Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Atmosphere, Volume 3, Issue 4 (December 2012) – 8 articles , Pages 451-619

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1233 KiB  
Article
Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager
by David J. Diner, Feng Xu, John V. Martonchik, Brian E. Rheingans, Sven Geier, Veljko M. Jovanovic, Ab Davis, Russell A. Chipman and Stephen C. McClain
Atmosphere 2012, 3(4), 591-619; https://doi.org/10.3390/atmos3040591 - 18 Dec 2012
Cited by 81 | Viewed by 9714
Abstract
Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band [...] Read more.
Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations. Full article
Show Figures

Graphical abstract

511 KiB  
Article
Continuous Cropping and Moist Deep Convection on the Canadian Prairies
by Bharat M. Shrestha, Richard L. Raddatz, Raymond L. Desjardins and Devon E. Worth
Atmosphere 2012, 3(4), 573-590; https://doi.org/10.3390/atmos3040573 - 13 Dec 2012
Cited by 6 | Viewed by 6286
Abstract
Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined [...] Read more.
Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE), a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI) from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were −1.61 ± 0.18, −1.77 ± 0.14 and −1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones. Full article
Show Figures

Graphical abstract

1789 KiB  
Article
A Comprehensive Modeling Study on Regional Climate Model (RCM) Application — Regional Warming Projections in Monthly Resolutions under IPCC A1B Scenario
by Mohammad Adnan Rajib and Md. Mujibur Rahman
Atmosphere 2012, 3(4), 557-572; https://doi.org/10.3390/atmos3040557 - 31 Oct 2012
Cited by 18 | Viewed by 7663
Abstract
Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change [...] Read more.
Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change in terms of global warming. A high resolution limited area Regional Climate Model (RCM) can produce reasonably appropriate projections to be used for climate-scenario generation in country-scale. This paper features the development of future surface temperature projections for Bangladesh on monthly resolution for each year from 2011 to 2100 applying Providing Regional Climates for Impacts Studies (PRECIS), and it explains in detail the modeling processes including the model features, domain size selection, bias identification as well as construction of change field for the concerned climatic variable, in this case, surface temperature. PRECIS was run on a 50 km horizontal grid-spacing under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario and it was found to perform reasonably well in simulating future surface temperature of Bangladesh. The linear regression between observed and model simulated results of monthly average temperatures, within the 30-year period from 1971 to 2000, gives a high correlation of 0.93. The applied change field in average annual temperature shows only 0.5 °C–1 °C deviation from the observed values over the period from 2005 to 2008. Eventually, from the projected average temperature change during the years 1971–2000, it is apparent that warming in Bangladesh prevails invariably every month, which might eventually result in an average annual increase of 4 °C by the year 2100. Calculated anomalies in country-average annual temperature mostly remain on the positive side throughout the period of 2071–2100 indicating an overall up-shift. Apart from these quantitative analyses of temporal changes of temperature, this paper also illustrates their spatial distribution with a view to identify the most vulnerable zones under consequent warming through future times. Full article
(This article belongs to the Special Issue Regional Climate Change and Variability)
Show Figures

Figure 1

1214 KiB  
Article
Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations
by Elena V. Kvon, Janno Tuulik, Meelis Mölder and Anders Lindroth
Atmosphere 2012, 3(4), 537-556; https://doi.org/10.3390/atmos3040537 - 30 Oct 2012
Viewed by 6376
Abstract
Simulation of atmospheric and surface processes with an atmospheric model (RAMS) during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from [...] Read more.
Simulation of atmospheric and surface processes with an atmospheric model (RAMS) during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed. Full article
(This article belongs to the Special Issue Regional Climate Change and Variability)
Show Figures

Figure 1

1042 KiB  
Article
Low-Frequency Rotation of Surface Winds over Canada
by Vladimir Y. Korolevych and Richard B. Richardson
Atmosphere 2012, 3(4), 522-536; https://doi.org/10.3390/atmos3040522 - 25 Oct 2012
Cited by 2 | Viewed by 5762
Abstract
Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. [...] Read more.
Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W) to 25 days at Resolute (75°N, 95°W). Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic) rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants. Full article
Show Figures

Figure 1

786 KiB  
Article
Initial Assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-Based Aerosol Retrieval: Sensitivity Study
by Evgueni Kassianov, Connor Flynn, Jens Redemann, Beat Schmid, Philip B. Russell and Alexander Sinyuk
Atmosphere 2012, 3(4), 495-521; https://doi.org/10.3390/atmos3040495 - 24 Oct 2012
Cited by 5 | Viewed by 8273
Abstract
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) being developed for airborne measurements will offer retrievals of aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. In this study, we assess the expected accuracy of [...] Read more.
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) being developed for airborne measurements will offer retrievals of aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. In this study, we assess the expected accuracy of the 4STAR-based aerosol retrieval and its sensitivity to major sources of anticipated perturbations in the 4STAR measurements. The major anticipated perturbations are (1) an apparent enhancement of sky radiance at small scattering angles associated with the necessarily compact design of the 4STAR and (2) an offset (i.e., uncertainty) of sky radiance calibration independent of scattering angle. The assessment is performed through application of the operational AERONET aerosol retrieval and constructed synthetic 4STAR-like data. Particular attention is given to the impact of these perturbations on the broadband fluxes and the direct aerosol radiative forcing. The results from this study suggest that limitations in the accuracy of 4STAR-retrieved particle size distributions and scattering phase functions have diminished impact on the accuracy of retrieved bulk microphysical parameters, permitting quite accurate retrievals of properties including the effective radius (up to 10%, or 0.03), and the radiatively important optical properties, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 6%, or ±0.04). Also, the obtained results indicate that the uncertainties in the retrieved aerosol optical properties are quite small in the context of the calculated fluxes and direct aerosol radiative forcing (up to 15%, or 3 W∙m−2). Full article
Show Figures

Figure 1

1325 KiB  
Article
Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction
by Bomidi Lakshmi Madhavan, Yuzhe He, Yonghua Wu, Barry Gross, Fred Moshary and Samir Ahmed
Atmosphere 2012, 3(4), 468-494; https://doi.org/10.3390/atmos3040468 - 17 Oct 2012
Cited by 10 | Viewed by 8667
Abstract
The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods [...] Read more.
The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES)/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite retrievals of the Cloud Droplet Effective Radius (Reff) showed significant biases especially at larger solar zenith angles, further motivating the use of ground based remote sensing approaches. In particular, we discuss the potential of using a combined Microwave Radiometer (MWR)—Multi-Filter Rotating Shadowband Radiometer (MFRSR) system for real-time monitoring of Cloud Optical Depth (COD) and Cloud Droplet Effective Radius (Reff), which are combined with aerosol vertical properties from an aerosol lidar. An iterative approach combining the simultaneous observations from MFRSR and MWR are used to retrieve the COD and Reff for thick cloud cases and are extensively validated using the DoE Southern Great Plains (SGP) retrievals as well as regression based parameterized model retrievals. In addition, we account for uncertainties in background aerosol, surface albedo and the combined measurement uncertainties from the MWR and MFRSR in order to provide realistic uncertainty estimates, which is found to be ~10% for the parameter range of interest in Aerosol-Cloud Interactions. Finally, we analyze a particular case of possible aerosol-cloud interaction described in the literature at the SGP site and demonstrate that aerosol properties obtained at the surface can lead to inconclusive results in comparison to lidar-derived aerosol properties near the cloud base. Full article
Show Figures

Figure 1

833 KiB  
Article
A Polarized Atmospheric Radiative Transfer Model for Calculations of Spectra of the Stokes Parameters of Shortwave Radiation Based on the Line-by-Line and Monte Carlo Methods
by Boris Fomin and Victoria Falaleeva
Atmosphere 2012, 3(4), 451-467; https://doi.org/10.3390/atmos3040451 - 10 Oct 2012
Cited by 13 | Viewed by 7544
Abstract
This paper presents a new version of radiative transfer model called the Fast Line-by-Line Model (FLBLM), which is based on the Line-by-Line (LbL) and Monte Carlo (MC) methods and rigorously treats particulate and molecular scattering alongside absorption. The advantage of this model consists [...] Read more.
This paper presents a new version of radiative transfer model called the Fast Line-by-Line Model (FLBLM), which is based on the Line-by-Line (LbL) and Monte Carlo (MC) methods and rigorously treats particulate and molecular scattering alongside absorption. The advantage of this model consists in the use of the line-by-line model that allows for the computing of high-resolution spectra quite quickly. We have developed the model by taking into account the polarization state of light and carried out some validations by comparison against benchmark results. FLBLM calculates the Stokes parameters spectra of shortwave radiation in vertically inhomogeneous atmospheres. This update makes the model applicable for the assessment of cloud and aerosol influence on radiances as measured by the SW high-resolution polarization spectrometers. In sample results we demonstrate that the high-resolution spectra of the Stokes parameters contain more detailed information about clouds and aerosols than the medium- and low-resolution spectra wherein lines are not resolved. The presented model is rapid enough for many practical applications (e.g., validations) and might be useful especially for the remote sensing. FLBLM is suitable for development of the reliable technique for retrieval of optical and microphysical properties of clouds and aerosols from high-resolution satellites data. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop