Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season
Abstract
:1. Introduction
2. Methods
2.1. Monitoring Sites and Meteorological Conditions
2.2. Sampling and Chemical Analysis
2.3. Statistical Analysis
3. Results and Discussions
3.1. PM2.5 Levels
Centro | Miravalle | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | Median | Range | n | Mean | SD | Median | Range | ||
PM2.5 | 6 | 39.3 | 12.0 | 43.0 | 16.0–49.2 | 6 | 58.0 | 13.0 | 62.2 | 37.0–72.5 | |
Pb | 4 | 7.8 | 3.8 | 7.6 | 3.8–12.4 | 4 | 12.8 | 7.6 | 12.7 | 3.6–21.9 | |
Cd | 5 | 8.0 | 4.1 | 8.6 | 3.5–13.3 | 5 | 5.1 | 2.7 | 5.4 | 2.2–.4 | |
Co | - | n.d. | - | - | - | 3 | 0.4 | 0.0 | 0.4 | 0.3–0.4 | |
Cr | 6 | 9.2 | 2.4 | 10.2 | 5.2–11.1 | 6 | 16.6 | 1.9 | 15.6 | 14.9–19.6 | |
Cu | 3 | 107.0 | 16.9 | 108.8 | 89.2–122.9 | 1 ** | - | - | - | - | |
Fe | 6 | 410.3 | 142.3 | 445.2 | 183.9–580.0 | 6 | 653.7 | 236.8 | 588.6 | 345.4–961.1 | |
Mg | 5 | 65.2 | 32.5 | 56.5 | 30.8–116.1 | 6 | 102.8 | 61.0 | 98.8 | 42.4–193.7 | |
Mn | 6 | 9.8 | 3.6 | 10.2 | 3.5–14.4 | 6 | 16.1 | 5.2 | 17.6 | 7.4–21.2 | |
Ni | 1 * | - | - | - | - | 2 | 4.0 | - | - | 3.4–4.5 | |
Sb | 2 | 2.1 | 0.2 | - | 1.9–2.2 | 5 | 2.0 | 1.0 | 1.5 | 1.4–3.7 | |
Se | 3 | 3.6 | 0.5 | 3.8 | 3.0–4.0 | 4 | 1.8 | 0.8 | 1.8 | 0.8–2.8 | |
Sr | 6 | 3.9 | 1.9 | 3.5 | 1.6–6.9 | 6 | 5.4 | 2.5 | 5.2 | 2.7–9.1 | |
Ti | 6 | 11.4 | 5.9 | 12.2 | 2.2–19.1 | 6 | 21.8 | 8.4 | 20.5 | 10.4–32.0 | |
Zn | 5 | 47.5 | 37.8 | 36.3 | 14.4–107.7 | 6 | 30.1 | 16.2 | 30.2 | 5.0–53.6 |
3.2. Metals in PM2.5
Element | Centro | Miravalle |
---|---|---|
Pb | 86.0 | 87.9 |
Cd | 5464.7 | 2193.0 |
Co | n.c. | 1.2 |
Cr | 12.6 | 14.0 |
Cu | 266.9 | n.c. |
Fe * | 0.1 | 0.1 |
Mg | 0.4 | 0.4 |
Mn | 1.4 | 1.5 |
Ni | n.c. | n.c. |
Sb | n.c. | 907.6 |
Se | 9795.1 | 3686.4 |
Sr | 1.4 | 1.3 |
Ti | 0.3 | 0.3 |
Zn | 80.4 | 37.0 |
3.3. Potential Sources of Ionic Species in PM2.5
Site | Mean | Standard Deviation | Median | Minimum | Maximum |
---|---|---|---|---|---|
Centro | |||||
Na+ | 0.29 | 0.05 | 0.28 | 0.22 | 0.35 |
NH4+ | 2.71 | 2.11 | 2.01 | 1.31 | 6.85 |
K+ | 0.36 | 0.13 | 0.38 | 0.18 | 0.57 |
Ca2+ | 0.98 | 0.10 | 1.01 | 0.82 | 1.07 |
Mg2+ | 0.08 | 0.06 | 0.07 | 0.002 | 0.15 |
Cl− | 0.23 | 0.08 | 0.26 | 0.14 | 0.28 |
NO2− | 0.05 | 0.02 | 0.04 | 0.03 | 0.08 |
PO43− | - | - | - | - | - |
SO42− | 3.21 | 1.26 | 2.85 | 1.92 | 5.57 |
NO3− | 10.74 | 14.34 | 4.72 | 1.33 | 38.22 |
Miravalle | |||||
Na+ | 0.33 | 0.16 | 0.34 | 0.06 | 0.54 |
NH4+ | 4.18 | 5.41 | 2.22 | 1.36 | 15.19 |
K+ | 0.38 | 0.30 | 0.25 | 0.18 | 0.97 |
Ca2+ | 1.55 | 0.45 | 1.40 | 1.07 | 2.31 |
Mg2+ | 0.05 | 0.05 | 0.06 | 0.05 | 0.12 |
Cl− | 0.36 | 0.06 | 0.35 | 0.30 | 0.42 |
NO2− | 0.06 | 0.04 | 0.05 | 0.03 | 0.11 |
PO43− | 0.12 | 0.05 | 0.09 | 0.09 | 0.18 |
SO42− | 4.18 | 1.77 | 3.83 | 1.89 | 7.12 |
NO3− | 24.07 | 33.27 | 7.02 | 1.70 | 83.92 |
Cl− | NO2− | PO43− | SO42− | NO3− | Na+ | NH4+ | K+ | Ca2+ | Mg2+ | |
---|---|---|---|---|---|---|---|---|---|---|
Miravalle | ||||||||||
Cl− | 1.00 | |||||||||
NO2− | 0.13 | 1.00 | ||||||||
PO43− | - | - | - | |||||||
SO42− | 0.05 | −0.20 | - | 1.00 | ||||||
NO3− | −0.71 | −0.53 | - | −0.28 | 1.00 | |||||
Na+ | −0.68 | 0.17 | - | −0.28 | 0.71 | 1.00 | ||||
NH4+ | −0.47 | −0.40 | - | 0.80 | 0.28 | 0.14 | 1.00 | |||
K+ | −0.43 | −0.50 | - | 0.77 | 0.18 | −0.11 | 0.95 | 1.00 | ||
Ca2+ | −0.46 | 0.61 | - | −0.64 | 0.14 | 0.54 | −0.48 | −0.52 | 1.00 | |
Mg2+ | −0.18 | −0.47 | - | 0.44 | 0.54 | 0.41 | 0.66 | 0.46 | −0.54 | 1.00 |
Centro | ||||||||||
Cl− | 1.00 | |||||||||
NO2− | −0.32 | 1.00 | ||||||||
PO43− | −0.69 | 0.11 | 1.00 | |||||||
SO42− | −0.19 | −0.48 | 0.41 | 1.00 | ||||||
NO3− | −0.66 | −0.33 | 0.46 | 0.76 | 1.00 | |||||
Na+ | 0.05 | −0.23 | −0.63 | −0.25 | 0.06 | 1.00 | ||||
NH4+ | −0.64 | −0.34 | 0.51 | 0.82 | 0.99 | −0.01 | 1.00 | |||
K+ | −0.49 | 0.05 | 0.60 | 0.65 | 0.67 | −0.61 | 0.70 | 1.00 | ||
Ca2+ | 0.18 | 0.60 | −0.33 | −0.95 | −0.76 | 0.01 | −0.81 | −0.42 | 1.00 | |
Mg2+ | 0.32 | −0.14 | 0.43 | 0.06 | −0.36 | −0.80 | −0.28 | 0.12 | 0.05 | 1.00 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Kappos, A.D.; Bruckmann, P.; Eikmann, T.; Englert, N.; Heinrich, U.; Höppe, P.; Koch, E.; Krause, G.H.M.; Kreyling, W.G.; Rauchfuss, K.; et al. Health effects of particles in ambient air. Int. J. Hyg. Environ. Health 2004, 207, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, Cardiopulmonary Mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human Health effects of air pollution. Environ. Pollut. 2007, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Ramgolam, K.; Favez, O.; Cachier, H.; Gaudichet, A.; Marano, F.; Martinon, L.; Baeza-Squiban, A. Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part. Fibre Toxicol. 2009, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- de Kok, T.M.C.M.; Driece, H.A.L.; Hogervorst, J.G.F.; Briedé, J.J. Toxicological assessment of ambient and traffic–related particulate matter: A review of recent studies. Rev. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Cabada, J.C.; Rees, S.; Takahama, S.; Khlystov, A.; Pandis, S.; Davidson, C.I.; Robinson, A.L. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmos. Environ. 2004, 38, 3127–3141. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Li, X.; Sun, Y.; Li, Y.; Wentworth, G.R.; Wang, Y. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Sci. Total Environ. 2015, 537, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Young-Ji, H.; Tae-Sik, K.; Hakap, K. Ionic constituents and source analysis of PM2.5 in three Korean cities. Atmos. Environ. 2008, 42, 4735–4746. [Google Scholar]
- Sitaras, I.E.; Siskos, P.A. The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study. Environ. Chem. Lett. 2008, 6, 59–69. [Google Scholar] [CrossRef]
- Sharma, M.; Kishore, S.; Tripathi, S.N. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. J. Atmos. Chem. 2007, 58, 1–17. [Google Scholar] [CrossRef]
- Bari, A.; Ferraro, V.; Wilson, L.R.; Luttinger, D.; Husain, L. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos. Environ. 2003, 37, 2825–2835. [Google Scholar] [CrossRef]
- Ghio, A.J.; Stoneheurner, J.; McGee, J.K.; Kinsey, J.S. Sulfate content correlates with iron concentration in ambient air pollution particles. Inhal. Toxicol. 1999, 11, 293–307. [Google Scholar] [PubMed]
- Friedlander, S.K.; Yeh, E.K. The submicron atmospheric aerosols as a carrier of reactive chemical species: Case of peroxide. Appl. Occup. Environ. Hyg. 1998, 13, 416–420. [Google Scholar] [CrossRef]
- Wang, X.; Sato, T.; Xing, B.; Tamamura, S.; Tao, S. Source identification, size distribution and indicator screening of airborne trace metals in Kanazawa, Japan. J. Aerosol Sci. 2005, 36, 197–210. [Google Scholar] [CrossRef]
- Clarke, R.W.; Coull, B.; Reinisch, U.; Catalano, P.; Killingsworth, C.R.; Koutrakis, P.; Kavouras, I.; Murthy, G.G.; Lawrence, J.; Lovett, E.; et al. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ. Health Perspect. 2000, 108, 1179–1187. [Google Scholar] [CrossRef]
- Valavanidis, A.; Fiotakis, K.; Bakeas, E.; Vlahogianni, T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005, 10, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.D.; Ghio, A.J.; Samet, J.M.; Devlin, R.B. Cytokine production by human airway epithelial cells after exposure to an air pollution particles is metal-dependent. Toxicol. Appl. Pharm. 1997, 146, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.K.; Wyatt, H.; Price, J.F.; Kelly, F.J. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur. Respir. J. 1996, 9, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Saldiva, P.H.N.; Clarke, R.W.; Coull, B.A.; Stearns, R.C.; Lawrence, J.; Murthy, G.G. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am. J. Respir. Crit. Care Med. 2002, 165, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological profile information sheet 2003. Available online: http://www.atsdr.cdc.gov/toxprofiles (accessed on 15 July 2015).
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). Available online: http://www.censo2010.org.mx/ (accessed on 15 May 2015).
- Sistema de Monitoreo Atmosférico de Jalisco (SIMAJ). Available online: http://siga.jalisco.gob.mx/aire/Reportes.html (accessed on 9 July 2015).
- PROAIRE 1997–2001. Available online: http://www.semarnat.gob.mx/gestionambiental/calidaddelaire/Documents (accessed on 17 June 2015).
- Hernández-Mena, L.; Murillo-Tovar, M.A.; Ramírez-Muñíz, M.; Colunga-Urbina, E.; de la Garza-Rodríguez, I.; Saldarriaga-Noreña, H. Enrichment Factor and Profiles of Elemental Composition of PM2.5 in the City of Guadalajara, Mexico. Bull. Environ. Contam. Toxicol. 2011, 87, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga-Noreña, H.; Hernández-Mena, L.; Murillo-Tovar, M.A.; López-López, A.; Ramírez-Muñíz, M. Elemental contribution to the mass of PM2.5 in Guadalajara City, Mexico. Bull. Environ. Contam. Toxicol. 2011, 86, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga-Noreña, H.; Hernández-Mena, L.; Ramírez-Muñíz, M.; Carbajal-Romero, P.; Cosío-Ramírez, R.; Esquivel-Hernández, B. Characterization of trace metals of risk to human health in airborne particulate matter (PM2.5) at two sites in Guadalajara, Mexico. J. Environ. Monitor. 2009, 11, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.L.; Saldarriaga, N.H.; Carbajal, R.P.; Cosío, R.R.; Esquivel, H.B. Ionic species associated with PM2.5 in the City of Guadalajara, Mexico during 2007. Environ. Monit. Assess. 2010, 161, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Available online: http://www3.epa.gov/ttnamti1/files/ambient/inorganic/mthd-2-4.pdf (accessed on 6 June 2015).
- Dockery, D.W. Health effects of particulate air pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Polichetti, G.; Cocco, S.; Spinalia, A.; Trimarcoa, V.; Nunziatab, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Air quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global up date 2005. Summary of risk assessment. Available online: http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/ (accessed on 10 July 2015).
- Cuarto Almanaque de datos y tendencias de la calidad del aire en 20 ciudades mexicanas. Available online: http://www2.inecc.gob.mx/publicaciones/new.portada.html?id_tema=&idb=652&img=652.jpg (accessed on 1 July 2015).
- Limon-Sanchez, M.T.; Carvajal-Romero, P.; Hernández-Mena, L.; Saldarriaga-Noreña, H.; López-López, A.; Cosío-Ramírez, R.; Arriaga-Colina, J.L.; Smith, W. Black carbón in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmost. Pol. Res. 2011, 2, 358–365. [Google Scholar] [CrossRef]
- Odabasi, M.; Muezzinoglu, A.; Bozlaker, A. Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmos. Environ. 2002, 36, 5841–5851. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Assessment of seasonal enrichment of heavy metals in respirable suspended particulate matter of a sub-urban Indian city. Environ. Monit. Assess. 2007, 128, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Kobayashi, T.; Sakaguchi, M.; Aoki, M.; Saito, T.; Fujimori, A.; Haraguchi, H. Chemical characterization of airborne particulate matter in ambient air of Nagoya, Japan, as studied by the multielement determination with ICP-AES and ICP-MS. Anal. Sci. 2007, 23, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Guor-Cheng, F.; Yuh-Shen, W.; Shih-Yu, C.; Shih-Han, H.; Jui-Yeh, R. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung harbor near the Taiwan Strait. Atmos. Res. 2006, 81, 320–333. [Google Scholar]
- Gao, Y.; Nelsonb, E.D.; Fielda, M.P.; Dinga, Q.; Lia, H.; Sherrella, R.M.; Gigliottib, C.L.; Van Ryb, D.A.; Glennb, T.R.; Eisenreich, S.J. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary. Atmos. Environ. 2002, 36, 1077–1086. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Chester, R.; Nimmo, M.; Alarcon, M.; Saydam, C.; Murphy, K.J.T.; Sanders, G.; Corcoran, P. Defining the chemical character of aerosols from the atmosphere of the Mediterranean Sea and surrounding regions. Oceanol. Acta 1993, 16, 231–246. [Google Scholar]
- Herut, B.; Nimmo, M.; Medway, A.; Chester, R.; Krom, M.D. Dry atmospheric inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean): Sources and fluxes. Atmos. Environ. 2001, 35, 803–813. [Google Scholar] [CrossRef]
- Pacyna, J.M. Source inventories for atmospheric trace metals. In Atmospheric Particles; IUPAC series on analytical and physical chemistry of environmental systems; Harrison, R.M., van Grieken, R.E., Eds.; Wiley: Chichester, UK, 1998; pp. 385–423. [Google Scholar]
- Huang, X.; Olmez, I.; Aras, N.K. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmos. Environ. 1994, 28, 1385–1391. [Google Scholar] [CrossRef]
- Rajšić, S.; Mijić, Z.; Tasić, M.; Radenković, M.; Joksić, J. Evaluation of levels and sources of trace elements in urban particulate matter. Environ. Chem. Lett. 2008, 6, 95–100. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. Upper and Lower Atmosphere: Theory, Experiments and Applications; Academic Press: San Diego, SD, USA, 2000; pp. 86–126. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.P. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, INC: Hoboken, NJ, USA, 2006; pp. 33–38. [Google Scholar]
- Zhao, W.; Hopke, P.K.; Zhou, L. Spatial distribution of source locations for particulate nitrate and sulfate in the upper–midwestern United States. Atmos. Environ. 2007, 41, 1831–1847. [Google Scholar] [CrossRef]
- Arimoto, R.; Duce, R.A.; Savoie, D.L. Relationships among aerosol constitutes from Asia and the North Pacific During PEM-West A. J. Geophys. Res. 1996, 101, 2011–2023. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Kim, B.M.; Teffera, S.; Zeldin, M.D. Characterization of PM2.5 and PM10 in the south coast air basin of southern California: Part 1–Spatial variations. J. Air Waste Manag. Assoc. 2000, 50, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Tolocka, M.P.; Solomon, P.A.; Mitchell, W.; Norris, G.A.; Gemmill, D.B.; Wiener, R.W.; Vanderpool, R.W.; Homolya, J.B.; Rice, J. East versus west in the US: chemical characteristics of PM2.5 during the winter of 1999. Aerosol Sci. Technol. 2001, 34, 88–96. [Google Scholar] [CrossRef]
- Na, K.; Cocker, D.R. Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California. Atmos. Res. 2009, 93, 793–800. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Sci. Total Environ. 2001, 276, 33–47. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal. Resumen Anual del reporte semanal 2009. Reportes semanales/esta- dísticos. Available online: http://www.conafor.gob.mx:8080/documentos/ver.aspx?articulo=87&grupo=10 (accessed on 15 July 2015).
- Khan, F.M.; Shirasuna, Y.; Hirano, K.; Masunaga, S. Characterization of PM2.5, PM2.5–10 and PM>10 in ambient air, Yokohama, Japan. Atmos. Environ. 2010, 96, 159–172. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Wu, D.; Xu, H. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 2015, 18, 135–143. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Liu, S.; Okuda, T.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Park, S.S.; Ondov, J.M.; Harrison, D.; Nair, N.P. Seasonal and shorter–term variations in particulate atmospheric nitrate in Baltimore. Atmos. Environ. 2005, 39, 2011–2020. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-Tovar, M.A.; Saldarriaga-Noreña, H.; Hernández-Mena, L.; Campos-Ramos, A.; Cárdenas-González, B.; Ospina-Noreña, J.E.; Cosío-Ramírez, R.; Díaz-Torres, J.D.J.; Smith, W. Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season. Atmosphere 2015, 6, 1858-1870. https://doi.org/10.3390/atmos6121834
Murillo-Tovar MA, Saldarriaga-Noreña H, Hernández-Mena L, Campos-Ramos A, Cárdenas-González B, Ospina-Noreña JE, Cosío-Ramírez R, Díaz-Torres JDJ, Smith W. Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season. Atmosphere. 2015; 6(12):1858-1870. https://doi.org/10.3390/atmos6121834
Chicago/Turabian StyleMurillo-Tovar, Mario Alfonso, Hugo Saldarriaga-Noreña, Leonel Hernández-Mena, Arturo Campos-Ramos, Beatriz Cárdenas-González, Jesús Efren Ospina-Noreña, Ricardo Cosío-Ramírez, José De Jesús Díaz-Torres, and Winston Smith. 2015. "Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season" Atmosphere 6, no. 12: 1858-1870. https://doi.org/10.3390/atmos6121834
APA StyleMurillo-Tovar, M. A., Saldarriaga-Noreña, H., Hernández-Mena, L., Campos-Ramos, A., Cárdenas-González, B., Ospina-Noreña, J. E., Cosío-Ramírez, R., Díaz-Torres, J. D. J., & Smith, W. (2015). Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season. Atmosphere, 6(12), 1858-1870. https://doi.org/10.3390/atmos6121834