measurements: Components of refractory carbon when heated to high temperatures and laser correction of carbonized carbon during analysis; BC is quantified as the mass of carbon formed during heating. | Quartz fiber filter membrane; TOA semi-continuous thermo-optic analyzer (TOA-ES, American Sunset Laboratory 5040 method) | / | |
Soot | Thermal properties and optical measurement, imaging observation of EC | Transmission electron microscope TEM | 10 nm~10 µm |
Classification | Item |
Improve the design of ship structure | Optimization design of propeller |
Improvement of ship fluid mechanics and aerodynamics | |
Hull painting and cleaning | |
Power plant design | |
Optimization of ballast water and draught | |
Weight reduction | |
Alternative propulsion systems or energy recovery devices | Wind energy propulsion |
Solar energy propulsion | |
Hybrid energy storage | |
Waste heat recovery | |
Energy-saving operations | Economic speed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Umar, J.A.; Li, T.; Zhou, X.; Chen, C.; Li, J.; Chen, B. Recent Research Progress on Black Carbon Emissions from Marine Diesel Engines. Atmosphere 2024, 15, 22. https://doi.org/10.3390/atmos15010022
Wu G, Umar JA, Li T, Zhou X, Chen C, Li J, Chen B. Recent Research Progress on Black Carbon Emissions from Marine Diesel Engines. Atmosphere. 2024; 15(1):22. https://doi.org/10.3390/atmos15010022
Chicago/Turabian StyleWu, Gang, Jalloh Alpha Umar, Tie Li, Xinyi Zhou, Changsheng Chen, Jiaqi Li, and Biwen Chen. 2024. "Recent Research Progress on Black Carbon Emissions from Marine Diesel Engines" Atmosphere 15, no. 1: 22. https://doi.org/10.3390/atmos15010022